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Housing development erodes avian community structure in U.S.
protected areas

ERIC M. WOOD,1,4 ANNA M. PIDGEON,1 VOLKER C. RADELOFF,1 DAVID HELMERS,1 PATRICK D. CULBERT,1

NICHOLAS S. KEULER,1,2 AND CURTIS H. FLATHER
3

1Department of Forest and Wildlife Ecology, University of Wisconsin, 1630 Linden Drive, Madison, Wisconsin 53706 USA
2Department of Statistics, University of Wisconsin-Madison, 1220 Medical Sciences Center, Madison, Wisconsin 53706 USA

3Rocky Mountain Research Station, United States Department of Agriculture Forest Service, Fort Collins, Colorado 80526 USA

Abstract. Protected areas are a cornerstone for biodiversity conservation, but they also
provide amenities that attract housing development on inholdings and adjacent private lands.
We explored how this development affects biodiversity within and near protected areas among
six ecological regions throughout the United States. We quantified the effect of housing
density within, at the boundary, and outside protected areas, and natural land cover within
protected areas, on the proportional abundance and proportional richness of three avian
guilds within protected areas. We developed three guilds from the North American Breeding
Bird Survey, which included Species of Greatest Conservation Need, land cover affiliates (e.g.,
forest breeders), and synanthropic species associated with urban environments. We gathered
housing density data for the year 2000 from the U.S. Census Bureau, and centered the bird
data on this year. We obtained land cover data from the 2001 National Land Cover Database,
and we used single- and multiple-variable analyses to address our research question. In all
regions, housing density within protected areas was positively associated with the proportional
abundance or proportional richness of synanthropes, and negatively associated with the
proportional abundance or proportional richness of Species of Greatest Conservation Need.
These relationships were strongest in the eastern forested regions and the central grasslands,
where more than 70% and 45%, respectively, of the variation in the proportional abundance of
synanthropes and Species of Greatest Conservation Need were explained by housing within
protected areas. Furthermore, in most regions, housing density outside protected areas was
positively associated with the proportional abundance or proportional richness of
synanthropes and negatively associated with the proportional abundance of land cover
affiliates and Species of Greatest Conservation Need within protected areas. However, these
effects were weaker than housing within protected areas. Natural land cover was high with
little variability within protected areas, and consequently, was less influential than housing
density within or outside protected areas explaining the proportional abundance or
proportional richness of the avian guilds. Our results indicate that housing development
within, at the boundary, and outside protected areas impacts avian community structure
within protected areas throughout the United States.

Key words: avian abundance; avian richness; biodiversity; housing density; inholding; land cover; private
land; public land.

INTRODUCTION

Expanding human populations and attendant land

use changes are the primary factors driving changes in

biological diversity (Vitousek et al. 1997, Cincotta et al.

2000, Liu et al. 2003, Foley et al. 2005). Much of the

burden of global biodiversity conservation is placed on

publicly owned protected areas (Bruner et al. 2001,

Naughton-Treves et al. 2005, Gaston et al. 2008, Joppa

et al. 2008, Robles et al. 2008, Flather et al. 2009).

Protected areas account for approximately one-eighth of

the global land surface (Chape et al. 2005) and, in

addition to biodiversity conservation, are important for

cultural preservation (Stevens 1997), economic viability

(Dixon and Sherman 1991), and poverty alleviation

(Naughton-Treves et al. 2005, Andam et al. 2010).

Especially over the last three decades, the total global

protected areas network has increased rapidly to

conserve in situ biodiversity (Naughton-Treves et al.

2005). Nonetheless, numerous globally important hab-

itats (e.g., Mediterranean scrub) remain below targets

for land area conservation (Brooks et al. 2004).

Furthermore, protected areas are often situated in

high-elevation areas that are far from population centers

(Hansen and Rotella 2002, Joppa and Pfaff 2009). Yet,

protected areas that are located on suitable lands for
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human habitation are potentially affected by stresses

from outside the protected area boundaries.

Throughout the world, development has been partic-

ularly strong adjacent to protected areas and on private

inholdings (Gude et al. 2006, Wade and Theobald 2009,

Radeloff et al. 2010, Gimmi et al. 2011, Laurance et al.

2012), which potentially diminishes the conservation

benefit of these lands. For example, in the United States,

much of the forest and grassland habitats on private

lands are intensively used by humans (Mitchell 2000,

Haynes 2003), with nearly two million hectares of forest

and grassland converted to cropland (e.g., for the

manufacture of ethanol) or developed land (e.g.,

urbanization, transportation, or small built-up areas)

from 2002 to 2007 (USDA 2009). Concomitant with this

land use intensification, open lands in the wildland–

urban interface are increasingly converted to roads

(Hawbaker et al. 2005, Watts et al. 2007) and housing

developments (Radeloff et al. 2005b) due to amenity-

driven rural and exurban development (Fuguitt 1985,

Gustafson et al. 2005, Hammer et al. 2009). These

changes in land use are having a significant impact on

biological conservation (McKinney 2002, Hansen et al.

2005). The key question is how private land use

intensification both within and in the vicinity of

protected areas affects their ability to maintain biodi-

versity (Brashares et al. 2001, Rivard et al. 2001, Parks

and Harcourt 2002, Walsh et al. 2003, DeFries et al.

2005, Mcdonald et al. 2008, Wittemyer et al. 2008). In

light of the role of protected areas in maintaining habitat

and biodiversity, and the increasing anthropogenic

activity within and near these lands, our goal was to

determine whether land use intensification on inholdings

and on adjacent private lands of protected areas has had

a detectable effect on avian biodiversity within protected

areas of six ecologically unique regions of the United

States.

Our objective was to quantify the effect of housing

density within (i.e., private land inholdings), at the

boundary, and outside protected areas, and natural land

cover within protected areas, on the proportional

abundance and proportional richness of three avian

guilds within protected areas. The avian response guilds

were (1) native and nonnative species associated with

human habitation (synanthropes); (2) species associated

with the dominant natural land cover type of a region,

including forest, grassland, and shrubland breeders

(hereafter ‘‘land cover affiliates’’); and (3) Species of

Greatest Conservation Need (SGCN) as identified by

individual State Wildlife Action Plans (Association of

Fish and Wildlife Agencies 2011). We predicted that: (1)

synanthropes would be positively associated with

housing density within and outside protected areas and

negatively associated with natural land cover within

protected areas, because of their positive associations

with anthropogenically modified environments (John-

ston 2001); and (2) land cover affiliates and SGCN

would be positively associated with natural land cover

within protected areas and negatively associated with

housing density within and outside protected areas,

because of their negative associations with human

modified environments (Poole 2005, Pidgeon et al.

2007).

MATERIALS AND METHODS

Study area

The spatial extent of our study was the conterminous

United States (Fig. 1). Within this area, we selected six

regional study areas based on combinations of Bird

Conservation Region categorizations (Table 1, Fig. 1).

Bird Conservation Regions (BCR) are ecologically

unique regions with similar climate, vegetation, land

use, and avian communities, and were developed by the

North American Bird Conservation Initiative (more

information available online).5 We included a total of 14

Bird Conservation Regions that spanned a range of

vegetation structure and habitat types from grassland

prairies to shrubland deserts to western and eastern

forests, and we grouped similar regions (e.g., Sonoran

and Mojave Desert, and Chihuahuan Desert) to obtain

higher sample sizes of bird surveys (Table 1). We

excluded Bird Conservation Regions with few protected

areas (e.g., Southeastern Coastal Plain and Central

Mixed Grass Prairie) because of a lack of bird survey

locations within protected area boundaries (,10).

Habitats and avian communities change rapidly based

on elevation gradients. Therefore, we assessed differenc-

es in elevation within each Bird Conservation Region

and excluded those with major differences within and

outside protected-area boundaries (e.g., Coastal Cali-

fornia and the Northern Pacific Rainforest).

