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Abstract
The paper introduces a fundamental technological problem with collecting high-speed eye
tracking data while studying software engineering tasks in an integrated development envi-
ronment. The use of eye trackers is quickly becoming an important means to study software
developers and how they comprehend source code and locate bugs. High quality eye track-
ers can record upwards of 120 to 300 gaze points per second. However, it is not always
possible to map each of these points to a line and column position in a source code file (in
the presence of scrolling and file switching) in real time at data rates over 60 gaze points
per second without data loss. Unfortunately, higher data rates are more desirable as they
allow for finer granularity and more accurate study analyses. To alleviate this technological
problem, a novel method for eye tracking data collection is presented. Instead of perform-
ing gaze analysis in real time, all telemetry (keystrokes, mouse movements, and eye tracker
output) data during a study is recorded as it happens. Sessions are then replayed at a much
slower speed allowing for ample time to map gaze point positions to the appropriate file,
line, and column to perform additional analysis. A description of the method and corre-
sponding tool, Deja Vu, is presented. An evaluation of the method and tool is conducted
using three different eye trackers running at four different speeds (60 Hz, 120 Hz, 150 Hz,
and 300 Hz). This timing evaluation is performed in Visual Studio, Eclipse, and Atom IDEs.
Results show that Deja Vu can playback 100% of the data recordings, correctly mapping the
gaze to corresponding elements, making it a well-founded and suitable post processing step
for future eye tracking studies in software engineering. Finally, a proof of concept replica-
tion analysis of four tasks from two previous studies is performed. Due to using the Deja
Vu approach, this replication resulted in richer collected data and improved on the number
of distinct syntactic categories that gaze was mapped on in the code.
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1 Introduction

Studying how developers read and understand source code is a core research topic in soft-
ware engineering. Research on mental models of program comprehension dates into the
1980’s (Brooks 1983; Letovsky 1987; Rist 1986; Soloway and Ehrlich 1984; Pennington
1987; Von Mayrhauser and Vans 1995). Historically, researchers use approaches such as
think-aloud and pre/post surveys to collect data for such studies. Recently, researchers are
taking advantage of eye tracking technology to study how people read source code (Obaidel-
lah et al. 2018). In general, eye trackers are a vital research tool in understanding how people
observe and in turn comprehend visual stimuli (Rayner 1978). Researchers successfully use
eye tracking hardware to better understand how people read natural language prose, under-
stand diagrams, and process visual landscapes. Computer scientists use eye tracking devices
to study how people interact with graphical user interfaces and web pages (Goldberg et al.
2002). The software engineering community is currently using eye tracking equipment to
study how developers read and understand source code (Sharafi et al. 2015b). There is
a recently published practical guide on conducting eye tracking studies in software engi-
neering (Sharafi et al. 2020) that covers the technology and best practices to follow when
conducting eye tracking studies in software engineering.

Eye tracking devices come in a wide range of forms and take advantage of a range of
technologies. The devices are made up of hardware, mainly specialized cameras, along with
sophisticated software that computes the focal point of the eyes using data collected by the
cameras. The software is needed to map each of the eye gazes to locations on a visual stim-
ulus (e.g., computer screen). Additionally, eye tracking devices differ greatly with regards
to accuracy (of tracking eye movements) and the applications and environments they can be
applied to (Andersson et al. 2010). In particular, studying how people read and comprehend
text or source code requires high precision (and costly) eye tracking hardware and software.
While determining general spatial regions where a person is looking (left, right, up, down)
only requires simple and low cost hardware and software. Low cost systems cannot iden-
tify the exact focus of the eyes, such as the word or letter someone is looking at. They only
work well on larger stimuli such as objects in computer games. A high quality, accurate,
research-grade eye tracking device allows researchers to determine the exact xy-coordinate
on the screen a person is examining. The higher-end eye trackers, in a controlled setting,
can pinpoint down to the letter being examined. Research on reading prose and source code
most often requires accuracy to the word level at minimum.

Using an eye tracker to study a developer (participant) works by presenting an image
or text (stimuli) on a computer screen and then using the data from the cameras to deter-
mine the location (xy-coordinate) the person is looking. However, there are a number of
limitations to this technology. The subject must be forward looking at the stimuli, cannot
move around the room, and must be fairly stationary. While these are not serious limitations
for conducting scientific studies, there is one underlying limitation that poses a substantial
road block for studying how programmers understand large, real-world software. Accurate
research-grade eye trackers only work on fixed stimuli (i.e., an image or text block) that fits
on the computer screen. Changes to the stimuli (screen), such as scrolling or switching files,
present a very complex problem. Mapping the (x, y) to the correct position in the stimuli
(say a 1000 line file) becomes impractical.
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Fortunately, infrastructure to deal with this problem has been recently constructed,
namely iTrace (Sharif et al. 2016b, 2019; Guarnera et al. 2018; Sharif and Maletic 2016a).
iTrace (www.i-trace.org) allows a software engineering researcher to conduct eye tracking
studies directly in an integrated development environment (IDE) such as Visual Studio or
Eclipse. It supports the tracking of eye gazes in the presence of scrolling and context switch-
ing. Thus, researchers can study developers in a real-world environment using large realistic
software systems. iTrace does this by linking the IDE via a plugin architecture and invoking
application and system calls to map the screen xy-coordinate to a line and column in the file
in real time. This is then used in a post processing phase to determine the source code token
being examined by the study participant.

Unfortunately there are some technical limitations to this approach that pose a problem
for researchers studying developers. Eye trackers sample eye gazes x-times every second
denoted by the frame rate. For example, a 120 Hz eye tracker generates 120 samples per
second of raw eye gaze coordinates. Each gaze needs to be looked up in real time to map to
the line, column within the file. Of course the lookup time is bound to the time it takes for
the system calls to be executed and return. If the response time of this system call is too long
it is not possible to map all (120) gazes coming in accurately to the correct file location in
time. Through use of the iTrace infrastructure we determined that the maximum frame rate
at which this can be done in real time is approximately 60 Hz (for both Visual Studio and
Eclipse). This implies that anything above 60 Hz will cause the tracker in iTrace to either
incorrectly map data or drop gaze points altogether. While having a faster computer may
help a to some degree, getting to 120 Hz, 300 Hz or even 1000 Hz (at which reading studies
are typically done in psychology) is impossible with real time mapping.

The research presented here, and previously in Zyrianov et al. (2020), addresses this
limitation of the current iTrace architecture by taking all the processing offline. While the
IDE API function call response time is fixed, our technique allows for all input events to be
recorded and replayed back in a post processing step at a slower rate (several options exist
on playback rate). This allows for accurate mapping of gaze data to source code locations
with very high-speed eye trackers. The technique is implemented in Deja Vu, a novel tool
that leverages the iTrace infrastructure and integrates well with its workflow. The technique
and details of the Deja Vu’s approach are presented.

The main contributions presented in this paper are:

– Formalization. We introduce a fundamental problem in performing eye tracking studies
in practical developer environments with high-speed eye trackers.

– Technique. We present a novel technique to solve the technological problem pre-
sented using automated recording and semantics-aware replaying of eye tracking and
interaction data to support cognitive studies of software engineering tasks.

– Tool. The novel technique is realized and implemented in a practical tool, Deja Vu,
that is integrated in to the iTrace eye tracking infrastructure. iTrace, along with Deja
Vu, is available at www.i-Trace.org. An initial release of Deja Vu is available at https://
doi.org/10.5281/zenodo.3976332. Future releases of Deja Vu will be available on the
iTrace website: http://www.i-trace.org/downloads/

– Evaluation. An evaluation of the fundamental problem of collecting high-speed eye
tracking data with and without Deja Vu is presented in the context of three integrated
development environments (i.e., Eclipse, Visual Studio, and Atom).

– Replication Analysis. A replication analysis is conducted by collecting proof of concept
data with a small sample of participants using Deja Vu on four tasks from two prior

www.i-trace.org
www.i-Trace.org
https://doi.org/10.5281/zenodo.3976332
https://doi.org/10.5281/zenodo.3976332
http://www.i-trace.org/downloads/
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studies. The data is then compared to prior studies to show evidence of added syntactic
categories mapped using the Deja Vu approach. This analysis is presented in Section 8.

This paper extends our prior conference paper (Zyrianov et al. 2020) in the following
ways. First, experiments evaluating Deja Vu now include the Atom IDE and are described
in Section 7. The prior paper only included experiments for Eclipse and Visual Studio. Sec-
ond, a replication analysis (Section 8) of tasks in two prior studies (Saddler et al. 2020;
Kevic et al. 2015) is done to provide evidence of the richer syntactic categories that are pro-
vided with the Deja Vu approach. Section 8 is a completely new addition that required the
collection of proof of concept data to illustrate the additional useful information the Deja
Vu approach provides. Third, a detailed description and illustration of the iTrace infrastruc-
ture, the delay mechanism in Deja Vu, and the post processing Toolkit (Section 5) is given
including new and updated diagrams as well as usage scenarios (Section 6.4). Fourth, we
integrated Deja Vu directly into the iTrace-Core (previously it was stand alone), thereby
greatly enhancing the actual use by researchers to support their studies and finally the prac-
ticalities of implementation have been updated to include the addition of supporting mouse
double click events during the reply of Deja Vu sessions and fixing of race conditions
(Section 6.3).

