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BENEFICIAL EFFECT OF INJECTED AIR INTO SUBSURFACE DRIP 

IRRIGATION (SDI) ON PLANT GROWTH USING RUNOFF FROM A FEEDLOT 

Padmasankha Dissanayake, M.S. 

University of Nebraska, 2020 

Advisor: Daniel D. Snow 

Due to water scarcity and increasing food demand, nonconventional water sources 

(e.g., human and animal wastewater) represent a valuable alternative to traditional water 

resources for agricultural use. Among these alternatives, treated animal wastewater, 

particularly feedlot runoff may represent a valuable solution in states like Nebraska due 

to its abundance. Subsurface drip irrigation (SDI) is a low-pressure micro-irrigation 

system that delivers water to the crop root zone through buried drip tapes with embedded 

emitters at fixed intervals. Despite multiple advantages (great water application 

uniformity, high water use efficiency, and improve fertilizer application), SDI can lead to 

poor aeration in the rhizosphere while applying water as drops. Therefore, to prevent 

these low levels of oxygen, injected air into SDI has been applied during the past twenty 

years. Aerated SDI has also been used to increase the crop yield, its quality, weight, and 

dimensions, as well as the dimensions of the roots. However, to the best of my 

knowledge, no other studies have been conducted using treated wastewater (e.g., feedlot 

runoff) to grow crops in the presence of SDI coupled with air-injection. 

This study evaluated the effect of irrigation with feedlot runoff into air-injected SDI on 1) 

soil properties (e.g., water content, oxygen, etc.) and 2) corn (Zea mays) and sugar beets 

(Beta vulgaris) production.  



 
 

 

The soil oxygen increased with air injection and the soil moisture content 

increased during the multiple irrigation events. Injected air significantly increased soil 

oxygen. The aerated zone at 45 cm contained the same and/or even greater amount of soil 

oxygen that non-aerated zone at 25 cm depth. The soil moisture content was lower in the 

aerated zones compared to the non-aerated zones. The impact of injected air on the 

growth of the two crops was no statistically significant. This may be related to the limited 

number of crops manually harvested and investigated. Injected air enhanced the yield of 

the two crops. Corn yields were 7.7 ± 0.9 Mg/ha and 7.3 ± 1.0 Mg/ha with and without 

air injection respectively. A 5.50 % yield increase was achieved using injected air. Sugar 

beet yields were 54.23 ± 11.21 Mg/ha and 50.33 ± 11.65 Mg/ha with and without air 

injection, respectively with a 7.75 % yield increase. Sugar yield increased by 8.0 % in the 

presence of air injection (7.82 ± 1.61 Mg/ha with air and 7.24 ± 1.72 Mg/ha without air). 

Two hailstorms toward the end of the study damage the two fields and consequently 

negatively affected the study. These results are encouraging considering the expected 

increased yield after the first year. 
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BENEFICIAL EFFECT OF INJECTED AIR INTO SUBSURFACE DRIP 

IRRIGATION (SDI) ON PLANT GROWTH USING  

RUNOFF FROM A FEEDLOT 

1. INTRODUCTION 

1.1 Water crisis and nontraditional water sources for agriculture 

The world’s supply of freshwater is finite and limited. Only 0.01% of the total 

water is readily accessible for human activity in the form of rivers and lakes (Ölmez, 

2013). According to the World Health Organization (WHO), in 1995, thirty-one countries 

were classified as water-scarce or water-stressed, and the number would increase up to 

fifty-four by 2050 (WHO, 2006). An unbalanced distribution of rainfall, an increase of 

temperatures, an increase of extreme events (e.g., severe droughts), and a reduction in 

precipitation in semi-arid zones reduce the amount of available water.  

While the amount of available water is decreasing, global food demand is 

foreseen to increase by 65% by 2025 (Alexandratos and Bruinsma, 2012) and 

consequently, more water for agriculture is required. Water use has been growing for 

more than twice the population increase (FAO, 2012). Unfortunately, 40% of the 

projected population increase is expected in areas already facing water scarcity (WHO, 

2006). The global consumption of freshwater for agricultural irrigation is 70% and it 

decreases to 37% in the United States (FAO, 2012). Globally, over-irrigation and 

excessive expansion of agricultural lands reduce the available freshwater for human 
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consumption. Groundwater withdrawal increased from 100–150 km3 in 1950 to 950–

1000 km3 in 2000, making aquifer depletion a major issue (FAO, 2012).  

Due to water scarcity and increasing food demand, nonconventional water sources 

(e.g., human and animal wastewater) represent a valuable alternative to traditional water 

resources for agricultural use. For example, in Israel, 70% of farming is achieved using 

treated wastewater (WHO, 2006), and in Jordan, this value increases to 50% (Alfarra et 

al., 2010). By 2006, Mexico and Egypt had over 40,000 ha of land irrigated using treated 

wastewater (Jiménez, 2006). In the United States, agricultural use of treated wastewater 

is 29% (EPA, 2012). These values reflect the public acceptance of treated wastewater for 

irrigation. For example, Ricart et al. investigating the usage of treated wastewater for 

irrigation around the world, observed that public acceptance of treated wastewater for 

irrigation ranges from as low as 40–50% to as high as 70–90% (Ricart et al., 2019). Dery 

et al. conducted a survey evaluating the perception of water reuse (human wastewater) in 

Arizona, and observed that irrigation of forage crops and dust control (62%) and 

irrigation of food crops (42%) were the most common agricultural practices for which the 

respondents would be willing to use nontraditional water sources (e.g., treated 

wastewater; Dery et al., 2019). To further improve the acceptability of recycled water in 

our society, the public must be informed and educated (Rock et al., 2012). Treated 

(human) wastewater has been adopted primarily in California (Miller, 2006; Toze, 2006), 

Arizona, Texas, and Florida (EPA, 2012). The annual volume of water reuse for 

agricultural purposes is 303,000 acre-feet per year in California and 287,000 acre-feet per 

year in Florida (EPA, 2012). Treated (human) wastewater has been used in California to 

grow lettuce, artichoke, strawberries, and grapes (Miller, 2006), and in Arizona to grow 
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wheat, millet, barley, melons, pistachios, melons, olives, and vegetables (Cusimano et al., 

2015). 

The effect of treated wastewater on soil properties has been investigated during 

the past decade (Becerra-Castro et al. 2015; Bradford et al. 2008; Gelsomino et al. 2006; 

Xu et al. 2010; Wei et al., 2017). Treated wastewater has positive as well as negative 

effects on soil properties. Increased soil organic and consequently improved soil 

aggregate stability, and reduced structural degradation represents the main benefit. Soil 

hydraulic conductivity increases in the presence of stable aggregates (Hawke et al., 

2006). Increased aggregate stability improves the movement of air and water within the 

soil and consequently root respiration and plant growth (Ibekwe et al., 2018). Treated 

wastewater from animal sources (e.g. feedlot runoff, wastewater from the slaughterhouse) 

can also be used for irrigational purposes. Feedlot water increases the drainage potential 

of the soil (Sparling et al., 2001). Churchman and Tate (1986) found that clay 

aggregation becomes stronger with feedlot water. Feedlot water contains compounds 

such as (Nitrate-nitrogen (NO3
--N), ammonium-nitrogen (NH4

+-N), total phosphorous, 

soluble phosphorous, sulfate-sulfur (SO4
2--S), nitrite-nitrogen (NO2

--N), calcium (Ca2+), 

and magnesium (Mg2+) (Gilbertson and Nienaber, 1973; Woodbury et al., 2003; Bradford 

et al., 2008; Edwards et al., 1985; Olson et al., 2005; Sparling et al., 2001; D’Alessio et 

al., 2019) that can serve as nutrients for the plant growth and can reduce the use of 

synthetic fertilizer (Becerra-Castro et al., 2015).  

Negative effects related to the application of recycled water on crops and soil 

properties are related to the presence of heavy metals (e.g., mercury (Hg), cadmium (Cd), 

lead (Pb), cobalt (Co), manganese (Mn), and selenium (Se)) (Khan et al., 2008), and 
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organic compounds (e.g., chemicals of environmental concern (CECs – antibiotics and 

hormones) (D’Alessio et al., 2019; Khan et al., 2008; Sim et al., 2011; Wei et al., 2016). 

Intake of heavy metals such as Zn, Cu, and Mn into lettuce and onion were observed 

(Kalavrouziotis et al., 2005). For example, Kalavrouziotis et al. reported the intake of 

iron (Fe) in the roots, nickel (Ni), Co, and Pb in the leaves of broccoli and Brussels sprout 

(Kalavrouziotis et al., 2008). Concentrations of Cd, chromium (Cr), were observed in 

radish, corn, mustard, wild cabbage, and lettuce (Khan et al., 2008). Also, due to the 

application of treated wastewater, oxidized Arsenic (V) may become reduced Arsenic 

(III) in water which is 25-60 times more toxic to humans than Arsenic (V) (Malakar et 

al., 2019). Long term application of feedlot water can also cause accumulation of CECs 

in soil (Borgman et al., 2013; Boxall et al., 2006; D'Alessio et al., 2020, 2019; Malakar et 

al., 2019) and crops (Boxall et al., 2006; Christou et al., 2019; D’Alessio et al., 2020; Wu 

et al., 2015). In addition to metals and CECs, treated wastewater contains inorganic 

cations such as sodium (Na+), potassium (K+), Mg2+, and Ca2+. High levels of these 

cations increase the salinity of the treated wastewater and consequently increase the soil 

dispersion, reduce the soil aggregate formation, the infiltration rate (Malakar et al., 2019), 

the plant growth, and the crop productivity (Becerra-Castro et al., 2015).  