Breeding Bird Survey data

We analyzed breeding bird counts collected by the

North American Breeding Bird Survey (BBS; Sauer et

al. 2008). The BBS is an annual roadside survey that has

been conducted since 1966 along .4000 routes through-

out the United States and Canada. Each BBS route is

39.4 km long, and all birds seen or heard at 50 point

counts, surveyed for 3 min, spaced at 0.8-km intervals

along the route, are recorded (Sauer et al. 2008). We

considered 360 bird species that commonly breed

throughout our study regions, and are readily detectable

using BBS survey methods (Supplement). We did not

include birds that are challenging to quantify with BBS

methods such as waterfowl, waterbirds, and raptors

(Supplement). We averaged the raw abundance of

individuals organized for a five-year window centered

on the year 2000. Furthermore, to account for biases in

species detectability inherent when performing wildlife

surveys, we estimated richness of the avian community

on each BBS route using COMDYN (Hines et al. 1999).

Similar to the raw abundance, we averaged the

5 http://www.nabci-us.org/map.html
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FIG. 1. Distribution of 1225 North American Breeding Bird Survey (BBS) centroids, within and outside protected areas (PA),
throughout six regions of the United States. Regions were categorized by either a unique Bird Conservation Region (Appalachian
[Bird Conservation Region 28] and Great Basin [9]) or combinations of similar Bird Conservation Regions. The Northwoods
category is composed of the United States portions of Boreal Hardwood Transition (12) and the Atlantic Northern Forest (14). The
Prairie Badlands is composed of the Prairie Potholes (11), Badlands and Prairies (17), Shortgrass Prairie (18), and Eastern Tallgrass
Prairie (22) regions. The Western Mountains is composed of the Northern Rockies (10), Sierra Nevada (15), Southern Rockies/
Colorado Plateau (16), Sierra Madre Occidental (34), and the Desert category is composed of the Sonoran and Mojave Deserts (33)
and the Chihuahuan Desert (35). GAP 1 lands are areas of permanent protection from conversion of natural land cover. GAP 2
lands are similar to GAP 1 except for the use of management practices that affect the quality of the natural community. GAP 3
lands have permanent protection from conversion of natural land cover, but are subject to resource extraction, and GAP 4 lands
have no known mandate for protection.

TABLE 1. Bird Conservation Region (BCR) composite name, BCR region combinations (see Fig.
1), and sample size for breeding bird survey routes within protected areas (PA), boundary of PA,
and outside PA.

BCR composite name BCR combination

Sample size

Within PA Boundary of PA Outside PA

Appalachian 28 24 119 88
Northwoods 12, 14 41 100 31
Prairie Badlands 11, 17, 18, 22 37 146 220
Western Mountains 10, 15, 16, 34 143 65
Desert 33, 35 43 8 12
Great Basin 9 88 60

Note: In the Western Mountains and Great Basin Bird Conservation regions, only two
treatments were possible, within and on the boundary of protected areas.
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COMDYN-estimated richness organized for a five-year

window centered on the year 2000. We removed routes

that were only surveyed in one year during the five-year

window. We choose the year 2000 in order to match the

most recent available decadal housing census for which

two years of bird data both before and after the census

were available. We removed BBS route–year data from

first-year observers, and BBS route–year data collected

during poor weather. Prior to analyzing data, it was

necessary to explore patterns of spatial autocorrelation

among BBS routes within regions. We fit semivario-

grams of the residuals of the total abundance and the

COMDYN-estimated richness of bird species per BBS

route (Legendre and Fortin 1989). We detected no

apparent patterns of spatial autocorrelation in any of

our six regions for abundance (Appendix A). There was

slight autocorrelation for the COMDYN-estimated

richness of BBS routes within the Prairie Badlands

regions, but not for the other five regions (Appendix B).

Not all routes were surveyed in each year over the five-

year window. Thus, we checked for differences in

abundance and COMDYN-estimated richness for all

routes using a Kruskal-Wallis test, with number of years

a route was counted as the treatment. When Kruskal-

Wallis tests were significant, we employed a nonpara-

metric multiple-comparisons procedure, based on rela-

tive contrast effects, using nparcomp (Konietschke

2011), in the R statistical software package (R Devel-

opment Core Team 2012). We used a Bonferroni

adjustment to the critical alpha value of 0.05/6 ¼ 0.008

to assess significance. We removed routes that were

counted in years where abundance and COMDYN-

estimated richness were significantly different. In all

regions, except for the Western Mountains, we were able

to include all routes that were surveyed at least two years

throughout the five-year window. We were only able to

retain routes counted in four and five years in the

Western Mountains.

For each route, we calculated the proportional

abundance and the proportional COMDYN-estimated

richness (hereafter proportional richness) of several

avian guilds as our response variables. These included

synanthropes, land cover affiliates, and SGCN (Supple-

ment). We define synanthropes as native and nonnative

species that are associated with human modified

environments during the breeding season (Johnston

2001), and we included 30 species that were identified

as urban habitat affiliates (Supplement; Johnston 2001).

We added an additional six species that are associated

with urban and suburban environments, including

Northern Flicker (Colaptes auratus), Northwestern

Crow (Corvus caurinus), Brown-headed Cowbird (Mo-

lothrus ater), Bronzed Cowbird (Molothrus aeneus),

Great-tailed Grackle (Quiscalus mexicanus), and North-

ern Rough-winged Swallow (Stelgidopteryx serripennis;

Supplement). We identified land cover affiliates as

species that are associated with the dominant natural

land cover type of a BBS route, which included forest

and woodland, grassland, or shrublands breeders.

Synanthropes were not mutually exclusive from the

land cover affiliates guild. For example, we also included

Brown-headed Cowbird in the grassland land cover

affiliates guild (Supplement). We used the Birds of

North America database to identify synanthrope species

that were not identified by Johnston (2001) as being

associated with urban environments, and land cover

affiliate habitat affinities (Poole 2005). To create the

SGCN guilds, we joined species from individual State

Wildlife Action Plans that were either totally or partially

within the boundaries of a Bird Conservation Region for

a Bird Conservation Region-specific SGCN guild.

Similar to our estimation of species richness of the

entire avian community within each study region, we

used COMDYN to estimate richness of the avian guilds

within each region. To calculate proportional abun-

dance and proportional richness of an avian guild, we

divided the abundance, or COMDYN-estimated rich-

ness, of an avian guild at a given BBS route by the total

number of birds detected at that route, or the total

COMDYN-estimated richness, out of a possible 360

species (Supplement). We checked for correlation

between pairs of avian response variables within each

Bird Conservation Region and found the range of

correlation was weak to strong (absolute value Spear-

man’s correlation coefficient, jqj ¼ 0.1–0.9). Thus, we

included each guild for further analyses to understand

the relationships of distinct components of the regional

avian community with the independent housing and

land cover variables among treatments within each Bird

Conservation Region.

Housing density and land cover data

We obtained housing density (hereafter referred to as

housing) data for the year 2000 from the U.S. decennial

census and processed at the partial block group level

(Hammer et al. 2004). Partial blocks are the finest

resolution spatial unit for which the U.S. Census Bureau

releases data on the year a housing unit was built

(Hammer et al. 2004). The U.S. Census Bureau does not

provide boundaries for partial blocks, and because of

this, we generated boundaries by aggregating smaller

census blocks, for which data on the year a house was

built is not released (Hammer et al. 2004). The average

size for partial blocks throughout the conterminous

United States is 2.45 km2, and rural partial block groups

are, on average, larger than urban partial block groups.

We obtained land cover data from the 2001 National

Land Cover Data (NLCD; Homer et al. 2004). We

centered the BBS data on the year 2000, rather than

2001, because among the independent variables, we

prioritized housing over land cover. We also assumed

natural land cover did not drastically change within

protected areas between years. For each of our Breeding

Bird Surveys routes, we summarized housing per square

kilometer and the proportion of land cover classes

within 400 m of a route using the ‘‘zonal statistics’’ tool

ERIC M. WOOD ET AL.1448 Ecological Applications
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in ArcGIS 9.3 (ESRI 2008). We selected a buffer width

of 400 m to conform to BBS survey protocol of

recording birds detected within this distance. Housing

was positively correlated with the proportion of

intensively managed land (i.e., developed and row crop

agriculture from the 2001 NLCD data) within each Bird

Conservation Region (q ¼ 0.20–0.76). Thus, we elected

to remove intensively managed land from further

analysis and use housing as the dominant anthropogenic

independent variable.