The paper is organized as follows. Section 2 presents related work in interaction mon-
itoring. Section 3 formally presents the problem and motivation for Deja Vu. Section 4
clearly defines the types of effects that could be studied with high speed tracking and the
need for supporting high speed data collection. Section 5 discusses details of the Deja Vu
architecture, design decisions, and how Deja Vu integrates with iTrace. Section 6 discusses
implementation details of the recording and replaying stages including the challenges faced
and how they were mitigated or need managed. The section also touches on usage scenar-
ios for iTrace and Deja Vu. Section 7 provides an evaluation on the impact of data output
rates from eye tracking devices on real-time analysis of eye tracking data on source code
with respect to the iTrace framework (Guarnera et al. 2018; Sharif and Maletic 2016b).
Section 8 presents a replication analysis on four tasks taken from two prior studies using the
Deja Vu approach. Section 9 summarizes our methodology, analyses, and presents avenues
of future work.

2 RelatedWork

This section presents related work in automatically capturing user interactions that is most
relevant to this paper’s scope.

Capturing user interaction data for analysis is a common approach in a variety of com-
putational research studies. Minelli et al. (2014, 2015, 2016) record mouse, keyboard, and
IDE interaction data. Fine grain interactions are grouped into broad categories such as com-
prehension, editing, navigating, etc. to observe developer behavioral during typical tasks.
Findings about what activities consume the most developer time, the proportion of develop-
ment time is dedicated to program comprehension, and the IDE navigational efficiency of
developers are presented. The Blackbox project (Brown et al. 2018) has collected program-
ming interactions within the BlueJ Java IDE for over five years. This dataset has been aimed
at providing raw data for research analysis towards better understanding software devel-
opment behaviors of novice developers. Mylar (Kersten and Murphy 2006), now known
as Mylyn for the Eclipse IDE, allows a developer to track IDE usage activity related to
defined tasks. These task contexts can be easily switched in order for developers to multitask
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without the need to manually relocate artifacts upon returning to a previous task activity.
Deja Vu drastically differs from Mylyn in that Deja Vu is intended to store interactions along
with cognitive information (eye tracking data) for the purpose of replay and subsequent
analysis while Mylyn is an active development productivity tool.

ActivitySpace (Bao et al. 2015) stores mouse and keyboard events related to applications
used by software developers to accomplish daily tasks. Event information is logged to a
database as an “action record” to create a historical profile of developer interactions. Action
records are grouped by a user defined time window and can be queried to help remind
developers of resources used and actions taken while working on a given task to improve
productivity. Interaction data from ActivitySpace has also been used with machine learning
techniques are compared to classify developer activity into higher level categories such as
coding, debugging, testing, navigation, web browsing, and documentation (Bao et al. 2018).

In addition to the capture user interactions, running simulated interactions is a popular
solution for software testing research. Sikuli is used in Sun et al. (2018) to construct syn-
thetic macro scripts that are application agnostic based on common keyboard and mouse
usage. User interactions are supplemented with desktop screenshots and image processing
to determine the targets of the actions and automate GUI testing. Specific environments
such as websites (Burg et al. 2013; Niño et al. 2005) and Android applications (Yan et al.
2018; Guo et al. 2019) have also been instrumented to record and replay user interactions
for the purpose of testing and evaluating web or GUI based applications.

Capture and replay approaches also benefit general purpose automation techniques. The
Online Synchronous Education Platform (OSEP) records and abstracts user interactions
with websites allowing for editable interactions scripts to be run as pre-recorded or syn-
chronous demonstrations to support educational environments (Sun et al. 2014). Using the
same framework, an system for automating common or lengthy website interactions is also
proposed to improve user productivity (Sun et al. 2015). Recent works by Ramler et al.
(2020) and Bernal-Cárdenas et al. take a different approach to capturing and replaying user
interaction (2020). Instead of instrumenting applications or recording interactions at an OS
level, recorded video of an activity is broken down into individual still frames which are
post processed to reverse engineer user interactions shown in the video. Since we do not
have video as input, we did not favor this approach and instead focus on recording IDE
interactions as they occur.

Summary In order to learn more about eye tracking in program comprehension, we direct
the reader to a survey of eye tracking (Obaidellah et al. 2018) and a practical guide (Sharafi
et al. 2020) on conducting experiments in program comprehension. These two works sum-
marize the state of the art in eye tracking research for software engineering. While Deja
Vu makes use of existing recording and replaying techniques, it differs from the state of
the art by recreating an eye tracking study in its entirety. User interactions with mouse and
keyboard and gaze locations are all replayed to simulate a prior eye tracking study while
allowing ample time for more detailed analysis that is not feasible to perform in real-time
using high speed eye tracking equipment due to system call response time limitations. Addi-
tionally, Deja Vu affords researchers an opportunity to replicate a study any number of times
while analyzing the study in different ways each time to greatly increase the value of par-
ticipant recording sessions. This is a novel contribution to the current state of the art and
provides the eye tracking software research community added incentive to use eye track-
ing equipment in their studies. The additional advantage of supporting high-speed trackers
above 60 Hz (most research grade trackers are 120 Hz or higher) without data loss enables
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many different types of cognitive analyses (outlined in Section 4) that were unable to be
done before because of the engineering problem described.

3 Background and Problem Formalization

There are decades of research, that take advantage of eye tracking technology, to study how
people comprehend visual stimuli (Rayner 1998). Modern eye trackers collect a person’s
eye gaze data on the visual display (referred to as the stimulus) in an unobtrusive way while
the subject is performing a given task. This eye movement data provides very valuable
insight into comprehension strategies (Soloway and Ehrlich 1984) as to how and why people
arrive at a certain solution. Eye movements are essential to cognitive processes because they
focus a subject’s visual attention to the parts of a visual stimulus that are processed by the
brain. Visual attention triggers cognitive processes that are required to perform such things
as comprehension. Eye movement is also a proxy for cognitive effort (Rayner 1998) and
allows us to determine what parts of a visual stimuli are difficult to understand.

The underlying basis of an eye tracker is to capture various types of eye movements that
occur while humans physically gaze at an object of interest. Fixations and saccades are the
two types of eye movements. A fixation is the stabilization of eyes on an object of interest
for a certain period of time. Fixations are made up of multiple raw gazes. Saccades are quick
movements that move the eyes from one location to the next (i.e., re-fixates). Dwell time
is defined as the sum of all gazes in a dwell (one visit to an area of interest from entry to
exit) (Holmqvist and Andersson 2017). An area of interest is defined by the researcher as
any part of the stimulus that is of interest for analysis. For example, in source code it can
be a token, a line, or multiple statements. A scan path is a directed path formed by saccades
between fixations. The general consensus in the eye tracking research community is that
the processing of visual information occurs during fixations, whereas, no such processing
occurs during saccades (Duchowski 2007). The visual focus of the eyes on a particular
location triggers certain mental processes in order to solve a given task (Just and Carpenter
1980). Modern eye trackers are accurate to 0.5 degrees (0.25 in. diameter) on the screen.
In Fig 1, we see eye gazes on source code (some areas having a much higher density of
fixations than others). The fixations are shown as circles on the diagram. The radius of the
circle represents the duration of the fixation. The bigger the radius, the more time is spent
looking at that particular point. Each fixation has a number displayed in the center of the
circle, which indicates the order in which the fixation occurred.

Not all eye trackers are made equal. Generally, eye trackers range from low-cost con-
sumer grade to more expensive research-grade tracking equipment. Research-grade eye
trackers are thoroughly tested for accuracy, quality, and reliability compared to low-cost
models. Low-cost eye trackers costing approximately $200 USD are for consumer use
(mainly gaming). Low-cost eye trackers miss the subtle differences in how humans read
and navigate text. Another difference is the frame rate. Low-cost eye trackers capture gazes
at a slower rate compared to the research-grade ones. More gazes captured per second give
more detailed insight into how people read and analyze software artifacts.

The current generation of eye tracking devices offer a wide range of data rates (Anders-
son et al. 2010). Older and entry level devices tend to operate at 60 Hz meaning that 60 data
points are provided within one second. When performing real-time analysis with received
gaze data, analysis tools would be left with approximately 17 milliseconds (ms) for any analy-
sis before a subsequent new data point will be received from a tracker. This window narrows
as modern trackers are capable of supporting anywhere from 120 Hz to over 2000 Hz.
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Fig. 1 Gaze plot of a developer’s fixations on code. Fixations are represented as circles. The number in the
circle represents the fixation index in time. Fixations are linked via a scan path shown by lines connecting
consecutive fixations

Eye tracking of source code within an integrated development environment (IDE) is a
serious challenge compared to the traditional approach of using static images or text that fit
completely on a single screen. In the case of a static stimulus, the position of the image or
the source text has little to no variation. The gaze data recorded while the stimulus is visible
can easily be mapped down to the pixel on an image-based representation of the data on the
display. In contrast, while using an IDE, users may manipulate the view of the source code in
any number of ways such as scrolling, file switching, or even editing. These actions require
that the gaze data recorded is contextually informed of state of the IDE with respect to the
positioning of the source code text and interface elements at a specific moment in time. For
example, if a user is scrolling through a source code file looking for a specific identifier, the
user’s eye positioning may remain fixed within a limited region of the display as the text
scrolls past. The issue is that location of the stimulus is changed drastically due to scrolling
and it is no longer possible to easily map the screen location of a gaze to the stimulus.

In the case of the iTrace infrastructure (Guarnera et al. 2018; Sharif and Maletic 2016b)
(or other similar gaze analysis infrastructures), IDE plugins map gaze locations to interface
elements and source code text. The high latency of IDE plugin environment API calls signif-
icantly limits the feasibility of deep real-time gaze and textual analysis at the data sampling
rate of high-speed trackers. Currently, solving this problem requires serious tradeoffs. One
option is to drop gaze points received while the plugin is busy performing gaze mapping
operations causing valuable data points to be lost. Another choice is to buffer all gazes to
prevent data loss, but this causes the mapping process to steadily fall behind as the mapping
process is a real-time operation and relies on the context of the current state of the IDE when
the gaze data is received. This ultimately leads to a desynchronization of the gaze data and
the IDE state and renders the data invalid.