1.2 Subsurface drip irrigation and air injection 

Subsurface drip irrigation (SDI) is a low-pressure micro-irrigation system that 

delivers water and nutrients to the crop root zone through buried polyethylene drip tapes 

with embedded emitters at fixed intervals. The dripline space and depth are determined 

by the soil type,  tilling, and cultural practices. The interest in SDI increased due to the 
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reduction of water resources and the emergence of needs for water conservation. This 

method is a suitable method for irrigation using treated wastewater (human and animal). 

An SDI system usually include 1) a pump to distribute water from the water supply to the 

crops, 2) a backflow preventer to prevent the contamination of the water supply from 

backflow of chemicals, 3) a flow meter to measure the volume of water flowing through 

the system, 4) a chemical injection system to add fertilizer(s) and/or other chemicals to 

the irrigation water, 5) a filtration system to prevent the clogging of tapes and emitters, 6) 

a mainline to deliver water from the pump station to the driplines, 7) a zone valve to 

control the delivery of water to the crops, 8) one or more pressure regulators depending 

on the size of the field to regulate the pressure downstream from the pump station to the 

crops, 9) pressure gauges to monitor the inlet and outlet pressure of the filter system and 

10) drip lines to deliver water to the crops. As water delivers through buried driplines and 

emitters that are smaller in size, it is crucial to prevent the physical and biological 

clogging of tapes and emitters (Liu and Huang, 2009). Sand, screen, and disk filters are 

the most common filters used with SDI systems to prevent dripline and emitter clogging 

from the solid particles in the water.  

SDI has many advantages over traditional irrigation methods (e.g., furrow and 

sprinkler irrigation). For example, with a proper arrangement of drip tapes, SDI can 

deliver water to fields having different sizes and shapes, unlike sprinkler irrigation which 

has limited movement ability (O’Brien et al., 1998). SDI has higher water use efficiency 

compared to the sprinkler (Dhungel et al., 2012) and furrow (Smith et al., 2005) irrigation 

methods. SDI has higher water application uniformity (Ayars et al., 2015), limited loss of 

water and nutrients due to better control of the application of water (Ayars et al., 1999), 
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and a better spread of water due to lateral movement water (Hanson and May 2004) than 

furrow and sprinkler irrigations. SDI has fewer mechanized parts comparing to sprinkler 

irrigation and since most of the components are made out of plastic, the corrosion is less 

(Aguilar et al., 2015). Due to its ability to efficiently apply water and nutrients (Camp et 

al., 2000; Ayars et al., 2015), it represents a preferable option for applying fertilizer 

(fertigation) and chemicals (chemigation) to the crops. SDI prevents the negative effect 

associated with wind and rain and reduces human contact with used agrochemicals 

(Ayars et al., 2015; Camp, 2000; Lamm, 2002; Vyrlas et al., 2014).  

The high initial cost (system + installation) represents the main disadvantage 

related to SDI. The net profit of SDI depends on the price of the crop and the lifetime of 

the system. However, in the presence of large fields (e.g. 65 ha vs. 26 ha), a sprinkler 

irrigation system could generate more profit than an SDI system (O’Brien et al, 1998). 

SDI delivers a small amount of water compared with furrow and sprinkler irrigation 

systems, therefore multiple driplines may be needed (Ayars et al., 2015). Since the drip 

tapes are buried into the soil, insufficient water for the topsoil and limited germination 

can occur (Yuan et al., 2016). SDI increases the salinity of the soil above the drip lines 

due to the accumulation of salt (Hanson and May 2004). Physical clogging of the drip 

tapes as well as of the emitters due to the presence of organic and inorganic particles in 

the source water represents the main reason for the failure of an SDI system (Lamm et al, 

2018). This limitation may be enhanced by using treated wastewater (e.g., feedlot runoff) 

as source water. As the drip tapes are not visible, identifying faults such as clogged 

emitters, leaks, and drip tape damages may be challenging. Therefore, it is important to 

take precautions including the use of good filtration when using surface or treated 
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wastewater (Camp, 2000, Lamm, et al., 2018). Acid injection (Ayars et al., 2015) and 

frequently flushing (Trooien et al., 2000) represent common options used to prevent 

clogging. Root intrusion could plug the emitters (Camp, 2000; Hanson and May 2004; 

Lamm et al., 2012; Lamm et al, 2018) and rodents could damage the drip tapes (Lamm, 

2016; Lamm et al., 2018; Pablo et al., 2007). Having proper soil is important for 

installing an SDI system. SDI is not recommended in shallow soils overlaying rock as 

well as in coarse sand, non-bridging soil, and in the presence of undulating topography 

(Lamm, 2009). Fewer tillage options, fixed row spacing, difficult to rotate crops, and 

restricted root development occur in the SDI due to the permanent installation of the 

system (Aguilar et al., 2015). Cultural practices such as crops, drip line depth, and drip 

line spacing could limit the use of the SDI. 

Drip irrigation can lead to poor aeration in the rhizosphere while applying water 

as drops (Dhungel et al., 2012). Oxygen is essential for plant root respiration and to 

generate energy. Low levels of oxygen in soil can negatively affect the crops by creating 

hypoxia stress (Yuan et al., 2016). Low levels of oxygen prevent the diffusion of 

metabolites such as carbon dioxide and ethylene which can act as growth inhibitors, 

reduce the nitrogen fixation, and consequently the plant growth (Goorahoo et al., 2002). 

Salt stress can also occur in plants due to a decrease in membrane excursion when 

receiving low levels of oxygen in the root zone (Ben-Noah and Friedman, 2016). As a 

solution, the injection of air into the water in the SDI system can attenuate this problem 

(Ben-Noah and Friedman, 2016; Bhattarai and Midmore, 2009; Chen et al., 2011; 

Dhungel et al., 2012; Pendergastet al., 2014). During the past decade, aerated SDI has 

been used to increase the crop yield, its quality, weight and the dimensions, as well as the 



8 
 

 

dimensions of the roots (Abuarab et al., 2013; Bhattarai et al., 2004; Dhungel et al., 2012; 

Goorahoo et al., 2002, 2007, 2008; Huber and Midmore, 2004; Pendergastet al., 2014; 

Vyrlas and Kalfountzos, 2014; Yuan et al., 2016). When pressurized water enters the 

injector inlet, it is constricted toward the injection chamber and changes into a high-

velocity jet stream. The increase in velocity through the injection chamber results in a 

decrease in the absolute pressure, creating a vacuum, thereby enabling air to be drawn 

through the suction port into the water stream. The amount of air entering the injector 

depends on the strength of the vacuum (Goorahoo et al., 2002).  

Aerated SDI resulted in improvements in yields and overall quality of crops such 

as potato (Shahien et al., 2014), corn (Abuarab et al., 2013), sugar beet (Vyrlas et al., 

2014), strawberry (Goorahoo, 2007; Goorahoo et al., 2008), melon (Goorahoo, 2007; 

Goorahoo et al., 2008), lettuce (D’Alessio., et al., 2020), tomato (Goorahoo, 2007), 

pineapple (Dhungel et al., 2012), cotton (Bhattarai et al., 2004; Pendergast et al., 2014), 

bell pepper (Goorahoo et al., 2001), soybean (Bhattarai et al., 2004), pumpkin and 

edamame (Bhattarai et al., 2008). The impact of aerated SDI was particularly 

beneficial—yield increased by approximately 40%—while growing potato (Shahien et 

al., 2014), bell pepper (Goorahoo et al., 2001), and edamame (Bhattarai et al., 2008). 

Limited beneficial impact —yield increased by 10-15%—was observed while growing 

radish (Vivek et al., 2015), chickpea (Bhattarai et al., 2008), pumpkin (Bhattarai et al., 

2008), and cotton lint (Pendergast et al., 2014). However, none of these studies used 

treated wastewater to grow these crops. 
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1.3 Thesis objectives 

Nebraska accounts for 13.5% of total irrigated agricultural lands in the USA, and 

it increased from 1.7 million ha in 1970 to 3.5 million ha by 2007 (Irmak et al., 2010). 

The High Plains Aquifer supplies irrigation water to over 8.9 million acres of Nebraska 

farmland (https://water.unl.edu/documents/Section%20H.pdf). Groundwater management 

for irrigation and human use is controlled by the State’s Natural Resource Districts 

(NRDs). Many NRDs have prescribed pumping limits for water applications, and these 

limits are set in terms of an annual average pumping with no exceedance of a set value 

over three or five years (Yonts et al., 2018). The recent drought cycles (e.g., 2002 to 

2009) have caused more water allocation restrictions (Yonts et al., 2018). Combining 

these restrictions with the increasing demand for food production highlights the need for 

possible water alternatives. Among these alternatives, treated animal wastewater, 

particularly feedlot runoff may represent a valuable solution due to its abundance. 