We were interested in the potential differences of

natural land cover (e.g., forest) within, at the bound-

ary, and outside protected areas and how this may

influence avian communities. We used the dominant

natural land cover type of a BBS route as the

independent variable for analyses. In the Appalachians,

the typical cover was the total of deciduous, mixed, and

evergreen forest (i.e., forest land cover composite),

which characterized forest land cover (98%). Grassland

accounted for the other 2% of land cover. Forest land

cover composite was also the dominant natural land

cover for all BBS routes in the Northwoods. In the

Western Mountains, forest land cover composite was

typically the dominant land cover (64%). However,

shrubland and grassland was also present and account-

ed for 36% and 5% of cover on routes, respectively. In

the Prairie Badlands, grassland was the dominant land

cover type (92%), with the forest land cover composite

(4%), and shrubland (4%) accounting for the other land

cover types. In the desert region, shrubland was the

dominant land cover type (94%) along with grassland

(3%) and the forest land cover composite (3%), and

these were also the dominant natural land cover types

in the Great Basin (70%, 22%, and 9%, respectively).

We used the dominant natural land cover type of a BBS

route to determine which avian response guilds were

included for regional analyses. We included synan-

thropes and the regional specific SGCN for analysis

within each Bird Conservation Region. For land cover

affiliates, we analyzed bird species breeding in forest

and woodland, grassland, or shrubland depending on

the dominant natural land cover of a BBS route.

Protected-areas data

We obtained protected area boundary information

from the USGS National Gap Analysis Program (GAP)

Protected Area Database version 1.2 released in April

2011, which delineates actual land holdings, thus

capturing private inholdings within the administrative

boundaries of public lands (data available online).6 We

grouped public lands by four GAP analysis protected

area designations. GAP 1 lands accounted for 5% of the

area of BBS routes within public lands, and are areas of

permanent protection from conversion of natural land

cover. These lands are managed to maintain a natural

state where disturbance events are allowed or mimicked.

GAP 2 lands accounted for 12% of the area of BBS

routes within public lands, and are similar to GAP 1

lands, except for the use of management practices (e.g.,

fire suppression) that affect the quality of the natural

community. GAP 3 lands accounted for 72% of the area

of BBS routes within public lands, and have permanent

protection from conversion of natural land cover, but

are subject to resource extraction. GAP 3 lands include

most National Forest lands, where many private

inholdings are located. GAP 4 lands have no known

mandate for protection and accounted for 10% of the

area of BBS routes within public lands. Nonetheless, the

majority of GAP 4 lands included in our analysis was

Native American land in the Prairie Badlands that have

individual wildlife management plans. We explored

grouping BBS routes along a gradient of protected-area

status (i.e., GAP 1, GAP 2, GAP 3, or GAP 4).

However, there were not enough BBS routes located

within the boundaries of each category, or in similar

categories (e.g., GAP 1 and GAP 2), for analysis

purposes. Therefore, we grouped all public land types

for our analysis.

The independent data sources of our analysis were

housing density, both within and outside protected

areas, and natural land cover within protected areas.

Housing development and conversion of natural land

cover are restricted on all public lands, except

conversion of natural land cover on GAP 4 lands.

Thus, we refer to all public lands as protected

throughout the manuscript. However, we note that

other types of land use, such as forest harvest, are

permitted on some of the public lands that we studied.

We considered all lands not included within protected

area boundaries as private.

Bird survey locations occurred either within the

boundaries (‘‘within,’’ .50% of Breeding Bird Survey

route), at the boundary (‘‘boundary,’’ 0.1–49.5%), or on

private lands (‘‘outside,’’ 0%) of protected areas, and

these three categories were used as treatments for

analyses. We used these cutoff points rather than a

continuous measure of protected-area status (i.e.,

proportion of BBS route within protected areas) because

we were interested in broad-scale differences of housing,

land cover, and the avian community among the three

treatments. The Western Mountains and Great Basin

were comprised of only within and boundary treat-

ments. In these regions, there is a high amount of public

land area, and low number of BBS routes, compared

with the central and eastern regions of our study (Fig.

1). Thus, it was difficult to find private land BBS routes

within these regions. The Appalachian, Northwoods,

Prairie Badlands, and Desert were comprised of within,

boundary, and outside treatments. In all, we included

1225 Breeding Bird Survey routes for analysis with 376

occurring within, 498 at the boundary, and 351 outside

of protected areas (Table 1, Fig. 1).6 http://gapanalysis.usgs.gov/padus/
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Statistical analysis

In a first exploratory analysis, we investigated the

degree of avian community dissimilarity among treat-

ments within each of the six Bird Conservation Regions.

We conducted a one-way analysis of similarities test

(ANOSIM; Carr 1997), using the Bray-Curtis dissimi-

larity of the square-root-transformed average abun-

dance of the 360 bird species in consideration of our

study (i.e., not the avian response guilds), grouped by

BBS route. The ANOSIM statistic is defined as:

R ¼ ðrb � rwÞ=
nðn� 1Þ

2

� �

where rb and rw are the mean ranked dissimilarity

between and within treatments, respectively, and n is the

total number of samples (Clarke 1993). We used 999

Monte Carlo permutations to generate the random test

statistic, R, which typically ranges from 0 to 1. Larger R

values indicate larger dissimilarity of the avian commu-

nity among treatments within a Bird Conservation

Region. We evaluated pairwise comparisons among

treatments using a Bonferroni-adjusted alpha value

(0.05/3 ¼ 0.017). We performed the ANOSIM analysis

in the Primer v6 software package (Clarke and Gorley

2006).

To explore differences in housing, natural land cover,

and the proportional abundance and richness of the

avian guilds among treatments, within a Bird Conser-

vation Region, we used a Kruskal-Wallis test, with

protected-area status as the treatment. When Kruskal-

Wallis tests were significant, we employed a nonpara-

metric multiple comparisons procedure, based on

relative contrast effects, using nparcomp (Konietschke

2011). We used a Bonferroni adjustment to the critical

alpha value of 0.05/3 ¼ 0.017 to assess significance. We

used a Wilcoxon rank sum test for the Western

Mountains and Great Basin because housing, land

cover, and avian abundance and richness metrics were

categorized by only two treatments. We used a

significance threshold of P � 0.05.

To address our main goal, we quantified the effect of

housing density within, at the boundary, and outside

protected areas, and natural land cover within protected

areas, on the proportional abundance and richness of

synanthropes, land cover affiliates, and SGCN within

protected areas. We used the BBS-route housing per

square kilometer extracted from the 400-m route buffer

for all ‘‘within’’ BBS routes as the within (i.e., inholdings

and immediately adjacent private lands) independent

variable. To gather data on private land housing outside

of protected-area boundaries, we paired each BBS-route

centroid located within protected areas, with the nearest

BBS-route centroid either at the boundary or outside

protected-area boundaries using the ‘‘near’’ tool in

ArcGIS 9.3. We divided housing of the outside BBS-

route centroid by the distance between paired BBS-route

centroids to account for proximity effects of housing

density outside protected areas. This procedure was

designed to avoid overestimating the effects of high

housing areas that were far from protected areas. We

grouped Bird Conservation Regions within similar

areas, which were defined as regionally sharing a

majority of natural land cover type to increase the

sample size necessary for the following analyses. We

combined the Appalachian and Northwoods (eastern

forests group) and the Desert and Great Basin (desert

shrubland group). For the new regions, we recalculated

SGCN guild proportional abundance and proportional

richness based on the inclusion of additional SGCN

species from the combined state wildlife action plans

(Supplement). We explored if land cover outside

protected area boundaries affected avian communities

within, in a similar analysis, and did not find support for

this. Thus, we did not include land cover data from

outside protected areas for this analysis.

We used simple- and multiple-linear regression to

quantify the strength of association of housing and land

cover within and housing outside protected area

boundaries with the avian guilds within protected-area

boundaries. We parameterized each model in a stepwise

approach, first fitting the univariate combination of

either the housing and natural land cover within or

housing outside protected areas. Second, we fit more

complex models composed of combinations of the

independent variables. We calculated the second-order

Akaike information criterion (AICc) for each model,

and subsequently calculated the DAICc and AICc

weights (wi ) for each model within a set, which we used

to rank models. We assessed model assumptions, and if

necessary, we applied transformations. In all cases, we

log-transformed housing within and outside protected

areas. No other transformations were necessary. In

order to explore possible interactions of the independent

variables, we fit models including the three predictors,

plus all two-factor interactions between predictors. We

used an F statistic, derived from an ANOVA test, to

assess significance. We determined the significance value

of the F statistic by calculating the 97.5% quantile of the

F distribution, in a two-way design because we had no a

priori expectation of relationships among the three

independent variables. The F statistic threshold ranged

from 1.98 to 2.04 among regions, and we used these

values to indicate significant interactions.

