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Recent advances in porcine genomics have identified quantitative
trait loci (QTL) that influence pork production traits such as car-
cass traits, meat quality, and reproductive efficiency (Rohrer 2000;
Cassady 1999). The low resolution to which most of these loci
have been defined precludes the accurate application of marker-
assisted selection (MAS) strategies for increasing production effi-
ciency. Large-insert genomic libraries are an excellent resource for
marker development aimed at increasing the resolution of QTL
and for the development of contiguous physical maps (contigs) of
the chromosomal regions containing them.

To facilitate applications requiring genomic clones, several
porcine yeast artificial chromosome (YAC) libraries have been
developed representing onefold (Leeb et al. 1995), threefold (Ro-
gel-Gaillard et al. 1997), and 5.5-fold (Alexander et al. 1997)
coverage of the pig genome. These YAC libraries have been valu-
able resource owing to their large insert size. However, marker
isolation from YAC libraries is confounded by the equimolar rep-
resentation of the complex yeast genome and YAC DNA, suscep-
tibility to insert rearrangement, and a relatively high degree of
chimerism. The development of bacterial artificial chromosome
(BAC) libraries (Shizuya et al. 1992; Ioannou et al. 1994) repre-
sents a compromise between insert size, stability, and ease of clone
DNA isolation. BACs are capable of stably maintaining insert
sizes exceeding 200 kb and can be easily isolated by standard
alkaline lysis from bacterial genomic DNA by virtue of their
closed-circular conformation (Shizuya et al. 1992; Ioannou et al.
1994). The ease of BAC DNA isolation allows for efficient re-
striction analysis, subcloning, and direct BAC DNA sequencing,
procedures invaluable for marker isolation and the development of
contiguous physical maps.

Recently BAC libraries representing livestock species, includ-
ing cattle, sheep, and pigs (Cai et al. 1995; Warren et al. 2000;
Vaiman et al. 1999; Suzuki et al. 2000; Rogel-Gaillard et al. 1999)
have been developed. Among these are two porcine BAC libraries
representing fourfold (Suzuki et al. 2000) and fivefold (Rogel-
Gaillard et al. 1999) coverage of the porcine genome. We under-
took the development of a publicly available pig BAC library,
RPCI-44, representing at least a tenfold coverage of the pig ge-
nome as a resource for physical map development and pig genome
sequencing.

High-molecular-weight genomic DNA from four crossbred
male pigs (breed composition: 37.5% Yorkshire, 37.5% Landrace,
and 25% Meishan) was isolated as previously described (Os-
oegawa et al. 1998), partially digested withEcoRI (New England
Biolabs, Beverly, MA) andEcoRI methylase (New England Bio-
labs), and fractionated by clamped homogeneous electrical field
(CHEF; Chu et al. 1986) electrophoresis (BioRad, Hercules, CA).
Digested genomic DNA in the range of 150–200 kpb was gel-
isolated by electroelution and ligated toEcoRI-cut pTARBAC2
(Wang et al., unpublished; http://www.chori.org/bacpac/
vectorframe.htm). Ligated DNA was drop-dialyzed on floating
membranes, first against sterile water, followed by 0.5 × TE con-
taining 30% PEG8000, and introduced by electroporation into
DH1OB electrocompetent cells (Life Technologies, Rockville,
MD). Transformed bacterial cells were allowed to recover in SOC
medium for 1 h at 37°C, and were spread on LB agar plates
containing 20mg/ml chloramphenicol and 5% sucrose. Individual
colonies were picked with an automatic colony-picking robot (Q-
bot; Genetix, Stony Brook, NY) and arrayed into 528 individual
384-well microtiter dishes (Genetix) with LB medium containing
7.5% glycerol and 20mg/ml chloramphenicol. The library was
divided into two segments and gridded onto 11 high-density rep-
lica filters, each containing up to 18,432 independent clones that
have been spotted in duplicate. To serve as anchor spots, an end-
sequenced BAC clone (1A1) from aCaenorhabditis brigseaBAC
library (RPCI-94), containing DNA apparently unique to nematode
genomes, was gridded on the corner of each of the six fields that
comprise the high-density filters. The inclusion of a probe directed
against the anchor spots can facilitate orientation of hybridized
filters.

The predicted coverage of RPCI-44 is a function of the total
number of insert-containing clones and the size of the genomic
DNA fragments they contain. From a total of 202,752 clones
picked, 1,764 (segment 1, 1.9%) and 1,519 (segment 2, 1.4%)
clones failed to grow, leaving a total of 199,469 clones.