4 The Need to Support High Speed Eye Tracking

Enabling support for high speed trackers allows researchers to collect data for studying
various software engineering tasks and better enable them to come to conclusions similar to
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that of cognitive psychology reading studies that typically use 1000–2000 Hz trackers. We
now enumerate several benefits of having support for high speed trackers implemented in
Deja Vu by extending current eye tracking community infrastructure.

Running realistic studies using the community infrastructure such as iTrace on a tracker
greater than 60 Hz is now possible as Deja Vu takes full advantage of the faster frame rate.
Most affordable research grade eye trackers are at least 120 Hz. This enables researchers to
take advantage of the higher frame rate available to them. The higher the sampling rate, the
greater the precision of the eye in space, causing less error on dwell time (Holmqvist and
Andersson 2017) at any given point on the stimulus. This relates directly to the accuracy of
the eye tracker. Accuracy is important when drilling down to the specific token the developer
is examining. Tokens are of varying length (e.g., short variable names, data types (int) or
opening and closing braces) and accurate dwell time is critical for a study. Additionally,
with higher precision we can accurately map the eyes to the parts of the stimuli with more
realistically sized fonts. Currently, to overcome this limitation, researchers use a larger font,
however, this is not very realistic as developers do not normally program in very large fonts.
With a 60 Hz tracker, the window of error is about 32 ms—once every 16 ms in either
direction (Andersson et al. 2010).

There are known attentional effects such as attentional cuing (Van der Stigchel and
Theeuwes 2005), inhibition of return (Dodd et al. 2009; Klein and MacInnes 1999; Lupiáñez
2010), distractor inhibition (Stigchel and Theeuwes 2006), and flanker effects (Eriksen
1995), to name a few, that are highly significant but often quite small and range between
10-15 ms in response and in dwell time. It is impossible to capture these effects with low-
precision eye trackers. Many of these effects are highly relevant to software engineering
studies. But none of the current studies analyze such effects as there is currently no sup-
port to do this in current infrastructure. Note that this is still possible to do with high speed
trackers if using short code snippets that fit on the screen, however it has been shown that
the results from short snippets do not necessarily generalize to more realistic tasks (Abid
et al. 2019).

Researchers have studied how eye curvature affects a task. These characteristics can only
be discerned at a high sampling rate requiring the use of high-speed tracking. For example,
the eye can be attracted to or repelled from a distractor as a function of temporal relationship
between a target and a distractor (Stigchel and Theeuwes 2006). We have yet to determine
if these issues impact real world programming behavior. Researchers can generally extract
more information from high precision data such as pupillary activity (Duchowski et al.
2020a; Rayner 1998) and velocity measures that can help with saccade (Stigchel et al. 2010)
and microsaccade analysis (Engbert and Kliegl 2003; Hafed and Clark 2002; Lowet et al.
2018). Microsaccades are miniature eye movements along with tremor and drift that are
made during a fixation. They are typically found 1-2 times per second and have an ampli-
tude of between 1’-25’ (arcminute). Microsaccades have regained popularity recently and
are being studied by eye tracking researchers to learn about the cognitive load (Kelleher
and Hnin 2019) and task difficulty (Duchowski et al. 2020b). However, to correctly con-
duct microsaccade analysis, a 300 Hz or higher (500 Hz recommended) tracker is necessary
to be confident in the velocity measures. Typically, oversampling of the data is used as an
alternative but this is not recommended due to the artificial nature of the generated sam-
ples. Finally, with the introduction of multiple data collection streams such as studies that
incorporate fMRI (Floyd et al. 2017), fNIRS (Fakhoury et al. 2018), EEG, or GSR with eye
tracking, it is recommended to have high speed precision to align timing data.
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In summary, we have only begun to start studying developers and cognition in soft-
ware engineering using eye trackers. We have yet to learn from cognitive psychology and
one of the ways to do this correctly is to have support for high-speed trackers in order to
start collecting data correctly and making scientifically sound conclusions using realistic
settings.

Another point of discussion is what theories support empirical analysis of studies run on
such eye tracking infrastructure. Note that a detailed analysis and actually conducting an
empirical study was not the scope of this paper. This paper is producing infrastructure that
enables studies to be done. In order to show this in a feasibility analysis, we ran a short
replication analysis (see Section 8 by collected data on prior tasks with a few participants
and analyzed the results with Deja Vu and compared it to the syntactic categories of the
original studies without Deja Vu. One can always refer to the mental models and theories in
program comprehension (Storey 2006), however, this is best left to when a research study is
designed. That was not the scope of this paper. We could come up with working theories to
provide better insight into cognitive load and comprehension processes. However, this paper
is not about finding cause/effect via an empirical study. It was merely showing that we can
get additional syntactic categories (via a replication analysis) because now we support high
speed tracking. We also want to note that sometimes theory hinders experiments (especially
interdisciplinary ones such as the ones using eye tracking) as pointed out by Ko and Nelson
in their award winning paper at ICER in 2018 (Nelson and Ko 2018). Even though their
paper is on CS Education, the same principles still hold for general SE research.

5 The iTrace Infrastructure

Deja Vu leverages, and is now integrated into, the iTrace infrastructure (www.i-Trace.
org) (Guarnera et al. 2018; Sharif and Maletic 2016b) to capture mouse and keyboard activ-
ity during an eye tracking study. To understand the role of Deja Vu it is necessary to be
familiar with the architecture and workings of iTrace presented in this section.

5.1 iTrace Architecture

iTrace is eye tracking infrastructure that enables research studies within multiple types
of software development environments. It was designed and built to support the software
engineering community in conducting eye tracking experiments seamlessly within realistic
developer environments i.e., IDEs. The infrastructure’s design is modular featuring three
key components, iTrace Core, iTrace Plugins (see Fig. 2), and an offline post processing
application for gaze analysis called iTrace Toolkit (see Fig. 3). For a detailed low-level
diagram on how iTrace works, we direct the reader to (Guarnera et al. 2018).

The Core provides a unified interface for managing supported eye tracking devices.
Through this application eye trackers can be set up to calibrate or begin and end eye track-
ing data recording. All data generated by the eye trackers is first received by the Core which
then makes quick decisions based on validity indicators whether the data is acceptable for
use by other iTrace infrastructure applications (plugins). The Core also provides socket and
websocket servers to allow for iTrace plugins to connect to the Core and receive gaze data
for additional processing. In addition to gaze data, the socket communication also coordi-
nates the start and stop of a recording session and subsequent plugin data processing as well
as any output file storage locations for organizational purposes.

www.i-Trace.org
www.i-Trace.org
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Fig. 2 iTrace Architecture Diagram. iTrace is composed of two main components: the core and an IDE
plugin(s). The core interacts with the eye tracker and sends information to the plugin. Given the screen (x, y)
coordinate of a gaze, the plugin determines the file, line, and column that maps to that gaze

Plugins for iTrace support applications such as Eclipse, Visual Studio, Atom, and the
Google Chrome web browser to allow study participants to engage with standard develop-
ment tools instead of simulated proxies. This allows for data collection to occur in a natural
and realistic development environment. Plugins receive the screen coordinate location of a
gaze via socket or websocket communication as well as a unique identifier from the Core.
Using this information, each plugin performs real-time analysis to map a gaze to contextual
information within the IDE or web browsing window. This mapping constitutes line and
column positions within a visible source code editing window, IDE interface widgets, or
HTML elements (with respect to Google Chrome) that fall under a participant’s gaze. These
contextual mappings are essential as study participants are free to manipulate the stimulus
environment through scrolling, resizing, switching files or pages, searching, and other activ-
ities. Without any kind of context to associate with a gaze, combined with the volatile nature
of the stimulus environment, it would be impossible to correctly determine what elements
of the stimulus are actually viewed at a given moment in time.

Note that even eye tracking vendor software does not have support that iTrace provides.
They (at best) cache a page apriori if it extends screen size and need to know in advance what
participants will look at. This is not the case with iTrace. iTrace completely revolutionizes
the way eye tracking studies are conducted in realistic settings.

All data collected from each eye tracking recording session is stored in XML files. The
Core stores participant and study metadata, calibration information, details about the spe-
cific tracker used to record the data, and all the raw gaze data points (valid or invalid)
received from the eye tracking device during the session. Each plugin records valid gaze
points received by the Core and contextual information about the gaze location with the IDE
or web browser environment. When a study is complete, the custom offline post processing
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Fig. 3 The iTrace Toolkit fuses all the different data sources together into a multi-relation database (SQLite).
This allows researchers to formulate queries and conduct analysis on the data. This is done as a post process-
ing phase after replay. Fixations are computed, line/column positions and syntactic information are mapped
to source code tokens via srcML

Toolkit provided by the iTrace infrastructure aggregates the data from all XML files. All
study metadata and gaze data is collected into a unified Sqlite database where raw gaze data
and plugin context information is joined using the aforementioned unique identifiers. Once
all of the data is aggregated into the Sqlite database it can be queried using standard SQL
commands or further analyzed using the post processing application.