Additionally, in a follow-up analysis for visualization

purposes, we quantified the effects of housing outside

protected areas on the proportional abundance and

proportional richness of avian guilds estimated from

routes occurring within protected areas. We calculated

the difference in housing between BBS-route centroid

pairs selected by the near analysis (i.e., BBS-route

housing outside – BBS-route housing within), and we

divided this difference by the distance between BBS-

route centroid pairs to account for proximity effects of

high- or low-intensity housing. We created a ‘‘housing

intensity’’ variable based on the wildland–urban inter-
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face definition of 6.17 houses/km2, or 1 house/40 acres

(Radeloff et al. 2005b), to distinguish between high

(.6.17 houses/km2) and low-intensity (,6.17 houses/

km2) housing outside protected areas. In a few cases,

housing intensity within protected areas was above the

wildland–urban interface threshold and greater than

housing intensity outside protected areas. We catego-

rized these cases as high housing intensity. We used the

housing intensity variable as the treatment in a

Wilcoxon rank sum test with the avian guilds as

response variables. We used a Wilcoxon rank sum test

because we expected that the proportional abundance of

synanthropes would be higher in protected areas

adjacent to high-intensity private land housing, whereas,

land cover affiliates and SGCN would be higher in

protected areas adjacent to low-intensity private land

housing. We used a significance threshold of P � 0.05.

RESULTS

We found that avian communities varied considerably

among treatments in all Bird Conservation Regions (R¼
0.12–0.31, P , 0.01), except for the Desert (R¼ 0.17, P

¼ 0.06) and Western Mountains (R ¼ 0.01, P ¼ 0.31),

where they were similar (Table 2). The avian commu-

nities within protected-area boundaries were largely

different from private lands (R¼ 0.19� 0.59, P , 0.01),

and to a lesser extent, from those along the protected

area boundaries (R ¼ 0.12 � 0.34, P , 0.01), with the

exception being the Desert (R ¼ 0.13, P ¼ 0.11), where

the difference was not as pronounced (Table 2).

Generally, housing was lowest within protected areas

and highest along the boundary of protected areas (Fig.

2). Where comparable, housing outside protected areas

was highest in one of four regions (Prairie Badlands;

Fig. 2). The opposite pattern occurred for dominant

natural land cover, which was greatest within protected

areas, medium along the boundary, and lowest on

private lands (Fig. 2). The only exceptions to this

pattern was the Northwoods, where dominant natural

land cover was similar within protected areas and at

their boundaries, and the Desert, where dominant

natural land cover was similar within protected areas

and on private lands (Fig. 2).

The proportional abundance and proportional rich-

ness of synanthropes was significantly higher outside or

at protected area boundaries than within (Fig. 3). The

only exception to this pattern was the Desert, where

both the proportional abundance and proportional

richness of synanthropes were similar among treatments

(Fig. 3). Although the differences were visually appar-

ent, sample sizes were small for the Desert region, thus

affecting the significance level outputs of the Kruskal-

Wallis analysis. Similar to the differences in natural land

cover among treatments, the proportional abundance

and proportional richness of land cover affiliates and

SGCN were significantly higher in protected areas than

either the boundaries or outside of protected areas (Fig.

3). This pattern was true, except in four of six regions,

where the proportional richness of SGCN was similar

within protected areas and at the boundary (Fig. 3).

We found that the proportional abundance of

synanthropes was positively related to housing within

protected areas in all regions (R2 ¼ 0.04 to 0.71, P �
0.03), with the strongest effects in the Appalachian and

Northwoods (Table 3). On the other hand, the

proportional abundance of land cover affiliates were

negatively related to housing within protected areas in

the Appalachian and Northwoods (R2¼ 0.51, P , 0.01;

Table 3), and the proportional abundance of SGCN was

negatively related to housing within protected areas in

all regions (R2¼ 0.08 to 0.65, P , 0.01), particularly in

the Appalachian and Northwoods (Table 3). Similar to

the relationship for housing within protected areas,

housing on outside private lands was positively related

with synanthropes in all regions except the Western

Mountains, but the effect was often less than that of

housing within protected areas (Table 3). Housing

outside protected areas was negatively associated with

the proportional abundance of land cover affiliates in

TABLE 2. Analysis of similarities (ANOSIM) matrices of avian
communities among three protected area status treatments:
within, on the boundary, and outside protected areas (PA),
within six BCRs of the United States.

Region and
treatment Within PA

Boundary
of PA Outside PA

Appalachian

Within PA ,0.01 ,0.01
Boundary of PA 0.27 0.14
Outside PA 0.42 0.05

Northwoods

Within PA ,0.01 ,0.01
Boundary of PA 0.34 0.17
Outside PA 0.24 0.05

Prairie Badlands

Within PA ,0.01 ,0.01
Boundary of PA 0.20 ,0.01
Outside PA 0.59 0.25

Western Mountains

Within PA 0.31 � � �
Boundary of PA 0.01 � � �
Outside PA � � � � � �

Desert

Within PA 0.11 ,0.01
Boundary of PA 0.13 ,0.01
Outside PA 0.19 0.43

Great Basin

Within PA ,0.01 � � �
Boundary of PA 0.12 � � �
Outside PA � � � � � �

Notes:Numbers below the diagonals are ANOSIM R values.
Numbers above the diagonals are P values. ANOSIM R values
generally range from zero to one. A value of zero indicates
identical avian communities, whereas a value of one indicates
completely separate avian communities among treatments.
Pairwise comparisons among habitats were evaluated with a
Bonferroni-adjusted P value: 0.05/3 ¼ 0.02. In the Western
Mountains and Great Basin Bird Conservation regions, only
two treatments were possible, within and on the boundary of
protected areas (excluded comparisons shown with ellipses).
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the Appalachian and Northwoods (R2¼0.27, P , 0.01),

and unexpectedly, positively related in the Western

Mountains (R2 ¼ 0.04, P ¼ 0.02), and the Desert and

Great Basin (R2 ¼ 0.03, P ¼ 0.04; Table 3). Yet, in all

regions, housing outside protected areas was negatively

associated with the proportional abundance of SGCN

within protected areas (R2 ¼ 0.07 to 0.24, P , 0.01),

with the strongest effects again in the Appalachian and

Northwoods (Table 3). The dominant natural land

cover within protected areas was not significantly

associated with avian guilds, except for with land cover

affiliates in the Prairie Badlands (R2 ¼ 0.37, P , 0.01)

and the Western Mountains (R2¼ 0.06, P , 0.01; Table

3), and SGCN in the Desert and Great Basin (R2¼ 0.13,

P , 0.01; Table 3).

We found similar relationships for the proportional

richness of avian guilds with housing and land cover as

with proportional abundance, though the effects were

weaker (Table 4). The proportional richness of synan-

thropes was positively related to housing within

protected areas in all regions except the Prairie Badlands

(R2 ¼ 0.06 to 0.39, P , 0.01), with the strongest

relationships again occurring in the Appalachian and

Northwoods (Table 4). The proportional richness of

land cover affiliates and SGCN within protected areas

was negatively related with housing within protected

areas, but only in the Appalachian and Northwoods and

the Western Mountains (SGCN; Table 4). In the

Appalachian and Northwoods, housing outside protect-

ed areas was positively related with the proportional

richness of synanthropes (R2 ¼ 0.25, P , 0.01), yet

negatively related with SGCN and land cover affiliates

in the Appalachian and Northwoods (R2 ¼ 0.12 and

0.16, respectively; P , 0.01; Table 4). Unexpectedly, the

proportional richness of land cover affiliates within

protected areas was positively related with housing

FIG. 2. Mean summary of housing density and proportion of the dominant natural land cover (e.g., grassland in the Prairie
Badlands) of a Breeding Bird Survey route. The three treatment types represented protected area status: within protected areas
(PA), on the boundary of PA, and outside PA. Bars with same letter above them do not differ significantly among habitats
(Wilcoxon rank sum test, or Kruskal-Wallis test with nonparametric multiple comparisons procedure based on relative contrasts
effects, type Tukey, with Bonferroni-adjusted P value: 0.05/3¼ 0.02).
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outside protected areas in three regions, with the

strongest effects in the Prairie Badlands (R2 ¼ 0.20, P

, 0.01; Table 4). The relationship between the dominant

natural land cover within protected areas and propor-

tional richness of avian guilds within protected areas

was less clear (Table 4). We found positive relationships

between the dominant natural land cover and synan-

thropes in the Appalachian and Northwoods (R2¼ 0.10,

P ¼ 0.03), with land cover affiliates in the Western

Mountains (R2 ¼ 0.04, P ¼ 0.03) and Prairie Badlands

(R2¼ 0.20, P¼ 0.01), and with SGCN in the Desert and

Great Basin (R2 ¼ 0.16, P , 0.01; Table 4).