Nebraska is ranked number one in the United States for both cattle on feed and beef 

slaughtering capacity (USDA-NASS, 2017).  

The goals of this thesis were to evaluate the effect of irrigation with feedlot runoff 

into air-injected subsurface drip irrigation (SDI) on 1) soil properties (e.g., water content, 

oxygen), and 2) corn (Zea mays) and sugar beets (Beta vulgaris) production.  

Corn and sugar beets represent two of the most abundant crops in Nebraska 

(Nebraska Department of Agriculture, 2019). In 2019, Nebraska ranked third in corn for 

grain production (45,349,668,000 kg; Nebraska Department of Agriculture, 2019) and 

seventh in sugar beet production (9,796,800 kg; Nebraska Department of Agriculture, 

https://water.unl.edu/documents/Section%20H.pdf
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2019). More than half of the sugar production in the United States comes from sugar 

beets. The Panhandle region is responsible for approximately 90% of sugar beet 

production in Nebraska. Nebraska is ranked first in beef and veal exports in 2018 by 

making over 1 billion USD (Nebraska Department of Agriculture, 2019).  

To the best of my knowledge, no other studies have been conducted using treated 

wastewater (e.g., feedlot runoff) to grow crops in the presence of SDI coupled with air-

injection. The two closest studies available used freshwater instead of treated wastewater 

to irrigate corn and sugar beets (Abuarab et al., 2013; Vyrlas et al., 2014). For example, 

Abuarab et al. investigated the beneficial impact of SDI coupled with air injection while 

growing corn using freshwater as irrigation water in a greenhouse set-up (Abuarab et al., 

2013). Similarly, Vyrlas et al. used SDI couple with air injection for sugar beets while 

irrigating with freshwater (Vyrlas et al. 2014). Figure 1 represents a conceptual 

representation of the thesis. 

A manuscript will be submitted to ASCE–Journal of Environmental Engineering. 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of the proposed research.  
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2. MATERIALS AND METHODS 

2.1 Study location 

The field experiment was conducted at the Mitchell Agricultural Laboratory part 

of the Panhandle Research and Extension Center, University of Nebraska-Lincoln, 

located in Scottsbluff, NE (41°57'11.5"N; 103°42'05.2"W, elevation: 1,317 m). The study 

area has a semi-arid/dry climate. The long-term (1981–2010) average cumulative annual 

precipitation was 331 mm and the average high and low temperatures are 17°C and 1.3°C 

(http://climod.unl.edu/). The soil of the experimental site is classified as a very fine sandy 

loam (https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx).  

2.2 Experimental setup 

2.2.1 Irrigation setup 

The irrigation layout is shown in Figure 2A. A feedlot lagoon, approximately 350 

m north of the field, served as a primary water reservoir (Figure 2B) while a freshwater 

lake, approximately 180 m northwest of the field, served as a secondary water reservoir. 

The SDI system (Figure 2C) was installed by 21st Century Water Technologies 

(Scottsbluff, NE, USA). The drip tapes (Rivulis D5000 PC; Rivulis, San Diego, CA, 

USA) (diameter: 1.6 cm) had an application rate of 0.64 liters per hour (lph). The drip 

tapes were placed approximately 25 cm below the soil surface. This depth was consistent 

with the available literature (Lamm, 2016; Sonbol et al., 2010; Vyrlas et al., 2014). In 

Lamm (2016), the driplines were placed between 20 to 60 cm for corn, while in Vrylas et 

al., they were placed between 15 (Sonbol et al., 2010) and 45 cm for sugar beets (Vyrlas., 

et al 2014). The emitters, along with each drip tapes, were located every 51 cm, while the 

http://climod.unl.edu/
https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
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tapes were placed 112 cm one from another (Figure 2D). The pump house, located 

approximately 700 m south of the field, included the motor (Figure 2E) and four sand 

filters to avoid possible clogging of the SDI tapes due to the large particles present in the 

feedlot water (Figure 2F). 

 

 

25 cm 
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Figure 2: (A) Irrigation layout of the field, (B) lagoon pond, (C) drip line layout in the 

field, (D) dripline space, (E) water pump used for irrigation, and (F) sand filters for the 

filtration. 

 

The water moved down from the feedlot pond to the pump house through the 

pipeline. After the filtration unit, the water was pumped towards the SDI air injection 
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system in the northside of the field. After the air injection, the water was delivered 

through the drip tapes to the two crops. 

2.2.2 Air injection  

Due to the slope of the field (from north to south), the air injection system, three 

stations with eight air injectors at two locations and six injectors in one location, was 

installed at the north end of the field. The air, in the form of micro-bubbles, was delivered 

directly to the root system (Figure 3A). Venturi air injectors (Model A20) (Mazzei 

Injector Company LLC, Bakersfield, CA, USA) (Figure 3B) with an inlet pressure of 35 

psi, the outlet pressure of 20 psi, an air suction rate of 88 lph (at 15ºC), and a flow rate of 

1560 lph, were used to inject air into the SDI system. Caps were used for non-aerated 

zones (Figure 3C). 
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Figure 3: (A) Schematic representation of a Mazzei Air Injector (https://mazzei.net/wp-

content/uploads/2019/04/2019-01_Venturi-Injectors-Make-Their-

Impact_ModernPumpingToday_NoAd.pdf); (B) one of the three air injection systems 

used during the study. The blue circles represent the flowmeters used to measure the 

water rate while the yellow arrows highlight the air injectors; (C) caps were used for non-

aerated zones and screens without caps were used for aerated zones to dictate the airflow.  

 

2.2.3 Field dimensions  

The experimental field (length: 183 m, width: 134 m) had a total area of 25,091 

m2. It was divided into two equal areas with corn planted on the west side and sugar beet 

on the east side (Figure 4A). Each area was divided into ten zones (total zones: 20). Each 

zone (length: 183 m, width: 7 m, and area: 1,281 m2) was divided into twelve rows 

(width: 56 cm) (Figure 4B). Each zone was labeled based on the planted crop (corn vs. 

sugar beet) and the zone number (1 to 10). The first zone on the west side of the field was 

labeled as C-1 (crop: corn, zone number: 1), while the last zone on the west side of the 

field was labeled as C-10 (crop: corn, zone number:10). Similarly, the first zone on the 

A 

B 
Cap 

Screen 

C 

https://mazzei.net/wp-content/uploads/2019/04/2019-01_Venturi-Injectors-Make-Their-Impact_ModernPumpingToday_NoAd.pdf
https://mazzei.net/wp-content/uploads/2019/04/2019-01_Venturi-Injectors-Make-Their-Impact_ModernPumpingToday_NoAd.pdf
https://mazzei.net/wp-content/uploads/2019/04/2019-01_Venturi-Injectors-Make-Their-Impact_ModernPumpingToday_NoAd.pdf
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east side of the field was labeled as SB-11 (crop: sugar beet, zone number: 11), while the 

last zone on the east side of the field was labeled as SB-20 (crop: sugar beet, zone 

number: 20). Corn (Zea mays) and sugar beet (Beta vulgaris) were planted on 05/16/2019 

and 04/27/2019, respectively.  

Figure 4: (A) Air injector location and dimensions of the field, and (B) dimension of the 

crop rows. 
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2.2.4 Experimental design 

The experiment consisted of two treatments (with air injection or aerated and 

without air injection or non-aerated) replicated five times in each crop. Five zones per 

crop (corn: C-2, C-5, C-8, C-9, C-10; sugar beets: SB-12, SB-15, SB-18, SB-19, SB-20) 

were randomly selected as blocks for the air injection (Figure 5).  

Figure 5: Treatment layout. Corn on the left and sugar beet on the right side of the field. 

2.3 Sensors and field instruments 

Irrometer soil solution suction access tubes (length: 30 cm; Figure 6A), also 

known as lysimeters (The Irrometer Company INC, Riverside, CA, USA), were used to 

collect soil pore water. Soil pore water was extracted using a vacuum pump (Figure 6B) 

and a syringe (Figure 6C), provided by the manufacturer. 

Aerated irrigation                       Non-aerated irrigation    

Zone labels  

183 m 

7 m 
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Figure 6: (A) Lysimeter, (B) vacuum pump, and (C) syringe used for pore water 

sampling after an irrigation (https://www.certifiedmtp.com). 

 

A total of 24 lysimeters were used during the study. Twelve lysimeters were 

installed in six of the zones used for growing corn (C-1, C-2, C-4, C-5, C-7, and C-8) and 

twelve in six of the zones used for growing sugar beet (SB-11, SB-12, SB-14, SB15, SB-

17, and SB-18) (Figure 7). Two lysimeters, 30 m apart from one another, were installed 

in each of the selected zone 76 m and 106 m from the south end of the field (Figure 7). 

The lysimeters were soaked in water overnight and installed 25 cm below the soil surface 

(Figure 8) using a soil auger. Once the installation was completed, a small amount of soil 

was added to fill-up possible voids while a small amount of wet soil was added to the top 

to tighten up the lysimeter.  