5.2 iTrace Toolkit

The iTrace Toolkit (Fig. 3) is a post processing application written in C++ and QML. It
performs two key analysis methods on the collected study data. The Toolkit makes use of
the eye-tracking information gathered from iTrace Core, the contextual information gath-
ered from the iTrace Plugin of choice, and a srcML archive file of the source code observed
(if indeed source code was one of the artifacts being viewed). For artifacts that are not
source code, the process is a little different and adhoc in nature and needs to be written
specific to that artifact. For e.g., if the artifact is a custom built web application that uses
the iTrace-Chrome plugin, the post processing will be very specific to the structure of that
website. iTrace-Toolkit will need to be extended to support that specific website’s data
collection needs.

First, the Core and plugin data is loaded into the Toolkit. Multiple different recording
sessions can be loaded in at once. Using srcML (Collard et al. 2013) in conjunction with
the line and column information provided by the iTrace IDE plugins, all textual tokens and
the syntactic context of each token within a source code document can be recovered and
stored within the database for later querying. The related srcML archive file is loaded in,
and all of the raw gaze data from the eye-tracker is matched to the contextual information
to deduce what file, line number, column number, and token the participant examined. This
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information is stored in a Sqlite database. The data model for this database is given in Fig. 4.
As additional mapping to tokens is done, that information is also added to the database. This
allows researchers to easily manage and analyze the data produced in each study.

The Toolkit supports three different fixation detection algorithms—Basic (Olsson 2007),
I-VT, and I-DT (Salvucci and Goldberg 2000)—each with adjustable parameters (Ander-
sson et al. 2017). All fixations identified are stored within the database and each fixation
references the raw gaze collection that it represents. Other fixation filters can easily be
added to the Toolkit as needed. The Toolkit also provides a way for a participant/researcher
to query the loaded database for specific fixations; i.e., if the researcher wants to look at
all fixations that focused on whitespace and happened before line 300. The queries’ outputs
can be saved in a variety of formats: SQL, TSV, JSON, and XML. This data can then be
imported into the user’s statistical package of choice for further qualitative and quantitative
analysis.

5.3 Software Tasks in Research Studies

iTrace and Deja Vu are eye tracking infrastructure to support researchers in studying devel-
opers (i.e., their eye movements) while trying to understand software systems. In the context
of software development, any program understanding task can be studied within a research
study including debugging, bug localization, method summarization, concept location, fea-
ture location, tracing, etc. In other words, iTrace Deja Vu is task agnostic and supports data
collection in the cases where IDE lookup times are slower than the eye tracker frequency.
At this point in time, Deja Vu and iTrace do not support tasks that involve editing. The only
exception to this is a specialized iTrace-Atom version with our collaborators that supports
limited editing (Fakhoury et al. 2021) for a specific study that needed to be conducted.

Accurate automatic support for eye tracking in the presence of editing is a very diffi-
cult and currently open problem. However, the iTrace infrastructure and the way Deja Vu
was architected forms a basis for addressing this challenge to support tracking full editing
capabilities in the near future.

Fig. 4 An overveiw of the iTrace Toolkit Relational Database Schema
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6 Realizing Deja Vu

The contextual information that iTrace provides is of great value. However, the overhead
incurred by collecting this information in real time becomes problematic as the speed at
which eye tracking devices are capable of transmitting data increases. To alleviate this
issue and fully support high speed eye tracking while still collecting contextual stimulus
environment information a new approach is required.

To address the problem, Deja Vu augments iTrace to allow all gaze analysis that occurs
in real-time to be deferred to an offline post processing phase. We record all telemetry data
(e.g., keyboard, mouse), along with eye tracker data, and time stamps. This requires Deja
Vu to record all user interactions. A subsequent replay phase is used to synchronize each
user action with respect to recorded gaze data. Hence, we are no longer is constrained by
real-time performance requirements.

One method of implementing this is capturing the entire operating system after receiving
each gaze during an eye tracking study session. After the study, each operating system state
is loaded and all mappings are calculated. This is entirely accurate, however is not practical.
It has very poor performance due to requiring copying the entirety of RAM to disk and may
require introducing the complexity of a hypervisor.

Deja Vu takes an alternative approach. Only actions that get the environment to each
state are recorded and stored. Practically, these are mainly human-computer interaction
events—mouse movements and keyboard key state data. Other vital information includes
the operating system state history, such as the exact position where a window pops up (in
Windows, it depends on where it was previously opened). In these cases, a Deja Vu style
approach needs to take measures to address this and ensure that replays are deterministic.

In the Deja Vu approach, the execution process is split into two steps. First, during an eye
tracking study, the computer interaction data is collected in real time. After the eye tracking
study session is completed, all the computer interactions can be replayed at some later time.
This involves replaying the session on the same machine but at a slower frame rate. Since
all data is timestamped this can be done without loss and in an accurate manner. Thus, the
system/application calls to calculate the line, column in the file can be run without concern
and in-depth analysis (of almost any type) can be performed during the replay. An overview
of the two steps is shown in Figs. 5 and 6.

6.1 Recording Stage

During the recording phase (see Fig. 5), Deja Vu captures human-computer interaction data
by recording mouse, and keyboard, along with the eye tracking gaze data. Mouse and key-
board events are captured using Win32 hooks. Hooking into operating system events is a
feature of the Windows API and is done through the SetWindowsHookEx function. By
using this function to hook into low level mouse and keyboard events, Deja Vu can capture
these events before they are added into the OS input queue. If a study participant is typing
code in an IDE, Deja Vu captures and saves each keystroke before the IDE even receives it.
This capturing and saving step happens imperceptibly fast. Performing the capture this way
allows for perfect accuracy and replays. Gaze data is collected by listening for broadcasted
event data from iTrace-Core. As this data is collected, it is saved to disk in a CSV format. A
sample of the recorded data is shown in Table 1. Each row is in the following format: event
type, a 64-bit integer specifying the system time, and any data related to the event. This for-
mat contains all data necessary for replaying the user’s computer interaction. Each recoded
event type is shown in Table 2. KeyDown and KeyUp is used to represent keyboard key
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Fig. 5 Overview of the Record Stage. Deja Vu collects all interaction information of the developer along
with gaze information, all of which is stored in an event log

state changes. A Windows virtual key code (which is the size of a byte) can store any key-
board key, including modifier keys such as shift or control. Each of the mouse buttons are
explicitly stated as an event type. Forward and back refers to the buttons on the left side
of a mouse (generally used for webpage navigation). MouseMove specifies the new abso-
lute position on screen after the mouse has been moved. MouseWheel stores any scroll
that happens with a value that specifies how much the mouse is scrolled. This event also
collects touchpad scrolling on laptops. The gaze, session start, and session end

Fig. 6 Overview of the Replay Stage. Deja Vu replay takes the place of both the user and iTrace core. The
event log is replayed back at a slower rate and the iTrace plugin (re)produces the file, line and column
information in the same manner as iTrace without Deja Vu. This way all gaze points can be mapped correctly
to a line and column
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Table 1 Example of data
collected during the recording
phase. Some gazes omitted for
brevity. The events are shown as
they happen. In this case we have
shown gaze, KeyDown, KeyUp,
and MouseMove events

Event type TimeStamp Coordinates/codes

gaze 132277258033906585 314,769

KeyDown 132277258035886613 72

gaze 132277258037224389 336,790

gaze 132277258037601928 333,791

KeyDown 132277258037645064 73

gaze 132277258037758814 323,786

gaze 132277258037914237 333,794

gaze 132277258039069772 270,767

KeyUp 132277258039085245 72

KeyUp 132277258039090178 73

gaze 132277258039225920 276,771

gaze 132277258039755087 316,804

MouseMove 132277258055005185 391,823

MouseMove 132277258055085137 388,823

events are directly retrieved from iTrace Core. Gaze events store the x and y screen coordi-
nate the participant’s gaze at that time including validity codes, pupil diameter, and distance
to screen. The session start and session end events are used by iTrace to mark
the beginning and end of a study. These are primarily used to synchronize iTrace Core state
with plugins.

6.2 Replaying Stage

During the replaying phase (see Fig. 6), Deja Vu reads in the CSV data produced during
the recording stage and replays each event by creating mouse and keyboard events using
the Windows API. Specifically, the mouse event and keyboard event functions are
used to synthesize button presses, mouse motions, and mouse scrolls. In addition, Deja
Vu also replays all gazes and emulates the communications protocol used by iTrace Core.
This allows existing iTrace plugins to connect to Deja Vu to receive gaze data and perform
analysis during the replay. In essence, Deja Vu works as proxy for iTrace Core.

All events are replayed synchronously. To slow down the replay, Deja Vu pauses in
between events it produces. This pause provides time for connected plugins to process
received gaze data. Therefore, time in between events must be carefully considered to give
ample time for each connected plugin to perform its analysis. There are multiple possible
algorithms for choosing the time to wait in between replaying each event. Deja Vu imple-
ments three such methods so researchers can choose whichever fits their needs the best.
Refer to Figs. 7 and 8 for a graphical illustration of how the delays work.

6.2.1 Fixed Pause Delay

The time waited after each event is a fixed amount of time based on the type of the event.
Plugin processing time for each type of event received will vary depending on the type of
analysis performed. Generally, most processing is done after gaze events. Other events, such
as mouse movements, may not need any analysis (depending on the researcher’s needs). In
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Table 2 Each event type (which
can originate from the mouse,
keyboard, or eye tracker during a
Deja Vu recording) that appears
in the CSV format. Each of the
event types is timestamped. The
additional data description
includes the main components of
each event type

Event type Additional data

Keyboard

KeyDown Virtual Key Code

KeyUp Virtual Key Code

Mouse

LeftMouseDown

LeftMouseUp

RightMouseDown

RightMouseUp

MiddleMouseDown

MiddleMouseUp

ForwardMouseDown

ForwardMouseUp

BackMouseDown

BackMouseUp

MouseMove (x,y) coordinates

MouseWheel Mouse scroll amount (positive for an upward

scroll and negative for a downward)

Eye Tracker

Gaze event id (used for indexing iTrace Core

output) and averaged gaze coordinates (x,y)

for both eyes

Study Session

session start The time when study session started

session end The time when study session ended

these cases, processing-heavy events (such as gazes) can be set to have a greater pause time
than processing-light events (such as mouse movements).