FIG. 3. Mean summary of the proportional abundance of synanthropes; land cover affiliates, i.e., forest associated breeders
(Appalachian, Northwoods, and Western Mountains), grassland associated breeders (Prairie Badlands), and shrubland-associated
breeders (Desert and Great Basin); and Species of Greatest Conservation Need (SGCN). The three treatment types are (1) within
protected areas (PA), (2) on the boundary of PA, and (3) outside PA. Bars with same letter above them indicate the proportional
abundance of an avian guild does not differ significantly among treatments (Wilcoxon rank sum test, or Kruskal-Wallis test with
nonparametric multiple comparisons procedure based on relative contrasts effects, type Tukey, with Bonferroni-adjusted P value:
0.05/3¼ 0.02).
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Out of 144 multiple-variable models, we detected 13

significant interactions, which had considerable model

support (i.e., DAICc , 2; Tables 3 and 4). Of note, we

uncovered significant interactions between housing

within and outside protected areas explaining the

proportional abundance of synanthropes occurring on

routes within protected areas in the Prairie Badlands,

and of land cover affiliates and SGCN in the Desert and

Great Basin (Table 3). We found significant interactions

for similar models explaining proportional richness of

synanthropes and SGCN in the Prairie Badlands, and

land cover affiliates in the Appalachian and North-

woods (Table 4). These interactions highlighted the

combined effect of housing within and housing outside

protected areas explaining the structure of these

protected area avian guilds.

We detected broad patterns of the importance of each

variable explaining avian guild abundance and richness

among regions. In most cases, housing within protected

areas was present in the best supported models (i.e.,

TABLE 3. Adjusted R2, AICc, DAICc, and AICc model weight (wi ) results of univariate and multiple regression model selection
analysis investigating the relationships of the proportional abundance of synanthropes, land cover affiliates, and Species of
Greatest Conservation Need (SGCN) with housing density within protected areas (PA), outside of PA, and the dominant land
cover of a North American Breeding Bird Survey (BBS) route within PA, among four regions.

Region and model

Synanthropes Land cover affiliates SGCN

R2 AICc DAICc wi R2 AICc DAICc wi R2 AICc DAICc wi

Appalachian and Northwoods

1) Housing within PA� 0.71
þ �139.18 0 0.55 0.51

� �113.70 0 0.54 0.65
� �119.63 0 0.57

2) Housing outside PA� 0.28þ �99.34 39.84 0 0.27� �95.97 17.74 0 0.24� �85.24 34.40 0
3) Land cover within PA 0.02 �85.87 53.31 0 0.03 �83.47 30.23 0 0 �73.56 46.07 0
1 and 2 0.70 �137.24 1.93 0.21 0.50 �111.50 2.20 0.18 0.63 �115.82 3.82 0.08
1 and 3 0.69 �135.79 3.39 0.10 0.48 �110.34 3.36 0.10 0.64 �117.69 1.95 0.21
2 and 3 0.25 �96.77 42.40 0 0.21 �91.95 21.76 0 0.20 �82.16 37.48 0
1, 2, and 3 (132)

0.69 �135.09 4.09 0.07 0.49 �109.55 4.16 0.07 0.62 �113.67 5.96 0.03
1, 2, and 3 (133) 0.68 �133.92 5.26 0.04 0.48 �109.27 4.43 0.06 0.64 �115.76 3.88 0.08
1, 2, and 3 (233)

0.68 �133.70 5.47 0.04 0.48 �109.33 4.37 0.06 0.62 �113.47 6.16 0.03

Prairie Badlands

1) Housing within PA� 0.43
þ �61.95 5.46 0.05 0.01 �17.82 14.09 0 0.46

� �27.17 3.18 0.09
2) Housing outside PA� 0.17þ �50.71 16.69 0 0 �17.73 14.18 0 0.25� �17.23 13.11 0
3) Land cover within PA 0.07 �46.97 20.43 0 0.37

þ �31.91 0 0.32 0.03 �9.16 21.19 0
1 and 2 0.53x �67.41 0 0.69 0 �15.85 16.06 0 0.51 �29.25 1.10 0.25
1 and 3 0.38 �58.79 8.61 0.01 0.37 �31.02 0.89 0.20 0.44 �25.37 4.97 0.04
2 and 3 0.15 �48.93 18.48 0 0.38 �31.56 0.35 0.27 0.34

x �20.19 10.15 0
1, 2, and 3 (132) 0.51x �65.23 2.17 0.23 0.30 �26.95 4.96 0.03 0.49 �27.04 3.30 0.08
1, 2, and 3 (133) 0.40 �58.91 8.50 0.01 0.35 �29.25 2.66 0.08 0.50 �27.56 2.79 0.11
1, 2, and 3 (233)

0.40 �58.92 8.48 0.01 0.36 �29.59 2.31 0.10 0.54 �30.34 0 0.43

Western Mountains

1) Housing within PA� 0.04þ �264.63 0.04 0.22 0 �14.94 14.34 0 0.08� �87.87 19.38 0
2) Housing outside PA� 0.01 �261.60 3.07 0.05 0.04þ �21.23 8.06 0.01 0.15� �98.30 8.95 0.01
3) Land cover within PA 0.03 �263.06 1.61 0.10 0.05

þ �23.25 6.03 0.02 0.03 �80.01 27.24 0
1 and 2 0.03 �262.13 2.54 0.06 0.03 �17.29 11.99 0 0.15 �97.92 9.32 0.01
1 and 3 0.04 �264.67 0 0.22 0.08x �25.46 3.83 0.07 0.15 �96.86 10.38 0
2 and 3 0.02 �261.11 3.56 0.04 0.10 �28.52 0.76 0.30 0.18 �102.01 5.24 0.06
1, 2, and 3 (132) 0.05 �263.74 0.93 0.14 0.08 �24.25 5.04 0.04 0.18 �100.65 6.60 0.03
1, 2, and 3 (133)

0.04 �262.76 1.91 0.09 0.12
x �29.28 0 0.44 0.22 �107.25 0 0.77

1, 2, and 3 (233) 0.04 �262.78 1.90 0.09 0.10 �26.71 2.57 0.12 0.20 �103.71 3.54 0.13

Desert and Great Basin

1) Housing within PA� 0.34þ �179.87 0 0.43 0 13.90 5.96 0.02 0.18� �14.78 20.48 0
2) Housing outside PA� 0.03

þ �132.93 46.93 0 0.03
þ 9.90 1.96 0.18 0.07

� �0.20 35.06 0
3) Land cover within PA 0.01 �131.51 48.35 0 0 14.21 6.27 0.02 0.13

þ �7.68 27.58 0
1 and 2 0.32 �175.75 4.12 0.05 0.06x 7.94 0 0.48 0.20x �18.00 17.26 0
1 and 3 0.34 �179.17 0.69 0.30 0 15.60 7.67 0.01 0.27 �28.60 6.66 0.03
2 and 3 0.03 �131.12 48.74 0 0.01 13.63 5.69 0.03 0.18 �14.54 20.72 0
1, 2, and 3 (132) 0.33 �175.82 4.05 0.06 0.05x 10.13 2.19 0.16 0.32x �35.26 0 0.85
1, 2, and 3 (133)

0.34 �176.99 2.88 0.10 0.04 11.83 3.90 0.07 0.28 �29.28 5.97 0.04
1, 2, and 3 (233) 0.33 �175.89 3.98 0.06 0.02 14.28 6.34 0.02 0.29 �30.30 4.96 0.07

Notes: R2 values in boldface type are significant. Univariate independent variables are labeled with a number (1–3), which
correspond to the numbered variables included in the multiple regression analyses. Signs following significant univariate model R2

values are coefficient directions. We fit one, two-way interaction for all multiple-variable models. Superscript numbers in
parentheses following full multiple-variable models indicate the two-way interaction for a given model. An x superscript following
adjusted R2 values of multiple variable models indicates a significant two-way interaction. We used an F statistic threshold, derived
from an ANOVA test, of 1.98 to 2.04 to indicate significant interactions. We used AIC, DAICc, and AICc model weights to rank
models, whereas we provide the R2 values as a measure of fit of each model.