 

 

 

 

A B

 

C 

https://www.certifiedmtp.com/search?search_query=irrometer+soil+#/filter:categories_hierarchy:Soil$253ESoil$2520Moisture$2520Testing$2520Equipment
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Figure 7: Layout used for sensors and field instruments in the experiment.  
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Figure 8: A cross-section of the layout of field probes.  

 

Soil moisture sensors (length: 120 cm) (Model SDI-12, Sentek Sensor 

Technologies, Stepney, Australia; Figure 9) were used to measure soil moisture, soil 

salinity, and soil temperature at 5, 10, 15, 35, 45, 55, 65, 75, 85, 90, 105, and 115 cm 

below the soil surface. Eight soil moisture probes were installed using an auger and a 

tripod in eight selected zones (C-1, C-2, C-7, C-8, SB-11, SB-12, SB-17, SB-18) 91 m 

from the south end of the field (Figure 7).  
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Figure 9: Soil moisture probe (https://sentektechnologies.com/product-range/soil-data-

probes/drill-and-drop/) used to measure soil moisture, salinity, and soil temperature. 

 

Soil oxygen sensors (Model 110, Apogee Instruments, Logan, UT, USA) (Figure 

10) were used to measure the oxygen level in the soil at 25.4 and 45.7 cm below the soil 

surface (Figure 8). Sixteen oxygen sensors were installed in eight selected zones (C-1, C-

2, C-7, C-8, SB-11, SB-12, SB-17, SB-18) (Figure 7).  

 

 

Figure 10: Oxygen sensor (https://www.apogeeinstruments.com/oxygensensor/) used to 

measure soil oxygen content. 

 

https://sentektechnologies.com/product-range/soil-data-probes/drill-and-drop/
https://sentektechnologies.com/product-range/soil-data-probes/drill-and-drop/
https://www.apogeeinstruments.com/oxygensensor/


22 
 

 

Soil moisture and soil oxygen data were collected using CR300 data loggers 

(Campbell Scientific, Logan, UT, USA) (Figure 11). The data logger programming code 

is found in Appendix A. Data were sampled every 30 seconds, five minutes-average were 

recorded and manually downloaded weekly. 

Figure 11: Campbell CR 300 data logger (https://www.campbellsci.com/cr300) was used 

to collect sensor data. 

 

Each data logger was powered by a solar panel (10M-V, peak power, Pmax: 10 W, 

voltage at Pmax: 18.1 V, current at Pmax: 0.55 A, Ameresco Solar, Tomball, TX, USA) and 

a 12-volt battery (Genesis NP0.8-12 12V/0.8AH Sealed Lead Acid Battery with JST 

Wire Terminal). The solar panel was set facing south and with a 45° angle from the 

horizon (Figure 12). 

 

https://www.campbellsci.com/cr300
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Figure 12: (A) Wired CR300 datalogger with battery, and (B) solar panel used to power 

the unit. 

2.4 Irrigation: Time frame  

Since the main pipe system was used to irrigate the surrounding fields with 

freshwater during the week, feedlot runoff was applied every Saturday for 20 hours. The 

weekly targeted amount of water for each crop was 25 mm. To provide sufficient water to 

the crops, two freshwaters and, one mixed (freshwater: lagoon water, 8:10) irrigation 

events were adopted (Table 1). 
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Table 1: Irrigation events, water source (lagoon water vs. freshwater vs. mixed water) 

used, and amount (mm) of water applied during each irrigation event.  

Event Date Irrigation Water Target (mm) 

Test 7/16/2019 Test Run N/A 

I 1 7/19/2019 Lagoon water 27.94 

I 2 7/24/2019 Freshwater 27.94 

I 3 7/27/2019 Lagoon water 6.35 

I 4 08/03/019 Lagoon water: Freshwater 

(10:8) 

25.4 

I 5 8/7/2019 Freshwater 6.35 

I 6 8/10/2019 Lagoon water 25.4 

I 7 8/17/2019 Lagoon water 25.4 

I 8 8/24/2019 Lagoon water 20.32 

I 9 8/31/2019 Lagoon water 25.4 

I 10 9/7/2019 Lagoon water 25.4 

[N/A: not applicable].  

 

2.5 Field sampling 

2.5.1 Crop sampling 

Weekly measurements of plant height and assessment of the different growth 

stages were conducted throughout the study. At the end of the study, the two crops were 

manually and mechanically harvested. Manually harvested crops were used to estimate 

the effect of the injected air on their growth in terms of size and weight, while 

mechanically harvested crops were used to estimate the effect of the injected air on their 

yield as well as on the sugar content of the sugar beets.  
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Two corn plants were randomly selected from the six zones with lysimeters (C-1, 

C-2, C-4, C-5, C-7, and C-8) (Figure 13) and manually harvested on 10/07/2019. A total 

of 24 corn plants and 24 ears were collected near the lysimeters’ locations (Figure 13), 

transferred to the laboratory, and stored -20°C before being used. Mechanized harvesting 

was done using a John Deere 9500 combine with an 8-row corn header on 10/22/2019 

and the yields were recorded.  

Figure 13: Map of manually harvested corn sample locations. Samples were collected 

near the lysimeters. 

 

Sugar beets were manually and mechanically harvested on 09/23/2019. Sugar 

beets were manually harvested from zones with lysimeters (SB-11, SB-12, SB-14, SB-15, 

SB-17, and SB-18) (Figure 14). Each zone was divided into four blocks (46 m) and a 

sampling block (length:15 m, width: 1.1 m—two crop rows wide) was created in the 

middle of each block (Figure 14). Two sugar beet samples were randomly collected using 

a shovel during the manual harvest in zones 11, 12, 14, 15, 17, and 18 (Figure 14). A total 

of 48 sugar beets were manually harvested. Mechanical harvesting was conducted using a 

weigh wagon along with the blocks (15.0 × 1.1 m).  
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Figure 14: Map of manually harvested sugar beet samples. Samples were collected 

inside the block. 

 

2.5.2 Water sampling 

Two types of water samples, feedlot lagoon, and soil pore water (lysimeters) were 

collected throughout the study. Before each irrigation event, a water sample was collected 

at the feedlot lagoon using a 250 mL amber jar, stored in a cooler at approximately 4°C, 

and transferred to the laboratory at the end of each sampling event. Soil pore water 

samples were extracted using lysimeter (Figure 6). Before irrigating the field, a vacuum 

(approximately 10 psi) was applied to all the lysimeters using a vacuum pump. Soil pore 

water was then extracted at the end of each irrigation event using a 50 mL syringe, 

transferred into a 50 mL conical centrifuge tube (Thermo-Fisher, St. Louis, MO, USA), 

stored in a cooler at approximately 4°C, and transferred to the laboratory. To avoid 

possible cross-contamination of the collected soil pore water samples, the 50 mL syringe 

was carefully rinsed multiple times with deionized water after collecting each sample.  

Water samples were analyzed in terms of pH and electrical conductivity (EC) 

using a multiparameter probe (Oakton, Global Test Supply, Wilmington, NC, USA; 

Figure 15A). To measure EC values greater than the upper analytical detection limit of 
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the multiparameter probe, a high EC probe (Hanna Instruments, Carrollton, TX, USA) 

was used (Figure 15B). 

Figure 15: (A) Multiparameter (pH, EC, and temperature) probe 

(http://www.4oakton.com/proddetail.asp?parent=2&prod=405&value=detail) and (B) 

high EC probe (https://www.hannainst.com/hi99301-portable-high-range-ec-tds-

meter.html). 

Every week, before measuring pH and EC, the multiparameter probe was 

calibrated using a pH 7.0 buffer and a 1.413 mS/cm EC buffer. The high EC probe was 

also calibrated using the same 1.413 mS/cm buffer used to calibrate the multiparameter 

probe. To further ensure the quality of these readings, the two buffers were measured 

every five samples, and if needed, the probes were recalibrated.  

2.6 Crop measurements 

At the end of the growing season, corn and sugar beet were harvested. Corn ears 

were separated from the plant and their weight and dimensions (length, diameter) were 

measured (Figure 16). The length of the corn plant (from the tip to the root end) was also 

measured (Figure 16A). After separating the roots from the plants, their weights were 

measured using an A&D scale (A&D Weighing, Wood Dale, IL, USA), and their lengths 

were recorded (Figure 16B-C). Each plant was cut into multiple smaller portions (length: 

approximately 10 cm), placed in a labeled freezer bag, and stored at -20 °C before being 

used. 

A B

http://www.4oakton.com/proddetail.asp?parent=2&prod=405&value=detail
https://www.hannainst.com/hi99301-portable-high-range-ec-tds-meter.html
https://www.hannainst.com/hi99301-portable-high-range-ec-tds-meter.html
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Figure 16: (A) Corn plant, (B) corn ear, and (C) root [a: length; b: width].  

Leaves and tubers of sugar beets were separated (Figure 17A). Weights of the 

tuber and leaves were measured using an A&D scale (A&D Weighing, Wood Dale, IL, 

USA). Length, width, and height of the tuber were measured using a measuring tape 

(Figure 17B), while the weight was measured using an A&D scale (A&D Weighing, 

Wood Dale, IL, USA). 