Non-recombinant clones containing the original vector were
identified by high-density colony filter hybridization with the vec-
tor as a probe. The probing identifies two classes of clones with
strong versus weak hybridization signals corresponding to the
presence or absence of the original vector stuffer fragment (“pUC-
link”), which contains a high-copy-number replicon. Recombinant
clones lack the stuffer fragment, resulting in much weaker hybrid-
ization signals. In total, 119 clones (0.06%) were identified as
containing intact vector by this approach. The plate and well ad-
dresses of these are available athttp://www.chori.org/framenon-
rec.htm.To evaluate the average insert size and insert size distri-
bution in the library, randomly selected clones from each segment
were subjected to restriction analysis withNot1, insert size deter-
mination by CHEF electrophoresis, and comparison with molecu-
lar weight standards (Osoegawa et al. 2000). Segment 1 was com-
posed of 90,396 clones containing inserts averaging 157 kpb
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(Table 1, Fig. 1a). Segment 2 was composed of 109,073 clones
containing inserts averaging 171 kpb (Table 1, Fig. 1a). The av-
erage insert size for the entire library was 165 kpb. Approximately
7% of the clones from each segment of the library did not appear
to contain insert when assessed by restriction analysis (Table 1).
These clones do not contain the intact vector since they fail to
hybridize to the pUC19 stuffer fragment. Instead, as evidenced by
reduced vector size uponNot1 restriction digestion and pulsed-
field gel electrophoretic analysis, these clones correspond to vector
molecules that have deletions. We postulate that these clones arise
because of restriction enzyme star activity, resulting in nonspecific
digestion in the vector and sacB inactivation. The deleted vectors
can thus give rise to colonies able to propagate on sucrose selec-
tion media (Ioannou et al. 1994). Excluding these clones from the
total results in a final tally of 185,496 clones with an average insert
size of 165 kpb. Therefore, with a porcine genome size of 2.7 × 109

bp (Schmitz et al. 1992), the library contains enough clones to
represent the genome with an 11.3-fold average redundancy.

Another method for determining the coverage of the BAC
library is to determine the number of clones that contain selected
markers. Because this type of determination also reveals the abun-
dance of particular genomic segments, we chose to assess the
coverage of the library on a per chromosome basis, using a col-
lection of previously mapped microsatellite markers (Table 2).
Overlapping oligonucleotides (overgo oligos; McPherson, 1999)
were designed from sequences flanking microsatellite markers to
screen the library by hybridization. Two 24-base oligonucleotides
that have 8-pb complementary sequences at their 38 ends were
synthesized and labeled by primer extension in the presence of
[a-32P]dCTP and [a-32P]dATP and hybridized to the high-density
filters. After the primary library screening with a pool containing
all of the overgo oligo probes, all positive clones were picked from
the library and re-arrayed.

Secondary hybridization filters were gridded from the arrayed
positive clones and screened with individual overgo oligo probes.
The detailed procedure was essentially described previously (Os-
oegawa et al. 2000). The sequence of the overgo oligos and the
clone identification numbers are available at http://borg.marc.
usda.gov/pig_bac_library. The presence of the microsatellites on
the identified BAC clones was verified by PCR amplification with
marker-specific primers (http://sol.marc.usda.gov/genome/swine/
htmls/chromosome list.html) essentially as described (Rohrer et al.
1994) by using approximately 1 ng of BAC DNA. The represen-
tation of each marker is presented in Table 2.

The average representation considering all these data is 11.5 ±
7.9 clones/marker. The number of clones identified did not follow
a normal distribution, with the abundance of several clones inflat-
ing the mean and deviation. To address this, clones corresponding
to the markersSW274, SW2160, S0385, SW957, SW1056,and
SW472were further analyzed byEcoRI DNA fingerprinting
(Marra et al. 1997). The predicted contigs were analyzed carefully
to identify clonal rearrangements as described previously (Os-
oegawa et al. 2000). Analyses revealed that clones representing
markersSW274, S0385, SW957,and SW1056do indeed corre-
spond to single-copy loci with the number of clones in the contigs

indicated in Table 2. Analysis of clones identified as containing
SW2160were found to belong to two non-overlapping contigs,
with 14 and 6 clones, respectively, suggesting that a sequence
homologous toSW2160is represented at least twice in the pig
genome. Fingerprint analysis of the 47 clones corresponding to
markerSW472was complicated by the presence of anEcoRI re-
striction-fragment (either 3.6 kb or 4 kb) that was present at a very
disproportionate concentration relative to the other restriction frag-
ments. Subcloning and sequencing of these restriction-fragments
revealed them to contain sequence corresponding toSW472.This
indicates that theSW472marker is included in a simple sequence
direct repeat, possibly part of alpha-satellite elements within the
porcine genome. In agreement with this proposal, PCR amplifica-
tion of SW472-positive clones usingSW472-specific primers and
analysis by denaturing PAGE revealed the amplification of mul-
tiple products from each BAC (data not shown), indicatingSW472-
related sequence is not uniquely represented even within indi-
vidual BAC clones. Genetic mapping studies relying on the use of

Table 1. Characteristics of the RPCI-44 are summarized in this table. The library was
divided into two segments. Non-insert clones were identified as a single smaller
vector band after digestion withNot1 and analyzed with pulsed-field gel electropho-
resis. The ratio of non-insert clones and average insert size were estimated by ana-
lyzing 144 clones from segment 1 and 148 clones from segment 2.