� Housing density natural log-transformed for all models.
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highest relative AICc importance value) explaining the

proportional abundance and richness of synanthrope

species (Tables 3 and 4, Fig. 4). Housing outside

protected areas was not as influential as housing within

protected areas, explaining protected area avian guild

abundance and richness (Fig. 4). Yet, this variable was

present in the best supported models for the propor-

tional abundance of SGCN in the Western Mountains

and land cover affiliates in the Desert and Great Basin

(Fig. 4). Furthermore, housing outside protected areas

was included in the best supported models for the

proportional richness of synanthropes and land cover

affiliates in the Prairie Badlands, SGCN in the Western

Mountains, and land cover affiliates in the Desert and

Great Basin (Fig. 4). Land cover within protected areas

was less important than housing within, and similar to

housing outside protected areas, explaining protected

area avian guild abundance and richness (Fig. 4).

However, these results do not downplay the significance

of natural land cover to avian communities within

TABLE 4. Adjusted R2, AICc, DAICc, and AICc model weight (wi ) results of univariate and multiple regression model selection
analysis investigating the relationships of the proportional richness of synanthropes, land cover affiliates, and SGCN with
housing density within protected areas (PA), outside of PA, and the dominant land cover of a BBS route within PA, among four
regions.

Region and model

Synanthropes Land cover affiliates SGCN

R2 AICc DAICc wi R2 AICc DAICc wi R2 AICc DAICc wi

Appalachian and Northwoods

1) Housing within PA� 0.39
þ �150.75 1.90 0.14 0.33

� �118.45 1.57 0.20 0.28
� �133.01 0 0.43

2) Housing outside PA� 0.25þ �141.69 10.97 0 0.16� �108.55 11.47 0 0.12� �124.30 8.71 0.01
3) Land cover within PA 0.10þ �133.76 18.90 0 0 �100.73 19.28 0 0.04 �120.03 12.97 0
1 and 2 0.38 �148.92 3.74 0.06 0.37

x �120.02 0 0.43 0.23 �129.10 3.91 0.06
1 and 3 0.43 �152.66 0 0.37 0.31 �116.03 3.99 0.06 0.28 �132.22 0.79 0.29
2 and 3 0.23 �139.43 13.22 0 0.18 �108.25 11.77 0 0.07 �120.90 12.11 0
1, 2, and 3 (132)

0.41 �150.39 2.27 0.12 0.37
x �118.85 1.17 0.24 0.23 �127.85 5.16 0.03

1, 2, and 3 (133) 0.43 �151.34 1.32 0.19 0.31 �115.18 4.84 0.04 0.27 �130.00 3.01 0.10
1, 2, and 3 (233)

0.41 �150.41 2.24 0.12 0.31 �115.05 4.96 0.04 0.26 �129.50 3.51 0.08

Prairie Badlands

1) Housing within PA� 0.02 �78.03 2.55 0.06 0.01 �12.55 23.86 0 0.10 �76.47 0 0.45
2) Housing outside PA� 0.10 �80.58 0 0.21 0.20þ �19.20 17.21 0 0.05 �74.79 1.68 0.19
3) Land cover within PA 0.04 �78.61 1.97 0.08 0.20

þ �18.91 17.50 0 0.01 �73.34 3.13 0.09
1 and 2 0.11 �80.02 0.56 0.16 0.14 �15.95 20.46 0 0.03 �73.25 3.22 0.09
1 and 3 0.01 �76.80 3.78 0.03 0.27x �21.02 15.39 0 0 �72.39 4.09 0.06
2 and 3 0.09 �79.21 1.37 0.10 0.56

x �36.41 0 0.72 0 �71.24 5.23 0.03
1, 2, and 3 (132) 0.11 �78.95 1.63 0.09 0.38 �25.11 11.29 0 0 �71.06 5.41 0.03
1, 2, and 3 (133) 0.12 �79.30 1.28 0.11 0.44 �28.15 8.26 0.01 0 �70.68 5.79 0.02
1, 2, and 3 (233) 0.15 �80.13 0.45 0.17 0.54

x �34.42 1.99 0.27 0 �70.79 5.68 0.03

Western Mountains

1) Housing within PA� 0.06þ �429.29 3.18 0.11 0 �61.12 15.96 0 0.07� �319.89 7.92 0
2) Housing outside PA� 0 �421.77 10.70 0 0.07þ �70.21 6.87 0.02 0.12� �327.80 0 0.21
3) Land cover within PA 0 �421.60 10.87 0 0.04

þ �65.66 11.42 0 0.02 �313.01 14.79 0.00
1 and 2 0.05 �426.32 6.15 0.02 0.05 �66.39 10.69 0 0.12 �326.56 1.24 0.11
1 and 3 0.09x �432.47 0 0.53 0.08x �70.74 6.34 0.02 0.07 �319.71 8.09 0
2 and 3 0.02 �423.43 9.04 0.01 0.11

x �75.73 1.34 0.28 0.12 �326.83 0.97 0.13
1, 2, and 3 (132) 0.04 �424.80 7.67 0.01 0.08 �69.79 7.29 0.01 0.13 �327.34 0.47 0.17
1, 2, and 3 (133)

0.08
x �430.27 2.20 0.18 0.13 �77.08 0 0.55 0.13 �327.59 0.21 0.19

1, 2, and 3 (233) 0.08x �429.65 2.82 0.13 0.11 �73.99 3.09 0.12 0.13 �327.57 0.24 0.19

Desert and Great Basin

1) Housing within PA� 0.13þ �325.90 8.07 0.01 0 �44.85 9.97 0 0.03 �178.06 20.92 0
2) Housing outside PA� 0.01 �309.78 24.19 0 0.07

þ �53.19 1.64 0.16 0.01 �175.79 23.19 0
3) Land cover within PA 0.03 �311.92 22.05 0 0.01 �45.48 9.35 0 0.17

þ �196.18 2.80 0.10
1 and 2 0.18 �330.83 3.13 0.07 0.09x �54.82 0 0.37 0.01 �174.36 24.62 0
1 and 3 0.15 �327.38 6.58 0.01 0.02 �46.70 8.12 0.01 0.17 �195.79 3.19 0.08
2 and 3 0.02 �309.21 24.76 0 0.05 �50.45 4.37 0.04 0.19x �198.98 0 0.41
1, 2, and 3 (132) 0.20 �333.96 0 0.34 0.08x �53.38 1.44 0.18 0.16 �193.62 5.36 0.03
1, 2, and 3 (133)

0.20 �333.25 0.71 0.24 0.09
x �53.77 1.05 0.22 0.17 �193.73 5.25 0.03

1, 2, and 3 (233) 0.20 �333.86 0.10 0.33 0.05 �48.57 6.25 0.02 0.20x �198.63 0.35 0.35

Notes: R2 values in boldface type are significant. Univariate independent variables are labeled with a number (1–3), which
correspond to the numbered variables included in the multiple regression analyses. Plus or minus signs following significant
univariate model R2 values are coefficient directions. We fit one, two-way interaction for all multiple-variable models. Superscript
numbers in parentheses following full multiple-variable models indicate the two-way interaction for a given model. A superscript x
following adjusted R2 values of multiple variable models indicates a significant two-way interaction. We used an F statistic
threshold, derived from an ANOVA test, of 1.98 to 2.04 to indicate significant interactions. We used AIC, DAICc, and AICc model
weights to rank models, whereas we provide the R2 values as a measure of fit of each model.