Figure 17: (A) Sugar beet plant and (B) sugar beet tuber [a: length; b: width; c: height]. 
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2.7 Statistical analysis  

Statistical analysis for crop yields and plant growth were conducted using one-

way analysis of variance (ANOVA) in a randomized block design at p<0.05 (R Software, 

2013).  
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3. RESULTS AND DISCUSSION 

3.1 Preliminary results 

3.1.1 Weather and irrigation during the study 

Temperature and precipitation data for the growing season are shown in table 2. 

Precipitation and temperature data were taken between the seeding (04/27/2019 – sugar 

beets) to the harvesting (10/22/2019 – corn) data of the two crops. Two hail storms 

occurred on August 14th and on August 15th.  

Table 2: Irrigation events, overall irrigation, cumulative precipitation, and lowest and 

highest temperature during the field study at the Mitchell Agricultural Laboratory. 

No. of 

irrigation 

events 

Overall 

Irrigation 

(mm) 

Cumulative 

Precipitation 

(mm) 

Highest 

Temperature 

(ºC) 

Lowest 

Temperature 

(ºC) 

10 216 310 36.8 -12.4 

 

3.1.2 Water quality (pH and EC) 

Figures 18 and 19 show the pH values of the water samples collected from the 

lagoon and the lysimeters (pore water). Due to the limited amount of water collected with 

the lysimeters at the beginning of the study, pH was only measured during the last six 

irrigation events (I-5 to I-10). With the exception of I-5, lagoon water had a higher pH 

(8.7 to 9.6) than soil pore water (7.0 to 8.7). In terms of pH, pore water samples were not 

statistically significantly different (p > 0.05) than lagoon water samples. The lower pH 

(8.2) observed in the lagoon water during I-5 was related to the different sources of water 

used (freshwater instead of feedlot runoff). A possible explanation for the decrease in soil 
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pore water pH compared with the lagoon water pH may be related to the sand filters’ 

impact. Lagoon water was filtered through four sand filters in series before being 

delivered to the crops. Measuring water pH after the sand filters would provide a better 

understanding of the changes in pH during the study. To prevent the emitters’ clogging, 

the driplines were flushed with fresh water at the end of each irrigation. This may have 

also further reduced the soil pore water pH.  

According to the guidelines proposed by the Food and Agriculture Organization 

(FAO, 2012), the recommended pH values for irrigation water ranges between 6.5 and 

8.4. The lagoon water had consistently high pH values (8.6 to 9.6) throughout the study. 

To mitigate the negative effect of high pH values, the driplines were flushed for two 

hours with fresh water at the end of each irrigation event.  
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Figure 18: pH values for lagoon water and soil pore water samples collected on the west 

side of the field (corn only) after the last six irrigation events (Irrigation 5 to Irrigation 

10). 
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Figure 19: pH values for lagoon water and soil pore water samples collected on the east 

side of the field (sugar beets only) after the last six irrigation events (Irrigation 5 to 

Irrigation 10). 

 

EC is an indicator of the salinity of the water. Figures 20 and 21 show EC values 

related to the lagoon water as well as to the pore water samples from the cornfield and the 

sugar beets field, respectively. Similarly, to pH, due to the limited amount of available at 

the different lysimeters, EC was measured during the last six irrigation events. In both 

fields, higher EC values were observed in the pore water samples (1.14 to 2.05 mS/cm) 

compared with the lagoon samples (0.45 to 1.12 mS/cm) (Figures 20 and 21). In terms of 

EC, pore water samples were not statistically significantly different (p > 0.05) than 

lagoon water samples. With the exception of the I-5 (fifth irrigation event), EC was 

constant in the lagoon water (approximately 1.00 mS/cm). The low EC value (0.50 
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mS/cm) observed during I-5 was related to the different sources of water (freshwater 

instead of feedlot runoff) used (Figure 21). Based on Hajiboland et al., 2009, these high 

EC values (and consequently high-water salinity) might negatively affect the overall 

yield of the two crops. Among the two crops, sugar beet seems to be more resistant to 

high EC values. Corn yield decreases with increased salinity (Amer 2010, Zorb et al., 

2019), while sugar beet has a high EC threshold (7.0 mS/cm; Marschner 1995). 

Therefore, salinity may negatively affect corn yield but it shouldn’t negatively affect 

sugar beet yield.  

According to the guidelines proposed by the Food and Agriculture Organization 

(FAO, 2012), irrigation waters with EC values less than 0.7 mS/cm are considered non-

restricted, while with EC values ranging between 0.7 and 3.0 mS/cm are considered 

slightly to moderately restricted. Lagoon water, EC approximately 1.1 mS/cm throughout 

the study, can be regarded as slightly restricted. To attenuate this slightly high EC value, 

the driplines were flushed for two hours with fresh water at the end of each irrigation 

event.  
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Figure 20: Electrical conductivity (EC) values for lagoon water and soil pore water 

samples collected on the west side of the field (corn only) after the last six irrigation 

events (Irrigation 5 to Irrigation 10). 
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Figure 21: Electrical conductivity (EC) values for lagoon water and soil pore water 

samples collected on the east side of the field (sugar beets only) after the last six 

irrigation events (Irrigation 5 to Irrigation 10). 

 

3.2 Effect of air injection on soil oxygen content and soil water content 

3.2.1 Corn 

Air injection increased the amount of oxygen in the soil. When the irrigation 

starts, the soil oxygen amount decreases. However, soil oxygen increases as time passes. 

Figure 22 shows a comparison between the zones C-1 (non-aerated) and C-2 (aerated). At 

45 cm depth, the aerated zone contained almost the same amount of soil oxygen that non-

aerated zone has at 25 cm depth. The dashed vertical lines indicate the irrigation events, 

black indicates the start and red indicates the end of each event. Soil oxygen graph for C-

8 and C-7 is available in Appendix B (Figure B1). 
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Figure 22: Effect of injected air on soil oxygen on the west side of the field (corn only). 

In the cornfield, the soil water content in the aerated zone shows less soil water 

content compared with the non-aerated zone. The reason could be the higher root 

respiration leads to more water intake to the roots. The soil water amounts were shown in 

selected depths. The soil water content for the depths 5, 15, 35, 75, and 115 cm of  C-2 

(A; aerated) and C-1 (B; non-aerated) are shown in Figure 23. The graphs for soil water 

at all depths are shown in Appendix B (Figure B2, for C-1 and C-2; Figure B3 for C-8 

and C-7). 
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Figure 23: Effect of injected air on soil water content on the west side of the field (corn 

only). (A): C-2, aerated, and (B): C-1, non-aerated. 
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3.2.2. Sugar beet 

Sugar beet plots have the same soil oxygen behavior as corn plots. As irrigation starts, the 

oxygen amount goes down, and then it increases as time goes (Figure 24). Similar to the 

corn, SB-18 (aerated zone) at 45 cm depth has almost the same amount of soil oxygen 

compared to SB-17 at 25 cm depth. The graph for sugar beet zones SB-12 and SB-11 are 

shown in the appendix (Figure B4)  

Figure 24: Effect of injected air on soil oxygen on the east side of the field (sugar beets 

only).  

 

 

 



40 
 

 

In the sugar beet field, the soil water content is less in the aerated zone compared to the 

non-aerated zone. This is due to the high-water intake of the plants in the aerated zone as 

mentioned previously. Figure 25 shows the changes in soil water content in SB-18 (A; 

aerated) and SB-17 (B; non-aerated) at 5, 10, 15, 35, 75, and 115 depths. The graphs for 

soil water at all depths are shown in Appendix B (Figure B5, for SB-12 and SB-11; 

Figure B6 for SB-18 and SB-17). 
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Figure 25: Effect of injected air on soil water content on the east side of the field (sugar 

beets only). (A): SB-18, aerated, and (B): SB-17, non-aerated. 
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However, in both corn and sugar beets, the changes in terms of soil moisture vary with 

different depths. For example, at 35 cm depth, soil moisture content was almost the same 

in both C-2 and C-1. The changes with the different depths could be due to the way of 

root systems spread in the ground and their ability to intake water as well as to the 

abundance of soil organisms. Top-soil (5 cm) shows the lowest amount of soil water 

content. This can be related to the evaporation occurring within the top-soil. The 

cornfield showed a smaller difference between the aerated zones and non-aerated zones 

than those observed in the field with sugar beets. Also, sugar beet showed higher soil 

water reduction than corn in both aerated and non-aerated zones. Reduction in the soil 

water content after aerated water irrigation was reported by other research (Dhungel et 

al., 2012, Pendergastet al., 2013, Vyrlas and Kalfountzos, 2014). 

3.3 Effect of air injection on the growth of selected crops  

3.3.1 Corn  

The effect of injected air on the growth of corn was measured in terms of 1) plant 

height, 2) corn ear dimensions, 3) corn ear weight, and 4) roots weight.  

Corn plant growth, expressed in terms of plant height, was measured in the field 

throughout the study and it is shown in Figure 26. During the first 21 days (from day 64 

to 85) injected air did not affect corn growth (Figure 26). After that, injected air had a 

positive effect on corn growth. For example, after 90 days corn was 270 cm tall in the 

absence of injected air and 280 cm tall in the presence of injected that. On day 91, two 

hail storms occurred and damaged the corn growth (Figure 27). After the two hail storms, 

new leaves were observed. 
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Figure 26: Corn plant growth expressed in terms of plant height with (aerated) and 

without air-injection (non-aerated). 