Segment
Number
of plates

Non-insert
clones (%)

Avg. insert
size (%)

Number of
recombinant
clones

Genome-
fold

1 240 7 157 84,007 4.9
2 288 6.9 171 101,489 6.4
Total 528 7 165 185,496 11.3

Fig. 1. A. In total, 144 clones from segment 1 (black) and 148 clones from
segment 2 (gray) were randomly selected and analyzed by pulsed-field gel
electrophoresis. The vertical axis indicates the number of clones in each
size range. The horizontal axis refers to the size range of insert DNA.B.
Assessment of the coverage of RPCI-44 on a per chromosome basis. The
average number of clones isolated by using chromosome-specific markers
is indicated. Two contigs corresponding toSW2160were identified.
Though this marker has been genetically mapped to SSC8, which contig
corresponds to the mapped DNA segment has not been determined. There-
fore, the representation of SSC8 was predicted by the average of the
number of clones in these contigs. Note that the number of clones expected
for the X Chr is expected to be 1/2 of the autosome representation since the
library is derived from male DNA.
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SW2160andSW472should take into account the presence of mul-
tiple targets within the pig genome.

Recalculating the number of clones corresponding to each
marker, excludingSW472,and independently counting the clones
from the two contigs isolated withSW2160,results in a mean of 10
± 4 clones/marker, in close agreement with the representation pre-
dicted by BAC clone number and insert size. Consideration of the
chromosomal representation as indicated by average marker con-
tent, with the SSCX expected to be haploid in a a male-derived
library, is also consistent with a ten-fold coverage of the porcine
genome.

We have constructed a porcine BAC library, RPCI-44, from
four male crossbred pigs. Partially redundant sequencing of RPCI-
44 will result in an elevated detection of polymorphisms compared
with libraries developed from individual or isogenic animals, with-
out hindering clone isolation. Given the role that polymorphic loci
play in meiotic mapping, the genetic diversity captured by this
library is especially valuable for the isolation of markers for physi-
cal and genetic map integration. Successful fingerprint analysis
conducted in the course of this work, as well as the generation of
genome-wide physical contigs using this library (Warren et al.
2001), demonstrates that the gain in polymorphism content does
not decrease the utility of RPCI-44 for physical mapping. The
value of the RPCI-44 porcine BAC library for isolating clones
containing specific porcine genes has been demonstrated by the
successful isolation of clones corresponding to more than 4000 pig
genes (Warren et al. 2001). Its utility in providing markers suitable
for genetic mapping has been shown via the development of more
than 15 gene-linked markers polymorphic in the U.S. Meat Animal
Research Center (MARC) porcine reference population (Fahrenk-
rug et al.; Smith et al.; Campbell et al.; Rohrer et al. unpublished
data). The 10- to 11-fold genomic coverage represented by RPCI-
44, in conjunction with the other porcine libraries mentioned here,
will be of great value for the isolation of genetic and physical
markers, the generation of comprehensive physical maps, and the

construction of minimum tiling paths for region-specific or whole-
genome sequencing. Information regarding the public distribution
of RPCI-44 at cost can be found at http://www.chori.org/bacpac/.
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Table 2. Microsatellite markers used to screen RPCI-44 to determine chromosomal
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and the number of clones isolated is indicated.

Marker Chromosome Position (cM) Clones

SW1430 1 58.5 9
SW780 1 81.0 8
SW1650 2 27.3 10
SW1026 2 60.6 9
SW274 3 0 17
SW902 3 58.4 9
SW489 4 8.0 8
SW2454 4 51.2 5
SW1482 5 39.9 12
SW1468 5 97.5 8
SW322 6 149.8 11
SW1369 7 48.2 7
SW472 7 58.9 47
SW2160 8 80.1 20
SW2093 9 103.6 10
SW497 10 39.3 9
SW951 10 96.0 7
S0385 11 0 18
SW1632 11 16.6 4
SW957 12 33.4 16
SW935 13 25.4 15
SW1056 13 96.1 16
SO356 14 8.6 10
SW1081 14 72.1 4
SW1562 15 29.5 12
SW1401 15 62.5 7
SW2411 16 16.7 14
SW335 17 0 11
SW1808 18 0 12
SW1984 18 29.4 10
SW1608 X 101.9 8
SW2534 X 30.2 1
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