The primary drawback to this mode is that choosing a good pause length is difficult. Gaze
processing latencies are not necessarily easy to predict and outliers are possible. However,
via some trial runs a suitable duration could be determined and used. If the experiment is
short and fairly simple the fixed paused approach should work well. A visual illustration of
this replay method is shown in Fig. 7.

6.2.2 Proportional Delay

The time after each event is proportional to what it is during the recording. For example,
Deja Vu can set to replay everything at exactly half the speed of recording. This mode is
useful for visualizations. Screen recordings performed during the replay stage can easily be
sped up by the same factor as the replay is slowed down. Using this method, the sped-up
recording of the replay is identical to a recording of the session. See Fig. 7.

The drawback to this mode is that it is impossible to set a minimum time between events.
If processing is to happen after each keypress, nothing stops events from being generated
during replay at a very high frequency. During recording, the user can have press several
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Fig. 7 Illustration of how the fixed and proportional pause delay mechanisms work

keys on the keyboard, generating key presses nearly simultaneously. It is possible that one
might want to do some analysis after each keystroke. If the analysis takes 20 ms, it is
impossible to set a minimum pause after each keystroke. Even if slowed down by a fac-
tor of 10, when a user presses two keys within less than 2 ms, there is not have enough
time for analysis. However, this is not an issue for gaze data as eye trackers typically gen-
erate readings quite uniformly, making it possible to reinforce a minimum pause time in
between gaze events.

6.2.3 Bidirectional Delay

In the third method, after gaze events, Deja Vu waits indefinitely for a reply/acknowl-
edgement from each connected plugin. This reply marks that the plugin is finished doing
processing and is ready to process more data. Communication between Deja Vu and plug-
ins happens bidirectionally. Events that do not need to be waited on are followed by a short
fixed-length pause. From a technical point of view, this is the best pausing method. The
difficulty of choosing a good fixed-pause length is alleviated. Pauses after gaze events are
always correct. No extra time is wasted as padding for the highest-latency lookup/processing
cases.

The primary drawback to this method is that it requires modification to the existing
components in the iTrace infrastructure. Plugins need to be modified to reply a ready-signal
(over the TCP socket connection between the plugin and Deja Vu) in response to events that
require confirmation. In addition, there is the potential added overhead due to the additional
layer of communication that needs to take place. A visual illustration of this replay method
is shown in Fig. 8.

6.2.4 Theoretical Foundations in Replay Pausing Strategies

In this section, we provide a summary and a theoretical foundation for analyzing the slow-
down between different pausing strategies. Let ce indicate the number of times the event e

is encountered. Let pe be the fixed pause length (ms) assigned to event e. Let t be the initial
recording length (ms), and t ′ be the replay length (ms).
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Fig. 8 Illustration of how bidirectional delay and replay works. In this example, the same recorded data log
file is used as in Fig. 7. The pause after each gaze in bidirectional delay could be a variable length (depending
on how long the plugin takes to do its computation)

Fixed Pause Replay:

t ′ =
∑

e∈all event types

ce · pe

Proportional Replay: Let s be the scale chosen for the proportional replay. Then:

t ′ = t · s

Bidirectional Replay: Let m be the average time it takes each plugin to finish processing
each gaze, and reply to Deja Vu. Then:

t ′ = cgaze · m +
∑

e∈(all event types−{gaze})
ce · pe

6.3 Practicalities of Implementation

While developing the Deja Vu tool, we ran into several non-obvious problems and issues,
some of which are challenging to completely address. Each can be addressed in several
different ways and we present our solutions to these below. We believe that these challenges
generalize for the implementation of tools using a similar approach to that of Deja Vu.
Hence, these descriptions may prove useful to other researchers.

6.3.1 Solving Non-Deterministic Window Placements

The initial window position is non-deterministic on MS Windows making it difficult to start
the replay from the exact same position. During a replay, the position where a window opens
up can be different from where it opened during recording. To address this, Deja Vu forces
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each window opened during recording and replay to open in a single predefined location
on the screen. In Deja Vu, this predefined location is the top left corner of the screen. This
is done by frequently iterating over each window handle and checking if any new handles
appear.

In theory, this method is not entirely accurate for every application, since the application
can move its window without human interaction. However, we have not found an application
that does this to date in the use cases Deja Vu is used for. To maintain integrity of replays,
researchers performing studies need to still consider this issue and avoid using applications
in studies that have this behavior.

6.3.2 Restoring Initial Interface State

A slight change in interface layouts between runs can cause replay to become out of sync
with the events that happen during recording. This can happen in a butterfly-effect style. To
address this, researchers need to be careful choosing a replicable initial state between runs.

Currently, ensuring that the initial interface state is the same is performed manually by
the researcher. Many IDE’s, such as MS Visual Studio, support saving and restoring UI
layouts (e.g., through a simple hotkey). Saving a layout before running a study and restoring
it before performing a replay is one method of ensuring initial interface state in an IDE with
adjustable element sizes will remain consistent.

6.3.3 Relative or Absolute Mouse Positioning

The MS Windows API allows for two methods of capturing and moving the mouse: by the
absolute value (directly specifying mouse position with x and y coordinates) or by relative
value (changes the x and y coordinate of the mouse) (Microsoft 2018). Deja Vu uses absolute
mouse values.

The advantage of absolute values over relative value is that replays are more robust. Mov-
ing the mouse accidentally during a replay using relative values will cause all subsequent
mouse usages to be off. Absolute mouse values solve this issue by automatically locking
the mouse back where it should be after each mouse move event.

6.3.4 Replaying Mouse Double Clicks

This challenge was discovered after the dataset for our replication analysis (given in
Section 8.4) was collected. If a sequence containing a double-click (two mouse clicks in
quick succession, with a pause in between) is slowed down enough, it will result in replay-
ing two separate clicks (and not a double-click). To address this problem, Deja Vu replay
looks ahead into the event log and replaces any double-clicks (which would become two
separate clicks after slowing the replay down), with a double-click event.

6.3.5 Race Conditions

This was another challenge discovered after the dataset collected for our replication anal-
ysis. Due to multiple input sources (e.g., mouse, keyboard, and sockets) collecting data
concurrently a race condition was possible while writing to the log. We have identified and
fixed this race condition that occasionally corrupted event log data entries.
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6.4 Using Deja Vu with iTrace

As far as we are aware, this is the first attempt at supporting high-speed trackers for software
engineering-based studies that work on complex artifacts tracked within an IDE. Deja Vu
will typically be used in the following manner.

Let’s assume that a researcher is looking to investigate how developers understand class
hierarchies (using a high-speed 1000 Hz eye tracker). Before the study, the researcher
chooses a suitable real-world code base and the questions a study participant is to answer.
The code base is imported into a project file in an IDE that has iTrace plugin support (such
as Visual Studio or Eclipse). The layout is saved. During the study, a participant is put in
front of the computer. The eye tracker is calibrated for the participant. The IDE is opened,
and the layout is restored. Eye tracking is started in iTrace-Core with Deja Vu Recording
enabled.

During the study, the participant performs the assigned set of tasks. They have the free-
dom to interact with the IDE, OS, and any applications if they so desire (for example,
opening a web browser to access StackOverflow). During replay, all computer events will
be replayed. If the participant highlighted text and pressed Ctrl+C to copy the text, the
same sequence of events would be replayed during the Replay phase (the same text would
be highlighted, the Ctrl+C keypress would be replayed causing the highlighted text to be
copied). While users can interact with any application, the applications that support gaze-
token lookups will depend on the iTrace plugins that are running. If a study participant
opens Firefox (for which no iTrace Plugin exists yet), gaze data will still be collected, how-
ever the gaze {x,y} coordinates will not be mapped to specific tokens or areas-of-interest
on screen. Once the participant is finished, the tracking and recording are stopped. The
Recording phase is complete.

At some point after the study is completed, the researcher begins the replay phase. Deja
Vu Replay is opened in Core. Analysis plugins are enabled in the IDE and are connected
to Core. The IDE layout is restored again. Deja Vu Replay is started in Core. Everything
that happened during the study is now replayed slowly on the computer. Analysis is being
performed in the background via iTrace. Once it is finished, the researcher can collect the
data from the plugins and analyze it in any statistical package. In this use case, they can
investigate how the developer navigated the class hierarchies and what they looked at before
they completed the task.

6.5 Example Usage Scenario

To perform a study with iTrace Deja Vu, first a code project and associated IDE (which has
an iTrace plugin) is chosen. Next, iTrace Core is started, calibrated and setup. The IDE is
to be brought into a reproducible initial position (typically this is the IDE taking up the full
screen space i.e., maximized). The session is setup in Core, and recording with Deja Vu is
enabled. The study participant is then invited to perform the instructed task (e.g., in the case
of the replication study we conduct in Section 7, they perform a bug localization task). As
seen in Fig. 5, Deja Vu records computer and gaze interactions of the study participant.