 

Figure 27: Effect of the hail storms on corn. 
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Corn was manually harvested at the end of the study and the overall length (from 

the tip of the plant to the base) was measured in the laboratory. The average corn plant 

height/length ranged between 213 ± 22 cm (C1-NO) and 224 ± 15.7 cm (C4-NO), and it 

was not affected by the presence/absence of injected air (Figure 28).  Abuarab et al. 2013, 

investigating the effect of injected air on corn in a greenhouse study using artificial water, 

highlighted the positive effect of injected air on the growth of corn. In fact, the average 

corn plant height in the presence of injected air was 284 cm in 2010 and 290 cm in 2011, 

while the average corn plant height in the absence of injected air was 265 cm in 2010 and 

270 cm in 2011.  

Figure 28: Average corn plant height in six zones (C: corn; 1–8: zone ID; O: Aerated, 

NO: Non-aerated). n = 4 (n samples/zone). 

 

Corn ears grown in the presence of injected air were slightly longer and wider 

compared to those grown without injected air (Figure 29). The highest average of corn 

ear length (22.9 ± 0.4 cm) and the highest average corn ear width (5.3 ± 0.3 cm) were 

recorded in the aerated zone C-8 (Figure 30). Results from this study were consistent 
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with Abuarab et al. as they observed a longer and larger corn ear in the presence of air 

injection (Abuarab et al., 2013).  

Figure 29: Average corn ears length (Top) and width (Bottom) in six zones (C: corn; 1–

8: zone ID; O: Aerated, NO: Non-aerated). n = 4 (n samples/zone). 
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The average weight of corn ears ranged between 217.3 ± 20.3 g (C-5, aerated) and 282.7 

± 32.7 g (C-8, aerated). C-1, a non-aerated zone, showed the second-highest value 

(Figure 30). 

Figure 30: Average corn ears weight in six zones (C: corn; 1–8: zone ID; O: Aerated, 

NO: Non-aerated). n = 4 (n samples/zone). 

 

The average corn root weight ranged been 25 ± 10 g (C2-O) and 50 ± 19.3 g (C1-

NO) (Figure 31). Even if, corn roots were carefully removed, collected, and cleaned, 

multiple challenges were encountered. For example, roots were not completely removed 

from the soil due to the plants in close proximity in the field, and consequently, the 

weight would be underestimated. On the contrary, even after carefully cleaning the roots, 

small fractions of soil particles were still trapped within the roots and therefore, their 

weights were overestimated.  
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Figure 31: Average corn root weight in six zones (C: corn; 1–8: zone ID; O: Aerated, 

NO: Non-aerated). n = 4 (n samples/zone). 

 

The effect of injected air on the corn growth, expressed in terms of dimensions 

and weight, was not statistically significant (p > 0.05) (Table 3).   

Table 3: Effect of treatment (with or without air injection) on corn (dimensions and 

weight) [ANOVA, p values].  

Crop Measurement 
Treatment 

(w and w/out oxygen) 

Plant height (cm) 0.85 

Ear weight (gr) 0.74 

Ear length (cm) 0.92 

Ear diameter (cm) 0.64 

Root weight (g) 0.31 
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3.3.2 Sugar beet 

The effect of injected air to the growth of sugar beet was estimated in terms of 1) 

plant growth, 2) tuber dimensions, 3) leaves weight, and 4) tuber weight. 

Sugar beet growth, expressed in terms of plant height, was measured in the field 

throughout the study by measuring the distance between the ground and the top of the 

mature leaves. At the beginning of the study, there was a difference between the sugar 

beets grown with and/or without injected air except for day 87 (Figure 32). After 100 

days, injected air started to have a positive effect on the growth of the sugar beets. Sugar 

beets grown with injected air reached 57 cm, while sugar beets grown without injected air 

reached 52 cm (Figure 32). On day 110, two hail storms occurred and, similarly to corn, 

severely affected the sugar beets' growth (Figure 33). After the hail storms, the growth 

was reduced.  
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Figure 32: Sugar beet plant growth expressed in terms of plant height with (aerated) and 

without air injection (non-aerated).  

 

Figure 33: Effect of the hail storms on sugar beets with visible plant damage.  

 



50 
 

 

Similarly, with the trend observed with corn, the injected air had limited to no 

effect on the growth of sugar beets throughout the field (Figure 34). This may be related 

to the limited number of sugar beets collected within each zone. The tuber’s growth was 

affected by the soil around, therefore, physical heterogeneities combined with the limited 

number of beets collected may have underestimated the effect of injected air on the 

growth of sugar beets. Within adjacent zones, the length of the sugar beet tuber was 

affected by the presence/absence of air. For example, tubers in SB-12 (aerated; average 

length: 29.1 ± 4.9 cm) were longer than tubers in SB-11 (non-aerated; average length: 

28.2 ± 6.2 cm). Similar behavior was also observed in terms of width and height (Figure 

34). 
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Figure 34: Average sugar beet tuber length (Top), width (Middle), and height (Bottom) 

in six zones (SB: sugar beets; 11–20: zone ID; O: Aerated, NO: Non-aerated). n = 8 (n 

samples/zone). 
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Selected leaves were heavier in non-aerated zone (e.g., SB-11; average weight: 

347.4 ± 138.4 g) than in aerated zone (e.g., 227.0 g; average weight: 227.0 g ± 164.7) 

(Figure 35). The negative effect of injected air may be related to the limited number of 

crops harvested as well as to the severe effect of the two hail storms that occurred during 

the study.  

Figure 35: Average sugar beet leaves weight (O- Aerated, NO- Non-aerated) in six zones 

(SB: sugar beets; 11–20: zone ID; O: Aerated, NO: Non-aerated). n = 8 (n samples/zone). 

 

The presence/absence of air had a limited effect on the weight of the tubers 

(Figure 36). SB-17, non-aerated, showed the highest weight average (1142.1 ± 583.8 g) 

among the randomly collected samples, while SB-12, aerated, showed the lowest value 

(685.4 ± 287.4 g). Again, this may be due to the limited number of sugar beets collected 

within each zone.  
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Figure 36: Average sugar beet tuber weight in six zones (SB: sugar beets; 11–20: zone 

ID; O: Aerated, NO: Non-aerated). n = 8 (n samples/zone). 

 

The effect of injected air on the sugar beets growth, expressed in terms of 

dimensions and weight, was not statistically significant (p > 0.05) (Table 4).   

Table 4: Effect of the treatment (with or without air injection) on sugar beets 

(dimensions and weight) [ANOVA, p>F values].  

Crop Measurement  
Treatment 

(w and w/out oxygen) 

Sugar beet tuber length (cm) 1.00 

Sugar beet tuber width (cm) 0.29 

Sugar beet tuber height (cm) 0.21 

Sugar beet tuber weight (g) 0.10 

Leaf  weight (g) 0.09 
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3.4 Effect of air injection on the yield of selected crops 

3.4.1 Corn  

From each zone, four blocks were selected and analyzed to evaluate the effect of 

injected air on corn yield. Table 5 shows the yield achieved in each of the four selected 

blocks across the ten zone. A 5.50 % incremental in corn yield was achieved in the 

presence of injected air. In fact, corn yield ranged between 7.7 ± 0.9 Mg/ha in the aerated 

zones and 7.3 ± 1.0 Mg/ha in a non-aerated zone similar trend, higher yield in the 

presence of injected air was also observed by Aburab et al. (2013). In their study, corn 

yield ranged between 12.605 Mg/ha and 12.857 Mg/ha in the presence of aerated SDI and 

between 11.226 Mg/ha and 11.428 Mg/ha in the presence non-aerated SDI. 

Table 5: Corn dry yield (Mg/ha) (NO: Non-aerated zone; O: aerated zone). 

 

 

 

 

 

ZONES 

1 2 3 4 5 6 7 8 9 10 

NO O NO NO O NO NO O O O 

6.9 6.0 6.0 5.6 6.2 7.1 7.0 7.5 7.0 7.3 

5.4 6.2 6.1 6.9 6.9 8.1 7.8 7.8 8.2 7.1 

7.3 7.6 7.6 7.0 7.3 7.6 8.0 8.8 7.9 8.5 

7.9 8.7 8.4 8.7 8.3 8.5 8.6 8.2 8.9 9.0 

Average 6.9 7.1 7.0 7.1 7.2 7.8 7.9 8.1 8.0 8.0 

Std. 1.1 1.3 1.2 1.3 0.9 0.6 0.7 0.6 0.8 0.9 
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Even if a 5.50 % increment of corn yield was achieved in the presence of injected 

air, the effect of injected air was not statistically significant (p-value >0.05) (Table 6).  

Table 6: Effect the treatment (presence or absence of injected air) on corn yield 

[ANOVA analysis].  