� Housing density natural log-transformed for all models.
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protected areas. An example is the lower natural land

cover and the lower proportional abundance and

proportional richness of SGCN species outside protect-

ed areas (Fig. 3). The lack of support for high variable

importance of natural land cover in our regression

analysis most likely reflects the high proportion and low

variability of this covariate within protected areas

among regions, which likely influenced the fit of models

(Fig. 2). Nonetheless, this variable was included in the

best supported models for the proportional abundance

of land cover affiliates in the Prairie Badlands and the

Western Mountains, and the proportional richness of

SGCN in the Desert and Great Basin (Fig. 4).

Although housing within protected areas was gener-

ally the best supported variable influencing protected

area avian guilds, in all regions, high-intensity housing

FIG. 4. Relative importance of AICc model weights (wi ) for three independent variables (housing density within, and outside
protected areas [PA], and the dominant land cover of a BBS route within PA), explaining the proportional abundance and richness
of three avian guilds (synanthropes, land cover affiliates, and Species of Greatest Conservation Need [SGCN]) among four regions.
We calculated relative importance values of a region as the sum of wi for a given significant independent variable of a model set
(nine possible models for a given avian guild within a region), divided by the total sum of the wi for a given significant independent
variable among the three avian guilds. Relative importance wi values range from 1, indicating high variable importance, to 0.
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outside protected areas was associated with higher

proportional abundance of synanthropes within pro-

tected areas (Fig. 5). These relationships were significant

in all regions: the Appalachian and Northwoods, W44¼
65, P , 0.01; Prairie Badlands, W31¼ 47, P , 0.01; the

Desert and Great Basin, W124¼ 1025, P¼ 0.02; and the

Western Mountains, W44 ¼ 1413, P ¼ 0.01 (Fig. 5). In

contrast, high-intensity housing outside protected areas

resulted in lower proportional abundance of SGCN

within protected areas (Fig. 5). These relationships were

significant in each region: Appalachian and North-

woods, W44 ¼ 365, P , 0.01; Prairie Badlands, W31 ¼
149, P , 0.01; the Western Mountains, W140¼ 1619, P

, 0.01; and the Desert and Great Basin, W124¼ 1832, P

, 0.01. We uncovered a similar relationships for land

cover affiliates in the Appalachian and Northwoods,

W44¼ 373, P , 0.01 (Fig. 5). However, unexpectedly, in

the Prairie Badlands land cover affiliates within protect-

FIG. 5. Boxplot summaries of the proportional abundance of synanthropes, land cover affiliates, and Species of Greatest
Conservation Need (SGCN) within protected areas of four regions. Housing intensity outside of protected areas was categorized as
low (,6.17 houses/km2 or 1 house/40 acres) or high (.6.17 houses/km2 or 1 house/40 acres), based on the definition of wildland–
urban interface (WUI). Boxes shaded in gray indicate the proportional abundance of a protected-area bird guild was significantly
different between housing intensity levels, within a region, based on a Wilcoxon rank sum test at P value � 0.05. The bold lateral
bars represent the median proportional abundance values, the boxes represent the first and third quantiles, and the whiskers depict
the range of the data.
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ed areas were proportionally more abundant when

housing intensity was high on outside private lands

(W49 ¼ 49, P , 0.01; Fig. 5).

We detected similar patterns for the association

between the proportional richness of avian guilds within

protected areas and high-intensity housing outside.

However, the differences were weaker than proportional

abundance. Proportional richness of synanthropes

within protected areas was associated with high-intensity

housing outside protected areas in the Appalachian and

Northwoods (W44 ¼ 73, P , 0.01) and the Western

Mountains (W31 ¼ 1470, P , 0.01). In the Desert and

Great Basin, high-intensity housing resulted in lower

proportional richness of SGCN (W44¼ 1653, P , 0.01),

and we found a similar relationship for land cover

affiliates in the Appalachian and Northwoods (W44 ¼
365, P , 0.01), Prairie Badlands (W31 ¼ 46, P ¼ 0.01),

and the Desert and Great Basin (W124¼ 1001, P¼ 0.02).

DISCUSSION

Our results suggest that housing development both

within and adjacent to protected areas has a negative

impact on avian community structure within protected

area. Throughout the United States, we found housing

was inversely related with natural land cover. Further-

more, we found housing on inholdings or outside

protected area boundaries was often positively associat-

ed with the proportional abundance and proportional

richness of synanthropic species and negatively associ-

ated with the proportional abundance and proportional

richness of land cover affiliates and SGCN within

protected areas. These findings are in line with what

would be expected according to the species–area

relationship (MacArthur and Wilson 1967), where

housing reduces the area of natural land cover, resulting

in lower abundance and richness of avian communities.

According to our results, protected areas of the

United States generally provide a safe haven for native

avian communities, presumably because of more abun-

dant natural land cover combined with lower anthro-

pogenic stresses within protected area boundaries. Our

findings are similar to studies in other areas that also

found natural land cover and biodiversity to be greater

in protected areas than surrounding lands. For example,

in tropical countries, land cover clearing and subsistence

hunting and agriculture were reduced in protected areas

compared with adjacent lands (Bruner et al. 2001).

Similarly, within North American protected areas, there

were no noticeable differences of land cover loss before

and after protected area establishment (Nagendra 2008).

In South Africa, native arthropods and reptiles were

more diverse and abundant in protected areas compared

to surrounding rangeland (Fabricius et al. 2003). On the

other hand, the distribution of many global species of

conservation concern falls outside the boundaries of

protected areas (Rodrigues et al. 2004). Nevertheless,

our results suggest that the protected areas of the United

States are successful at limiting housing development,

maintaining natural land cover, and harboring avian

communities of conservation attention compared with

surrounding private lands. Thus, protected areas of the

United States may serve as sources for regional avian

metapopulations (Robinson et al. 1995).

Of particular note, our results also support findings

that housing development near protected areas has

created strains on protected areas themselves (Hansen et

al. 2005, Gude et al. 2006). Among all regions, we found

private lands adjacent to protected areas had signifi-

cantly higher housing, corroborating evidence of in-

creases in housing on private inholdings and at

protected area boundaries over the past half-century

(Radeloff et al. 2010). Development pressure has been

particularly strong in the western portions of North

America, in part, because the high proportion of

protected land provides amenities attractive for human

habitation (Hansen et al. 2005). Although land trusts

and nongovernmental agencies work to conserve private

lands (Merenlender et al. 2004), increases in housing

within or adjacent to protected areas destroy habitat and

threaten biodiversity (e.g., reduction of wildlife corri-

dors and/or fragmentation; Hansen and DeFries 2007,

DeFries et al. 2010, Piekielek and Hansen 2012).

Indeed, this housing development on private lands

affects landscape composition and biodiversity. For

example, in the western United States, private lands

surrounding protected areas are fragmented due to

exurban development (Piekielek and Hansen 2012).

Exurban development creates fragmented conditions,

which, in turn, affect biodiversity (Fahrig 2003, Radeloff

et al. 2005a). Forest breeding birds throughout the

majority of the United States are generally negatively

associated with housing (Kluza et al. 2000, Pidgeon et al.

2007). Additionally, exurban housing developments are

associated with the reduction of native bird distributions

in California (Jongsomjit et al. 2012) and are positively

associated with synanthropic species in North Carolina

(Suarez-Rubio et al. 2010). In some instances, low-

density housing development creates conditions result-

ing in high avian species richness (e.g., intermediate

disturbance hypothesis), but at higher densities, the

relationship is negative (i.e., ecosystem stress hypothesis;

Lepczyk et al. 2008).

Housing developments also create novel habitats,

which benefit some bird species (Bock et al. 2008, Robb

et al. 2008, Lerman and Warren 2011). For example, in

Phoenix, Arizona, native desert bird abundance was

higher in wealthy urban neighborhoods with native

plant landscaping, adjacent to large desert tracts (Ler-

man and Warren 2011). Similarly, in rural southeastern

Arizona, exurban development of ranchland positively

affects native bird species richness by providing ‘‘eco-

logical oases’’ (sensu Bock et al. 2008) in an otherwise

harsh environment. Furthermore, resource supplemen-

tation is generally associated with housing develop-

ments, particularly given the popularity of bird feeding

among homeowners (Robb et al. 2008). However, the
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bird group likely to benefit most from housing

developments and supplemental feeding are synan-

thropes, while bird species of conservation concern are

often negatively impacted (Evans et al. 2009). Our

findings of the positive association between richness of

land cover affiliates within protected areas and housing

outside protected areas in the central prairies and

western mountains of the United States lend support,

at a landscape scale, to the findings in the desert

southwest. However the relationship between birds and

housing in the desert southwest appears to follow a

quadratic curve as it becomes negative with increasing

housing density (Bock et al. 2008). Thus, at higher

housing densities, with their accompanying habitat loss

and fragmentation, it appears a threshold is reached,

beyond which avian community structure and abun-

dance suffers (Fahrig 2001, Zuckerberg and Porter 2010,

Suarez-Rubio et al. 2013).