Once the participant is finished with the task (see Section 5.3), the recording is stopped.
We recommend starting and stopping tracking before each task is performed to have a clean
data recording for each task. For example, as a researcher, if you setup your study to have
four tasks per participant, you will start and stop tracking before each task within iTrace
with the Deja Vu option selected. After all the data collection for all the tasks is complete
and after the participant has left, the researcher can now collect detailed gaze data with Deja
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Vu Replay. In order to do this, first, the initial IDE position is restored. Deja Vu Replay
is selected in iTrace Core, and a previously recorded session can be selected to replay.
During this time, detailed Plugin information, such as file along with line and column gaze
information, is collected (as seen in Fig. 6). Once replaying is finished for all tasks and the
detailed plugin data is collected, further analysis can be performed.

To perform analysis, the project code file is converted into its srcML representation.
iTrace Toolkit then combines the core and plugin files and along with srcML information
is able to map tokens to gaze coordinates. As shown in Fig. 3, iTrace Toolkit generates a
database which can be queried for eye tracking data. iTrace Toolkit also supports various
fixation event detection algorithms that are run on the raw gaze data and exported by the
researcher to perform further statistical analysis. Note that iTrace Toolkit is not a statistical
package. iTrace Toolkit is a post processing tool to combine core and Plugin files, generate
fixations, and map the fixations to source code tokens. In addition, it can filter the data on
specific criteria via queries from the user interface. See Section 5.2 for more details.

It is important to note that iTrace and iTrace Deja Vu are task agnostic. They do not
directly support software engineering tasks such as bug localization or code summarization.
The infrastructure provides a method for researchers to collect eye tracking data on software
engineering tasks. iTrace has been used in previous eye tracking research studies to better
understand tasks such as code summarization (Abid et al. 2019; Saddler et al. 2020), code
review (Park and Sharif 2021), program comprehension (Peterson et al. 2019a, b), software
traceability (Sharif et al. 2016a), and bug fixing (Kevic et al. 2015, 2017). The task to be
studied depends on the researcher’s objective and the research questions they seek to address
in their study. iTrace and iTrace Deja Vu facilitate collection of (high speed) eye tracking
data within the IDE while developers are working on software tasks. More information on
iTrace along with video tutorials are available at https://www.i-trace.org/.

7 Evaluating the Deja Vu Approach

The evaluation of our approach is conducted via two experiments. Experiment 1 evaluates
the initial problem by looking at two typical data analysis plugin implementations (iTrace
Visual Studio, iTrace Eclipse, and iTrace Atom) to show data loss and degradation with
high-speed trackers. Experiment 2 evaluates Deja Vu to determine whether it can recreate
all gazes that were produced during the recording phase. This is done in the context of a
sample eye tracking experiment.

Experiment participants are assigned to one of two groups each denoted by the identifier
K and L respectively. Table 3 shows the eye trackers and data rates used by each group. Each
tracker for Group K is connected to a 64-bit MS Windows 10 desktop with a 3.6 GHz Intel
i7-7700 CPU, mechanical hard disk drive, 8 GB of RAM, and two 24-inch LCD displays
running at a 1920x1200 resolution. Group L eye trackers ran on two separate machines. The

Table 3 Participant groups and
the eye tracking devices and data
rates used

Participant groups Eye tracker model Data rate

K Gazepoint GP3 HD 60 Hz

Tobii Pro X3-120 120 Hz

L Gazepoint GP3 HD 150 Hz

Tobii TX300 300 Hz

https://www.i-trace.org/
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machine connected to the Tobii TX300 used the tracker’s built-in 23” monitor running at
1920x1080 resolution on a Windows 10 desktop with 3.5 GHz Intel i7-7800X, a solid-state
drive, and 32 GB of RAM. The Gazepoint GP3-HD was connected to a 27” LCD panel
running at 1920x1080 resolution, on a Windows 10 laptop with 2.7 GHz Intel i7-6820HQ
CPU, a solid-state drive, and 32 GB of RAM.

7.1 Experiment 1: Data CollectionWithout Deja Vu

This experiment evaluates the initial problem: Does the latency for real time data collection
make it infeasible to map eye gaze to semantic elements at high-speed tracking frequen-
cies? To determine this, all the IDE plugins that iTrace currently supports (iTrace Visual
Studio, iTrace Eclipse, and iTrace Atom) are evaluated to determine the impact on data rate
limitations when performing real-time gaze analysis.

7.1.1 Experiment Setup

The plugins are instrumented to collect timings from the functions related to real-time line,
column lookup analysis. The evaluation is run on multiple hardware configurations (Group
K and Group L) to provide a less biased performance measure. Each plugin environment
(Eclipse, Visual Studio, and Atom) is also stressed with an increasing number of open
source-code tabs to identify potential implementation specific overhead.

7.1.2 Data Collection

A process diagram for the first experiment is shown in Fig. 9. An eye tracking study is
set up in iTrace. The IDE gaze analysis plugins are connected to iTrace Core. The study
participant is instructed to have no files open in the IDE and gaze at the screen for 5 s.
Then they are instructed to open a file and look at it for 5 s. This is repeated until 4 files
are opened inside the IDE. Each IDE plugin is modified before the study to collect imple-
mentation and environment API performance data. In the iTrace-VisualStudio plugin, this
is done using the C# Stopwatch API. Elapsed times for each call to the gaze analysis func-
tionality within the plugin is stored in memory and written out to a file at the end of a
recording session. For the iTrace-Eclipse plugin, API performance data is collected using
the System.nanoTime() API and calculating the difference between the start and stop
time for each call to the gaze analysis function. This timing data is stored in memory and
written out to a file at the end of a recording session.

7.1.3 Results Showing Loss of Data

The data collection process is repeated for each plugin with 0-4 open tabs and the results
are presented in Fig. 10. iTrace Eclipse provides an optimized API for translating screen
coordinates to the file, line, and column at that screen coordinate. Each lookup in eclipse
takes 0.015 s. 0.015 s is equivalent to approximately 66 Hz. This means that real time data
collection can only happen for eye trackers operating at 66 Hz or less.

Visual Studio does not provide an optimized API for converting screen coordinates to
file, line, and column data. For this reason, the lookup timings for iTrace Visual Studio plu-
gin implementation scales linearly with respect to the number of tabs open (due to needing
to iterate over all open files). When a single tab is open, the plugin is able to support up
to 166hz trackers. However, typically developers have more than a single tab open and any
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Fig. 9 Process diagram for data collection in Experiment 1 (Data Collection without Deja Vu)

number of tabs open above two will not even support 60 Hz. However, both eye tracker
speeds estimates are liberal because they do not consider outliers. Figure 11 shows the raw
timing data in the Visual Studio plugin.

iTrace Atom is implemented as a package for Atom, a text editor that is built on the
Electron framework. Electron allows developing desktop applications using web technolo-
gies by running code using the Chromium rendering engine. Because of this, iTrace Atom
has access to an optimized DOM screen coordinate to text element API. This allows iTrace
Atom to perform lookups at an average of 0.223 ms per lookup, regardless of number of
tabs open. Because the lookup is already very fast, Deja Vu has less potential to be useful,
unless running experiments on weaker hardware or using an eye tracker that collects data at
higher rate than 4500 Hz.

In conclusion, real time data collection in IDE’s (with the exception of iTrace Atom)
using the iTrace eye tracking infrastructure is infeasible for high speed eye trackers (running
above 60 Hz).

Fig. 10 IDE screen coordinate to (file, line, column) lookup times in the Visual Studio, Eclipse, and Atom
iTrace Plugins. iTrace Atom took an average of 0.223 ms per lookup
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Fig. 11 Raw timing data from Visual Studio. A trendline showing the linear growth is displayed as the
number of tabs open increase

7.2 Experiment 2: Is Deja Vu an Effective Solution?

In this section, we describe a simple experiment on two tasks with the goal of showing that
Deja Vu is able to keep up with high speed eye trackers to collect and recreate all gazes that
occurred during an experiment.

7.2.1 Experiment Setup

The simulated eye tracking experiment consists of two tasks and each task is repeated
twice per participant with variations in the data rate of the eye tracking device. The first
task requires participants to read out loud each method name and return type from the
source code file SvgExporter.java taken from the JHotDraw8 project. This file con-
tains 1,166 lines of code and 42 methods. While this task is straight forward, it will require
active engagement with the source code while ensuring a long enough recording duration,
minimize cognitive fatigue, and require scrolling.

The second task requires participants to summarize three methods in the
SvgExporter.java file selected randomly from a collection of the eight largest meth-
ods (in terms of lines of code). Participants perform the summarization out loud and the
selected methods are not repeated by the participant on the second run of the task when the
eye tracker data rate is changed. This task is designed to engage the participant and represent
a more advanced eye tracking study task.

In this study, Deja Vu was setup to use a fixed-pause delay strategy during replay as
it provided us with enough time to map what we needed. Refer to Fig. 7 for a graphical
illustration of the fixed pause delay mechanism. If bi-directional delay was used it would
just complete in a different total time (not worse than fixed pause delay, since we chose
a time that is longer than needed to compute the gaze mappings). Proportional would be
slower than bidirectional and fixed-pause because everything would be slowed down equally
(compared to the other two where we can choose to slow down only the gazes but replay
interactions faster)
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7.2.2 Data Collection

A process diagram for this experiment is shown in Fig. 12. Participant data captured during
the simulated eye tracking study consists of a set of data comprised of: 1) an iTrace-
Core data file representing all valid data points generated by the eye tracking device; 2)
an iTrace-Eclipse or iTrace-VisualStudio plugin data file containing all data received from
iTrace-Core and processed in real-time; and 3) a Deja Vu recording file storing all mouse
and keyboard interactions and gaze positions sent from iTrace-Core. Each participant gen-
erates two sets of data representing tasks recorded using different eye tracking data rates.
Audio recordings of participant activities are also saved via a cellular phone audio record-
ing application. To determine the effectiveness of Deja Vu’s data collection, all gaze data
present in the plugin and Deja Vu output files is compared against the valid raw data points
stored and transmitted to each application by iTrace-Core. Gaze data is uniquely identified
by an event id value and is used to determine any data loss (e.g. data transmitted, but not
received by the plugin or Deja Vu).