 Df Sum sq. Mean sq. F value p(>F) 

Treatment 1 0.29 0.29 1.26 0.29 

 

At the Mitchell farm, the corn yield ranged between 116 ± 16 bu/ac for the non-

aerated SDI and 122 ± 15 bu/ac for aerated SDI for corn (Table 7). These results are 

lower compared to those observed across the state of Nebraska as well as in the 

Scottsbluff County (Table 8). In fact, in 2019, the average corn (grain) yields in Nebraska 

ain Scottsbluff County were 182 and 151.1 bu/ac, respectively 

(https://www.nass.usda.gov/Statistics_by_State/Nebraska/index.php). The limited corn 

yield observed at the Mitchell farm can be related to the different irrigation strategies 

implemented in this study (SDI instead of pivot irrigation). Also, multiple hail storms had 

a negative effect on the yield at the Mitchell farm.  

 

 

 

 

 

 

https://www.nass.usda.gov/Statistics_by_State/Nebraska/index.php
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Table 7: Average corn yields in Scottsbluff County, NE over the past 5 years. 

Corn (Grain) (bu/ac) 

Year Nebraska 
Scottsbluff 

County 

Mitchell Farm 

Non- Aerated 

Mitchell 

Farm 

Aerated 

2019 182 151 116 ± 16 122 ± 15  

2018 192 195 - - 

2017 181 183 - - 

2016 178 162 - - 

2015 185 165 - - 

Source: https://www.nass.usda.gov/Statistics_by_State/Nebraska/index.php 

 

3.4.2 Sugar beet 

Sugar beet yield was higher in aerated zones by 7.75 % (54.23 ± 11.21 Mg/ha) 

compared to the non-aerated zones (50.33 ± 11.65 Mg/ha) (Table 8). Sugar content was 

also higher in the aerated zones (14.41 ± 0.57 %) compared to the non-aerated zones 

(14.39 ± 0.58 %). The sugar yield was also higher in aerated zones (7.82 ± 1.61 Mg/ha) 

than non-aerated zones (7.24 ± 1.72 Mg/ha) (Table 9). However, the effect of injected air 

on sugar beet yield, and sugar content and yield were no statistically significant (Table 

10). 

 

 

 

 

https://www.nass.usda.gov/Statistics_by_State/Nebraska/index.php
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Table 8: Sugar beet yield in 2019 (Mg/ha). (NO: Non-aerated zone; O: aerated zone). 

 Zones 

 

 

 

 

 

11 12 13 14 17 18 19 20 

NO O NO NO NO O O O 

58.06 40.48 56.99 63.92 61.78 62.32 61.78 67.11 

38.88 26.10 52.73 37.28 29.29 56.46 52.73 61.25 

61.25 64.45 53.26 65.51 47.40 42.08 50.07 53.80 

47.94 67.64 29.29 55.93 45.81 58.59 57.52 45.27 

Average 51.53 49.67 48.07 55.66 46.07 54.86 55.53 56.86 

Std 10.17 19.85 12.66 12.95 13.29 8.86 5.19 9.45 

 

Table 9: Sugar beet yield (Mg/ha), sugar content (%), and sugar yield (Mg/ha) in 2019. 

Treatment Yield (Mg/ha) Sugar content (%) Sugar Yield (Mg/ha) 

Aerated 54.23 ± 11.21 14.41 ± 0.57 7.82 ± 1.61 

Non-aerated 50.33 ± 11.65 14.39 ± 0.58 7.24  ± 1.72 

 

Table 10: Effect of the treatment (presence or absence of injected air) on sugar beet yield 

[ANOVA analysis]. 

 Df Sum Sq. Mean Sq. F Value Pr. (>F) 

Treatment 1 30.42 30.42 2.21 0.188 

 

Similar results were achieved by Vyrlas et al. (2014). While during their first 

year, they had lower yield and lower sugar content in aerated SDI (185.87 Mg/ha and 

13.12%) compared to non-aerated SDI (189.60 Mg/ha and 13.51%), during the next two 
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seasons aerated SDI showed an increase in the yield (170.50 Mg/ha and 194.60 Mg/ha) 

compared to the non-aerated SDI (169.54 Mg/ha and 187.09 Mg/ha).   

Higher sugar beet yields occurred in the SDI system compared with the surface 

DI system (Sakellariou et al., 2002 and Vyrlas and Sakellariou, 2005). For example, 

Sakellariou et al. reported that sugar beet yield and sugar content were higher (62.48 

Mg/ha, 14.03%) with SDI than surface DI (54.71 Mg/ha, 12.87%) (Sakellariou et al., 

2002).  

State and county sugar beet yields (Table 11) and sugar content (Table 12) data 

were obtained implementing different types of irrigation strategies (furrow, sprinkler, 

SDI, etc.) as well as different types of water (primarily groundwater). In 2019, at the 

Mitchell farm, in the presence of non-aerate SDI, the sugar beet yield was 22.45 ton/acre 

and increased to 24.19 ton/acre for the aerated SDI. The lower sugar beet yield achieved 

in 2019 may be related to the adverse weather events (two hail storms). In fact, the leaves 

were damaged during these events and were growing back by the time of the harvest, 

consuming some of the sugar stored.   
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Table 11: Average sugar beet yields in Scottsbluff County, NE over the past 5 years. 

Sugar beet (ton/acre) 

Year Nebraska 
Scottsbluff 

County 

Mitchell Farm  

Non-Aerated 

Mitchell 

Farm 

Aerated 

2019 25.4b N/A 22.5 ± 5.2 24.2 ± 5.0 

2018 31.9 32.8 - - 

2017 31.8 34.1 - - 

2016 29.9 31.4 - - 

2015 28.4 30.7 - - 

Source: https://www.nass.usda.gov/Statistics_by_State/Nebraska/index.php 
bhttps://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEB

RASKA 

 

Table 12: Average sugar content (%) in Scottsbluff County, NE over the past 5 years. 

Sugar content (%) 

Year Nebraska 
Scottsbluff 

County 

Mitchell Farm  

Non-Aerated 

Mitchell 

Farm 

Aerated 

2019 N/A N/A 14.39 ± 0.6 14.41 ± 0.6 

2018 16.46 16.86 - - 

2017 17.73 16.86 - - 

2016 18.39 18.05 - - 

2015 17.7 17.32 - - 

Source: https://www.nass.usda.gov/Statistics_by_State/Nebraska/index.php). 
bhttps://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEB

RASKA 

 

Comparing results obtained not only using different types of irrigation but also 

different types of water is quite challenging. To date and the best of my knowledge, 

feedlot runoff combined with air-injected SDI hasn’t been used to grow sugar beets and 

https://www.nass.usda.gov/Statistics_by_State/Nebraska/index.php
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEBRASKA
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEBRASKA
https://www.nass.usda.gov/Statistics_by_State/Nebraska/index.php
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEBRASKA
https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEBRASKA
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corn even in the presence of different types of irrigation. However, a few studies 

highlighted the enhanced grow these two crops using human treated wastewater 

compared to freshwater in the presence of different types of irrigation (e.g., furrow 

irrigation). According to Hassanli et al., furrow irrigation with treated wastewater 

increased the yields of sugar beets (from 41.4 to 56.5 Mg/ha) and corn (from 9.97 to 

10.57 Mg/ha in 2005 and from 9.21 to 10.30 Mg/ha 2006) compared to freshwater 

(Hassanli et al., 2010; 2009). Similarly, Mok et al. growing corn, observed an increased 

yield (10.30 t/ha to 11.71 t/ha) by replacing surface water with treated wastewater in the 

absence of fertilizer applications (Mok et al., 2014). 
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4. CONCLUSIONS  

This study evaluated the effect of irrigation with feedlot runoff into air-injected 

SDI on soil properties (e.g., water content, oxygen, etc.) and on corn (Zea mays) and 

sugar beets (Beta vulgaris) production. To the best of my knowledge, no other studies 

have been conducted using treated wastewater (e.g., feedlot runoff) to grow crops in the 

presence of SDI coupled with air-injection. The two closest studies available used 

freshwater instead of treated wastewater to irrigate corn and sugar beets using air-injected 

SDI (Abuarab et al., 2013; Vyrlas et al., 2014). 

Air-injected SDI had a positive effect on soil oxygen and soil moisture content 

(first objective). It increased the soil oxygen amount. At 45 cm depth, the aerated zone 

contained the same or even a higher amount of soil oxygen that non-aerated zone at 25 

cm depth. Also, air injection reduced soil moisture content probably due to the increase in 

root water intake due to an increase in root respiration and soil respiration.  

Air-injected SDI had a beneficial effect (second objective) on the growth 

(dimensions and weight) and the production (yield) of corn and sugar beets even if it was 

not statistically significant (p >0.05). Injected air accounted for a 5.50% increase in yield 

in corn and 7.75% yield in sugar beet. Those values are slightly lower than those 

previously reported in the literature. However, they are promising considering the 

adverse weather conditions experienced during the study. Also, delays and technical 

difficulties encountered at the beginning of the study may have limited the yield of the 

two crops. However, based on previous investigations, an increased yield is expected 

during the second year.  
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A. Appendix 

A.1. Codes used in Data Loggers to collect and save data from sensors.  