Additional threats to biodiversity often accompany

housing developments and fragmentation in rural areas.

Free-ranging cats are responsible for bird (Lepczyk et al.

2004) and other wildlife depredations (Crooks and Soulé

1999), and fragmented landscapes support higher

densities of avian nest predators and brood parasites

(Robinson et al. 1995, Donovan and Flather 2002).

Furthermore, in addition to threats to wildlife, rural

housing is associated with invasive plants. In New

England forests, invasive exotic plants are more strongly

related to housing density than other anthropogenic

stresses such as roads (Gavier-Pizarro et al. 2010a). In

southwestern Wisconsin, housing developments in high

conservation value forests facilitates the spread of

nonnative plants via landscaping and conditions amiable

to plant invasion (e.g., trails; Gavier-Pizarro et al.

2010b). In addition to fragmentation and habitat loss,

such threats most likely occur following housing

development on inholdings of public forest lands or

adjacent to protected-area boundaries. The combination

of these processes likely contributes to the degradation

of protected area native avian communities.

A novel finding from our study was that, in addition

to the pressure of private land development on

biodiversity outside protected area boundaries, we

found that this same development pressure threatens

biodiversity within. Our results support findings of other

studies investigating similar patterns. For example, in

Ghana, Africa, human population size surrounding

protected area reserves was significantly related to the

extinction rate of carnivores and ungulates within

reserves (Brashares et al. 2001). While in western

equatorial Africa, during the latter part of the 20th

century, common chimpanzee (Pan troglodytes) and

western gorilla (Gorilla gorilla) within protected areas

experienced dramatic population declines attributed to

hunting and disease pressures associated with road

networks and dense human populations in cities outside

protected area boundaries (Walsh et al. 2003). Although

exurban development throughout the United States

differs in intensity and patterns from high-density

human settlement in tropical countries, our results show

that this development pressures adjacent to protected

areas threatens biodiversity within.

Anthropogenic pressures on private lands in North

America adjacent to protected areas also influence

ecological processes and biodiversity within. In Canadi-

an national parks, terrestrial mammal species, especially

those with large home ranges, are negatively associated

with human-dominated landscapes outside protected

areas (Rivard et al. 2001). Similarly, in national parks of

the western United States, extirpation rates of large

mammals are often negatively associated with high

human density outside park boundaries (Parks and

Harcourt 2002). Thus, if development pressure is high

around small reserves, mammal species that require

large areas will likely be extirpated as a result of direct

conversion of suitable habitat. Our results extend these

findings to also highlight the negative impacts on avian

communities. Across broad geographic regions of the

United States, we found high housing density outside

protected areas substantially altered the avian commu-

nity within. Although housing growth has recently

slowed compared with the 1970s (Radeloff et al. 2010),

our findings suggest even marginal increases of housing

growth on the boundary of protected areas could

degrade protected area avian communities. Invasive

species (exotics in our case) are associated with an

increase in species diversity in some systems (e.g.,

McKinney 2006, 2008), and the synanthropes guild of

our study, which includes exotics, is strongly positively

associated with housing, both within and outside of

protected areas. However, we show that throughout

protected areas of the United States, the abundance and

richness of native Species of Greatest Conservation

Need and land cover affiliates are negatively related with

housing on inholdings or adjacent lands. Thus, without

effective measures to curtail the rates and locations of

exurban development, the conservation benefit of

protected areas will likely diminish.

In order to maintain protected areas as refugia for

biodiversity, prioritizing conservation actions on private

lands is necessary. In locations where private land

housing is dense (e.g., Appalachians), land use planning

is most important. In locations where private land

housing is low, land use planning is a lower priority.

Alternative strategies for preserving land near protected

areas (e.g., conservation easements [Merenlender et al.

2004, Rissman et al. 2007] and cluster housing [Theo-

bald et al. 1997, Gagné and Fahrig 2010]) should be

pursued with the intent to maximize unfragmented

natural land cover while minimizing development. We

recommend focusing on conserving natural vegetation

cover on private inholdings, since even modest housing

gains on these lands are likely to greatly degrade

protected area biodiversity. Furthermore, it is critical

to maintain ecologically sensitive private lands adjacent

to protected areas that serve as necessary habitats for
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ecosystem processes such as migration (Berger 2004)

and reproduction (Donovan et al. 1995, Hansen and

Rotella 2002).

ACKNOWLEDGMENTS

We gratefully acknowledge support for this research by the
U.S. Forest Service Rocky Mountain Research Station and the
NASA Biodiversity Program. We thank the volunteers who
have collected Breeding Bird Survey and housing census data
that made this study possible. We thank S. Martinuzzi and
three anonymous reviewers for comments that greatly improved
the manuscript.

LITERATURE CITED

Andam, K. S., P. J. Ferraro, K. R. E. Sims, A. Healy, and
M. B. Holland. 2010. Protected areas reduced poverty in
Costa Rica and Thailand. Proceedings of the National
Academy of Sciences USA 107:9996–10001.

Association of Fish and Wildlife Agencies. 2011. State Wildlife
Action Plans: Shaping national fish and wildlife conserva-
tion. Association of Fish and Wildlife Agencies, Washington,
D.C., USA.

Berger, J. 2004. The last mile: How to sustain long-distance
migration in mammals. Conservation Biology 18:320–331.

Bock, C. E., Z. F. Jones, and J. H. Bock. 2008. The oasis effect:
response of birds to exurban development in a southwestern
savanna. Ecological Applications 18:1093–1106.

Brashares, J. S., P. Arcese, and M. K. Sam. 2001. Human
demography and reserve size predict wildlife extinction in
West Africa. Proceedings of the Royal Society of London B
268:2473–2478.

Brooks, T. M., M. I. Bakarr, T. Boucher, G. A. B. Da Fonseca,
C. Hilton-Taylor, J. M. Hoekstra, T. Moritz, S. Olivieri, J.
Parrish, and R. L. Pressey. 2004. Coverage provided by the
global protected-area system: Is it enough? Bioscience
54:1081–1091.

Bruner, A. G., R. E. Gullison, R. E. Rice, and G. A. B. Da
Fonseca. 2001. Effectiveness of parks in protecting tropical
biodiversity. Science 291:125.

Carr, M. R. 1997. PRIMER user manual (Plymouth routines in
multivariate ecological research). Plymouth Marine Labora-
tory, Plymouth, UK.

Chape, S., J. Harrison, M. Spalding, and I. Lysenko. 2005.
Measuring the extent and effectiveness of protected areas as
an indicator for meeting global biodiversity targets. Philo-
sophical Transactions of the Royal Society B 360:443–455.

Cincotta, R. P., J. Wisnewski, and R. Engelman. 2000. Human
population in the biodiversity hotspots. Nature 404:990–992.

Clarke, K. R. 1993. Non-parametric multivariate analyses of
changes in community structure. Australian Journal of
Ecology 18:117–143.

Clarke, K. R., and R. N. Gorley. 2006. PRIMER v6: user
manual/tutorial. PRIMER-E, Plymouth, UK.

Crooks, K. R., and M. E. Soulé. 1999. Mesopredator release
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SUPPLEMENTAL MATERIAL

Appendix A

Semivariograms of the residuals of the total abundance of bird species per Breeding Bird Survey route within six regions
(Ecological Archives A024-085-A1).

Appendix B

Semivariograms of the residuals of the total COMDYN-estimated avian species richness per Breeding Bird Survey route within
six regions (Ecological Archives A024-085-A2).

Supplement

Breeding Bird Survey (BBS) code, and common and scientific names of 360 bird species from which we created 12 bird species
groups (Ecological Archives A024-085-S1).
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