Fig. 12 Process diagram for data collection in Experiment 2 (Data collection with Deja Vu)
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7.2.3 Results

Table 4 shows the data rates of eye tracking devices and the amount of valid data suc-
cessfully captured by iTrace-Core, Deja Vu, and the iTrace plugins for Eclipse and Visual
Studio. From the table we see that an eye tracking device running at 60 Hz, tends to moder-
ately tax the real-time analysis component of the iTrace plugins. As the data rate increases
to 120 Hz, real-time analysis in the plugins falls behind and nearly half of the data trans-
mitted to the plugins for analysis is lost as plugins cannot keep up with the faster data
generation rate of the eye trackers. It is interesting to note that in nearly all cases, the data
rate of the eye tracker poses no issue for Deja Vu with nearly 100% of the data sent from
iTrace-Core is also recorded by Deja Vu along with participant mouse and keyboard inter-
actions. Note that iTrace-Atom was not compared as the IDE lookup time for the (file, line,
column) were much smaller and will be at least as good and most likely better (see Fig. 10)
than iTrace-VisualStudio and iTrace-Eclipse.

Note that we cannot claim a link between the data rate and data loss in terms of per-
centages. The plugin behaves very undeterministicaly in how it drops gazes when moving
from 150 Hz to 300 Hz as seen from Table 4. The main point to note is that Deja Vu takes
care of the data loss. That said, we did use two different machine configurations to collect
the 150 Hz data and another machine to collect the 300 Hz data. The 150 Hz dataset was
collected on a laptop fitted with the GazePoint tracker whereas a dedicated machine for the
TX-300 tracker which comes incorporated into a monitor was used for the 300 Hz dataset.
It is not straightforward to just move the GazePoint tracker on the TX-300 machine. We do
not believe collected the data on two different configurations invalidates the fact that there
is data loss regardless.

7.2.4 Limitations

We are not implying that the high-speed support for trackers will be needed for every study.
Similarly, not every study needs to be an eye tracking study (there needs to be a specific
reason). Likewise, not every eye tracking study will need to be done using a high-speed
tracker. However, as we pointed out in Section 3, there are specific use cases for when a high
speed tracker is needed. In those cases, Deja Vu will significantly improve data collection

Table 4 Raw gaze datapoints collected during study. The percent shows the data loss. The K samples were
collected in the Visual Studio plugin. The L samples (last four) were collected in the Eclipse plugin

Sample Data rate Core data Deja Vu Plugin

K1 60 Hz 22629 22629 (0%) 15817 (30%)

K2 60 Hz 21333 21333 (0%) 19833 (7%)

K3 60 Hz 28392 28392 (0%) 16306 (43%)

K1 120 Hz 41999 41999 (0%) 23424 (44%)

K2 120 Hz 48405 48405 (0%) 26087 (47%)

K3 120 Hz 67024 67023 ( 1%) 35786 (47%)

L1 150 Hz 52506 52506 (0%) 25047 (52%)

L2 150 Hz 48090 48088 ( 1%) 15858 (67%)

L1 300 Hz 138442 138441 ( 1%) 79967 (42%)

L2 300 Hz 106674 106674 (0%) 68852 (35%)
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without any data loss or incorrect mapping. Closer investigation of the instances where Deja
Vu did not manage to capture all data points transmitted from iTrace-Core revealed a bug in
the research prototype. Occasionally, Deja Vu can corrupt a data entry which we believe to
be caused by a race condition on the output file resource. While this can explain the missing
data points given Deja Vu’s generally consistent performance, we still consider these data
points to have been lost in Table 4 to avoid under-reporting the findings. This issue has since
been fixed.

8 Replication Analysis

We present a replication analysis of four tasks taken from two prior eye tracking studies.
The first two tasks consist of bug fixing tasks from Kevic et al. (2015) where participants
need to find the location of a bug and propose a potential solution. These two bug fixing
tasks are both on the JabRef system. The last two consist of code summarization tasks from
Saddler et al. (2020) where participants are asked to provide a summary of one method and
one class. Both summarization tasks are on the Eclipse project.

During the study, participants only have access to the code files present in the project
corresponding to their current task, a text file describing the current task or bug. Each par-
ticipant completes the study in the same order using the same stimuli. Participants’ eye
movement data is collected using the iTrace-Eclipse plugin.

8.1 Research Questions

The research questions we seek to address in this replication analysis are given below:

– RQ 1: What additional syntactic categories does Deja Vu provide over prior work’s
results?

– RQ 2: What further analysis can be done with the additional syntactic categories that
Deja Vu provides?

The motivation behind RQ 1 is to show the added insight that Deja Vu provides by
comparing the results of prior work with the current study’s results. The motivation behind
RQ 2 is to provide examples of some further analysis that can be done with the additional
syntactic categories Deja Vu provides. Note that the goal of Section 8 is not to completely
replicate the prior studies but to show via replication analysis on two different types of tasks
that Deja Vu works in these settings and generates additional, and useful, information for
analysis. The researcher can then take this information and use it towards some functional
goal related to their specific research question.

8.2 Tasks

For the bug fixing tasks, JabRef is selected as the subject system. JabRef is a desktop appli-
cation for managing bibliographic databases with many import and export formats. JabRef
version 1.8.1 is used in this study. Only two of the three original bug fixing tasks are selected
due to time constraints labeled in this study as Task 1 and Task 2. In both of these tasks,
the bug descriptions submitted to the JabRef project are added to the text file describing
the current task. Participants are given a maximum of 20 minutes to fix the bug to avoid
fatigue. This is also done in the original study. Further details of the tasks can be viewed
in the original study (Kevic et al. 2015). In this paper we name our tasks as follows: Task
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1 refers to Bug 2 in the original paper and Task 2 refers to Bug 4 in the original paper
(Kevic et al. 2015).

For the code summarization tasks, Eclipse is selected as the subject system. Eclipse is
an IDE used primarily for Java programming. Eclipse version 4.2 is used in this study.
Due to time constraints, only the two summarization tasks about code elements in Eclipse
in the original study are used in this replication labeled in this study as Task 3 and Task
4. Participants are given either a method name they needed to summarize or a class name
they needed to summarize. Once they navigated to the code element, read the code, they
provided their summary for their task. Further details of the tasks can be viewed in the
original study (Saddler et al. 2020). In this paper we name our tasks as follows: Task 3 refers
to T1 in the original paper and Task 4 refers to T2 in the original paper (Saddler et al. 2020).
See Table 5 for an overview of the tasks.

8.3 Eye Tracking Apparatus

Two different eye tracking setups are used at the different universities. At UNL, the study
is conducted with a Tobii TX300 set to capture eye gaze data at 120 Hz with an accuracy of
0.5 degrees. The built-in 23-inch, 1920px by 1080px monitor is used. At KSU, the study is
conducted with using the Tobii X3-120 eye tracker set to capture eye gaze data at 120 Hz
with an accuracy of 0.5 degrees. A laptop with a 15.6”, 1920px by 1080px monitor is used
with this eye tracker. Deja Vu is run with a fixed-pause strategy. See Fig. 7 for a graphical
illustration of the fixed-pause replay strategy.

8.4 Data Collection Process

There are two sets of participants from the two collaborating universities that participated
in this study to collect this proof of concept data and includes the first four authors of the
paper plus two additional members from their respective research labs. No one from outside
the current research team is used to collect this data. This is important to note because this
is not a typical replication study. It is a proof of concept replication analysis of two prior
studies also done by the some of the authors. In order to do the replication with Deja Vu,
the data needed to be collected with Deja Vu Record. We used our own research team for
this evaluation. However, none of these participants had done the prior study nor were they
familiar with the study tasks apriori. This was done to simulate a real study environment.

On the day of the study, participants came into the research lab (alone due to COVID-
19 restrictions at the time). Next, participants are asked to find the location of a described

Table 5 An overview of the tasks used in the replication study analysis

Task No. Type System Description

Task 1 Bug Fix JabRef No comma added to separate keywords

Task 2 Bug Fix JabRef Failure to import big numbers

Acrobat Launch fails on Win98

Task 3 Summarization Eclipse Summarize Method

core.databinding.binding.dispose

Task 4 Summarization Eclipse Summarize Class

swt.SWTError
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bug and find a solution for two bug fixing tasks (see Table 5). After they finished proposing
a solution, participants rated their confidence of their solution’s correctness and their per-
ceived difficulty of the task. Next, they are asked to summarize a method and a class from
the Eclipse project. After they finished summarizing a code element, participants rated their
confidence of their summary and their perceived difficulty of the task. We do not use the
confidence ratings in this paper however we did this to keep the protocol as similar as pos-
sible with what was done in the prior studies. Eye tracker calibration is done at the start of
each of the four tasks to ensure the best eye tracking accuracy during the tasks (also done in
prior studies). Participants are also allowed a short break between tasks if needed to reduce
fatigue over the entire study.

The participants had access only to the Eclipse IDE which containes the code files of
the entire subject system of the task, JabRef for the bug fixing tasks and Eclipse for the
summarization tasks, and a text file containing the task instructions and bug description for
bug fixing tasks. The demographics of the previous studies participants were very similar
with the group of participants we used in this replication analysis study. None of them were
complete novices and all had similar programming experience and experience in bug fixing
and code summarization tasks.