'Program created for Campbell CR300 datalogger 

'1 Sentek Drill and Drop 120 cm SDI12 output, 2 apogee oxygen sensor analog 

'Xin created on 06/20/2019 

 

'{ 

'Declare Variables and Units--------- 

 

    Public BattLogger 

    Public BattProbe 

    Units BattLogger = Volts 

    Units BattProbe = Volts 

 

    'Sentek sensors arrays 

    Public Sentek_VWC(9) 

    Public Sentek_VWC_1(3) 

    Public Sentek_Salinity(9) 

    Public Sentek_Salinity_1(3)     

    Public Sentek_Temp(9) 

    Public Sentek_Temp_1(3)     

 

    Units Sentek_VWC()=% 

    Units Sentek_VWC_1()=% 

    Units Sentek_Salinity()=VIC     

    Units Sentek_Salinity_1()=VIC     

    Units Sentek_Temp()=degreeC 

    Units Sentek_Temp_1()=DegreeC 

 

    Alias Sentek_VWC(1)=VWC_5cm 

    Alias Sentek_VWC(2)=VWC_10cm 

    Alias Sentek_VWC(3)=VWC_15cm 

    Alias Sentek_VWC(4)=VWC_35cm 

    Alias Sentek_VWC(5)=VWC_45cm 

    Alias Sentek_VWC(6)=VWC_55cm 

    Alias Sentek_VWC(7)=VWC_65cm 

    Alias Sentek_VWC(8)=VWC_75cm 

    Alias Sentek_VWC(9)=VWC_85cm 

    Alias Sentek_VWC_1(1)=VWC_95cm 

    Alias Sentek_VWC_1(2)=VWC_105cm 
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    Alias Sentek_VWC_1(3)=VWC_115cm 

     

    Alias Sentek_Salinity(1)=Salinity_5cm 

    Alias Sentek_Salinity(2)=Salinity_10cm 

    Alias Sentek_Salinity(3)=Salinity_15cm 

    Alias Sentek_Salinity(4)=Salinity_35cm 

    Alias Sentek_Salinity(5)=Salinity_45cm 

    Alias Sentek_Salinity(6)=Salinity_55cm 

    Alias Sentek_Salinity(7)=Salinity_65cm 

    Alias Sentek_Salinity(8)=Salinity_75cm 

    Alias Sentek_Salinity(9)=Salinity_85cm 

    Alias Sentek_Salinity_1(1)=Salinity_95cm 

    Alias Sentek_Salinity_1(2)=Salinity_105cm 

    Alias Sentek_Salinity_1(3)=Salinity_115cm 

     

    Alias Sentek_Temp(1)=Temp_5cm 

    Alias Sentek_Temp(2)=Temp_10cm 

    Alias Sentek_Temp(3)=Temp_15cm 

    Alias Sentek_Temp(4)=Temp_35cm 

    Alias Sentek_Temp(5)=Temp_45cm 

    Alias Sentek_Temp(6)=Temp_55cm 

    Alias Sentek_Temp(7)=Temp_65cm 

    Alias Sentek_Temp(8)=Temp_75cm 

    Alias Sentek_Temp(9)=Temp_85cm 

    Alias Sentek_Temp_1(1)=Temp_95cm 

    Alias Sentek_Temp_1(2)=Temp_105cm 

    Alias Sentek_Temp_1(3)=Temp_115cm 

 

    'Analog sensors, oxygen sensor 

    Public Signal_10_inch, O2_10_inch, OSensorTC_10_inch 'Oxygen sensor 1 

    Public Signal_18_inch, O2_18_inch, OSensorTC_18_inch 'Oxygen sensor 2 

 

    'Declare Constants 

    Const CF = 0.379 'sensor specific, 

    Const Offset = 1.14 'sensor specific, 

 

    'Define Data Tables--------------- 

    '{ 
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'    DataTable(average5min,True,-1) 

'      DataInterval(0,5,min,0) 

''      'Sentek 

'      Average(1,Sentek_VWC(),IEEE4,False) 

'      Average(1,Salinity(),IEEE4,False) 

'      Average(1,Temp(),IEEE4,False) 

' 

'      'Oxygen 

'      Average(1,O2_10_inch,IEEE4,False) 

'      Average(1,OSensorTC_10_inch,IEEE4,False) 

'      Average(1,O2_18_inch,IEEE4,False) 

'      Average(1,OSensorTC_18_inch,IEEE4,False) 

 

'    EndTable 

    DataTable(Avg5min,True,-1) 

      DataInterval(0,5,min,0) 

      Maximum(1,BattLogger,FP2,0,1) 

       

      'Sentek 

      Average(9,Sentek_VWC(),FP2,False) 

      Average(3,Sentek_VWC_1(),FP2,False) 

      Average(9,Sentek_Salinity(),FP2,False) 

      Average(3,Sentek_Salinity_1(),FP2,False) 

      Average(9,Sentek_Temp(),FP2,False) 

      Average(3,Sentek_Temp_1(),FP2,False) 

      'Oxygen 

      Average(1,O2_10_inch,IEEE4,False) 

      Average(1,OSensorTC_10_inch,IEEE4,False) 

      Average(1,O2_18_inch,IEEE4,False) 

      Average(1,OSensorTC_18_inch,IEEE4,False) 

    EndTable 

 

'Main Program:-------------------- 
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    '{ 

    BeginProg 

      Scan(1,min,0,0)'Main Scan 

 

        Battery(BattLogger) 

        SW12(1) 'turn on 12v power 

        Delay(0,1,sec) 

'        Power up the Excitation channels 

        ExciteV(Vx1,2500,0) 

        ExciteV(Vx2,2500,0) 

 

        'Apogee Oxygen-- 

        '{ 

        'Measure Absolute Oxygen Concentration and Sensor Temperature 

        'Sensor 1, installed at 10 inches depth, differential channel 1 

        VoltDiff (Signal_10_inch,1,mV2500,1,True,20,60,1.0,0) 

        O2_10_inch = CF * Signal_10_inch - Offset 

        Therm109 (OSensorTC_10_inch,1,5,Vx1,20,60,1.0,0) 

 

        'Sensor 2, installed at 18 inches depth, differential channel 2 

        VoltDiff (Signal_18_inch,1,mV2500,2,True,20,60,1.0,0) 

        O2_18_inch = CF * Signal_18_inch - Offset 

        Therm109 (OSensorTC_18_inch,1,6,Vx2,20,60,1.0,0) 

'        } 

        'Sentek-- 

        '{ 

        'VWC 

        SDI12Recorder (Sentek_VWC(),C1,"0","M!",1,0) 'Measure the soil moisture values 

1-9 

        If Sentek_VWC(1)=NaN Then Move(Sentek_VWC(),9,NaN,1) 

        SDI12Recorder (Sentek_VWC_1(),C1,"0","M1!",1.0,0) 'Measure the soil moisture 

values 10-12 

 

        If Sentek_VWC_1(1)=NaN Then Move(Sentek_VWC_1(),3,NaN,1) 

        'Salinity 
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        SDI12Recorder (Sentek_Salinity(),C1,"0","M2!",1.0,0) 'Measure the Salinity Values 

1-9 

        If Sentek_Salinity(1)=NaN Then Move(Sentek_Salinity(),9,NaN,1) 

        SDI12Recorder (Sentek_Salinity_1(),C1,"0","M3!",1.0,0) 'Measure the salinity 

values 10-12 

 

        If Sentek_Salinity_1(1)=NaN Then Move(Sentek_Salinity_1(),3,NaN,1) 

        'Temperature 

        SDI12Recorder (Sentek_Temp(),C1,"0","M4!",1.0,0) 'Measure the temperature 

values 1-9 

        If Sentek_Temp(1)=NaN Then Move(Sentek_Temp(),9,NaN,1) 

        SDI12Recorder (Sentek_Temp_1(),C1,"0","M5!",1.0,0) 'Measure the temperature 

values 10-12 

 

        If Sentek_Temp_1(1)=NaN Then Move(Sentek_Temp_1(),3,NaN,1) 

        'Sentek probe voltage 

        SDI12Recorder (BattProbe,C1,"0","M9!",1.0,0) 'Measure the probe supply voltage 

        SW12(0) 

        CallTable Avg5min 

 

      NextScan 

    EndProg 

    '} 

'} 
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B. Appendix 

Soil Oxygen and Soil Moisture  

B1: Corn: soil oxygen content at 25 and 45 cm below the soil surface [C8_W air: corn, 

Zone 8, with injected air; C7_No Air: corn, Zone 7, without injected air]. 
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B2: Corn: soil water content for all depths. (A): C-2, aerated and (B): C-1 non- 

aerated.  
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B3: Corn: soil water content for all depths. (A): C-8, aerated, and (B): C-7, non-aerated.  
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B4: Sugar beets: soil oxygen content at 25 and 45 cm below the soil surface [SB12_W 

Air: sugar beets, Zone 12 with injected air; SB11_No Air: sugar beets, Zone 11 

without injected air].  
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B5: Sugar beets: soil water content for all depths. (A): SB-12, aerated and (B): SB-11, 

non-aerated).  
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B6: Sugar beets: soil water content for all depths. (A): SB-18, aerated, and (B): SB-17 

non-aerated.  
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