As stated earlier, we do not use these results for a research study goal. We do however
try to keep the environment and questions the same as done in the previous two studies.

8.5 Replication Analysis Results

This section presents results of the replication analysis conducted based on each of the two
research questions.

8.5.1 RQ1 Results: Additional Syntactic Categories Deja Vu Provides over Prior Work

When comparing the benefits of using the latest version of iTrace (at http://www.i-trace.
org/) alongside Deja Vu with previous versions of iTrace (which is still available via an
archive site at https://github.com/SERESLab/iTrace-Archive), we look at the number of
unique syntactic categories that are able to be extracted from the eye tracking data from both
the original dataset and the data collected from this replication. We directly compare these
distinct categories for each task independently, and find that the current version of iTrace
alongside Deja Vu consistently provides finer grained syntactic categories.

The overlap between the syntactic categories in these datasets provides further insight
into the type of information that the current version of iTrace provides. See Table 6 for a
list of distinct syntactic categories in each dataset. It is clear that Deja Vu provides more

Table 6 Comparing the number of distinct syntactic categories between the original studies’ analysis and
replication analysis on the same set of tasks

Task Task type Original dataset Replication dataset

Task 1 Bug Fixing 34 48

Task 2 Bug Fixing 34 41

Task 3 Summarization 7 23

Task 4 Summarization 7 24

http://www.i-trace.org/
http://www.i-trace.org/
https://github.com/SERESLab/iTrace-Archive
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syntactic category types compared to the original set. We do not believe this is due to tech-
nical skill bias as the populations studied were very similar both in terms of programming
experience and experience in bug fixes and summarization.

This is due to three reasons, a) iTrace has been completely rewritten to make optimal use
of srcML which provides extended mapping to all source tokens b) a higher speed tracker
is used which gives more samples per second and c) no gaze data are lost when using a
high speed tracker greater than 60 Hz. Note that this replication study is done with a 120 Hz
tracker to show the practicality of Deja Vu while the prior studies are done with 60 Hz
trackers. We use the number of fixations to determine the counts for the syntactic categories
in Table 6. We direct the reader to additional metrics (Sharafi et al. 2015a) that can be used
in future emipircal studies.

In the summarization tasks, most of the syntactic categories in the replication dataset
do not have a clear one-to-one relationship with the categories in the original dataset. For
example, the argument list category in the replication dataset can be assigned the categories,
Method Use, Method Declare, or Variable Declare in the original dataset. Vice versa, the
Method Use category in the original dataset can be assigned to the argument list, parame-
ter list, name, or specifier categories in the current replication dataset. Another important
detail from the original dataset is that the Outer Class and Inner Class declarations are dif-
ferentiated into separate categories while they are not in the replicated dataset. While at
first this appears to be a limitation, these categories can easily be obtained using the fine-
grained categories and syntactic hierarchy provided by srcML to derive the aforementioned
higher-level categories in a post processing step via iTrace Toolkit.

In the bug fixing tasks, most syntactic categories in the datasets are shared. Syntactic
categories relating to keywords and other low level units, e.g., for, if, or comment, have a
one to one relationship between the two datasets. However, certain categories in the original
dataset are at a higher level than the replicated dataset. Method call, method declaration,
and variable declaration in the original dataset are composed of several unique category
types in the replicated dataset such as argument list, parameter list, or name. Overall, these
two category sets are much more similar to each other but there are still some high level
aggregation that occurs within the original dataset.

While fine-grain syntactic category information is useful, it can be hard to comprehend
and analyze findings with the larger number of categories. The advantage is that aggrega-
tion of these syntactic categories is always possible to derive categories at higher levels of
granularity with the additional syntactic context srcML provides. The same however is not
true in reverse, if only high level syntactic categories are used as in our original dataset, we
are unable to produce token categories at a finer level of granularity. For sake of an exam-
ple, in the original dataset a mapping can be made to a method use, but it is not possible
to discern if the gaze fell on a argument list or the name of the method. In comparison to
the fine-grain syntactic data from the replication dataset, this ambiguity does not exist. Pro-
viding a clear syntactic hierarchy down to the lowest level permits researchers to perform
analyses at nearly any granularity to identify the source code content developers view while
solving a task.

8.5.2 RQ2 Results: Further Analysis with Deja Vu

One large benefit of the current version of iTrace and Deja Vu is that the syntactic categories
are generated post-hoc allowing syntactic categories to be constructed at varying levels of
specificity. The previous versions generated these categories on the fly meaning that they
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are baked into the data at any given point. Once the session is done, there is no way of going
back to a more specific level.

To address this research question, we provide some examples of further analysis that
can be done with the varying levels of specificity of syntactic categories available. One
example of analysis is to investigate how participants fixate on more specific structures. We
examined the method signatures and how participants view the method name and the method
parameters. In the previous two studies, these sub-components of the method signature are
not recorded as they are not the focus of the study and as such this analysis cannot be done
with the previous data. While the previous version of iTrace is capable of collecting data
like this, it required the researcher to know this is the use case before the study is done.

With the current approach, since the lowest mapping is collected, we can drill up or
down the abstract syntax tree to get any level of abstraction we require using srcML. We
can easily find the sub-components described earlier by using a simple XPath expression
(as the srcML format is XML). The method name can be retrieved with:

– //src:function/src:name
– //src:constructor/src:name

Method parameters can be retrieved with:

– //src:function/src:parameter list
– //src:constructor/src:parameter list

The method signature is retrieved by collecting all fixations inside function and
constructor that are not immediately followed by a block element.

Using this analysis, there are two main observations from the fixation counts and per-
centages seen in Table 7. First, more fixation attention inside the method signature is spent
on the method name than the method parameters in every task. This indicates that for both
bug fixing and code summarization, the method name is the more important (or at least is
given a lot more attention) to participants than the parameters of a method. Lastly, we see
that the task has a large influence on the distribution of fixations inside the method sig-
nature. The two bug localization and fixing tasks are relatively similar but are different to
the two summarization tasks. In Task 3, a summarization of a single method, the empha-
sis on the method name and parameters is reduced along with much fewer total fixations
on a method signature. However, in Task 4, a summarization of a single class, the method
parameters have a higher percentage of fixation attention in the method signature than any
other task. This clearly indicates that the task also plays a big role in how developers spend
time examining different elements. All of these observations help developers answer very
specific questions in eye tracking studies using Deja Vu.

Table 7 List of fixation metrics on the method name and method parameters in the method signature

Task 1 Task 2 Task 3 Task 4

Total Fixations 15756 9148 2655 2825

Total Fixations on Method Signature 873 629 318 755

Avg Percentage of Method Signature Fixations 41.58% 47.57% 29.01% 45.18%

on Method Name

Avg Percentage of Method Signature Fixations 24.52 28.20% 14.25% 37.82%

on Method Parameters
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8.6 Threats to Validity

One threat to validity is the measurement of the unique number of syntactic categories in the
fixation data as a metric for usefulness. If there is added redundancy in a category, reduction
is always possible. The syntactic categories in the previous studies can be seen as a subset
of the larger category set present in the replicated data which the replicated data’s categories
can be reduced down into. New information cannot be added easily to the smaller number
of distinct categories in the original datasets.

In studies where specificity provided by the updated version of iTrace and Deja Vu is not
needed, the added specificity can be reduced to a more useful subset of categories for the
research goals of any studies.

The small amount of participants used in this replication study was for demonstration
purposes only to show that we are able to provide much finer grained mapping and not loose
any gazes with high speed trackers. With more participants and more fixations we would
have a larger amount of distinct categories (not less) meaning that the results would only
become more pronounced.

9 Conclusions and FutureWork

The paper presents a novel solution to a fundamental technological problem for study-
ing software developers using high-speed, high-quality eye trackers while working in a
natural and familiar development environment on production sized software systems. A
methodology and tool—Deja Vu—is introduced that captures all relevant user and system
interactions for later replay of a user session within a study. The replay allows for accurate
mapping of user gaze points on the entire stimulus being viewed i.e., the specific elements
of source code or other software artifacts. This overcomes serious real-time limitations
posed in mapping screen coordinates to line and column in a given file. To add to our prior
work (Zyrianov et al. 2020), we provide additional timing experiments in iTrace-Atom and
conduct a replication analysis of two prior studies by collecting data with Deja Vu to provide
evidence of the richer syntactic categories that are provided with the Deja Vu record and
replay approach. iTrace and Deja Vu directly facilitate software engineering researchers in
studying how developers read software during various types of tasks such as general com-
prehension, bug fixes, and refactoring to name a few. It also allows the software engineering
research community to apply additional eye tracking analyses (such as microsaccade anal-
yses) from cognitive psychology research (that require high-speed tracker output) on text
understanding. We believe this will lead to a much deeper understanding of how developers
read source code and solve problems which is a complex mixture of many factors.

As part of future work, the Deja Vu approach will be extended to support eye tracking
studies in the presence of editing source code. Supporting editing is a very difficult engineer-
ing problem and more research and tests are needed to support this type of data collection in
an accurate manner. Recently, we released a version of iTrace-Atom that supports editing,
however this is restricted to just Atom and is a first attempt at supporting editing (Fakhoury
et al. 2021) in eye tracking studies. Supporting editing in the iTrace infrastructure with high
speed trackers is a bigger challenge that we plan to work on in future iTrace releases.

Another avenue for future work includes adding support for other popular IDEs. We
have had many requests for the supporting Atom and so we prioritized that first. iTrace is
designed in a way that supports ease of extension. We foresee members of the community
contributing support for other plugins and call on the community to do so.
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