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Animals that sustain high levels of aerobic activity under hypoxic
conditions (e.g., birds that fly at high altitude) face the physiolog-
ical challenge of jointly optimizing blood-O2 affinity for O2 loading
in the pulmonary circulation and O2 unloading in the systemic
circulation. At high altitude, this challenge is especially acute for
small endotherms like hummingbirds that have exceedingly high
mass-specific metabolic rates. Here we report an experimental
analysis of hemoglobin (Hb) function in South American humming-
birds that revealed a positive correlation between Hb-O2 affinity
and native elevation. Protein engineering experiments and ances-
tral-state reconstructions revealed that this correlation is attribut-
able to derived increases in Hb-O2 affinity in highland lineages, as
well as derived reductions in Hb-O2 affinity in lowland lineages.
Site-directed mutagenesis experiments demonstrated that repeated
evolutionary transitions in biochemical phenotype are mainly at-
tributable to repeated amino acid replacements at two epistati-
cally interacting sites that alter the allosteric regulation of Hb-O2

affinity. These results demonstrate that repeated changes in bio-
chemical phenotype involve parallelism at the molecular level, and
that mutations with indirect, second-order effects on Hb allostery
play key roles in biochemical adaptation.

high-altitude adaptation | hypoxia | parallel evolution |
protein evolution | epistasis

In air-breathing vertebrates, the optimal Hb-O2 affinity varies
according to the partial pressure of atmospheric O2 (PO2)

because of the trade-off between the need to maximize arterial
O2 saturation under hypoxia while simultaneously ensuring ad-
equate O2 unloading in the tissue capillaries (1–8). However, in
species that are native to high-altitude environments, it is not
known how often and to what extent physiological adaptation to
hypoxia is mediated by genetically based modifications of Hb-O2
affinity (9). Such questions can be resolved by conducting system-
atic comparative studies of Hb function among species with known
phylogenetic relationships and contrasting altitudinal distributions.
In cases where multiple species have adapted independently to

high-altitude hypoxia, replicated changes in Hb function may be
instructive about the relative accessibility of different design
solutions to natural selection. If repeated changes in Hb-O2 af-
finity involve parallel amino acid substitutions, then this suggests
that adaptive protein evolution may be predisposed to follow
particular mutational pathways. If, by contrast, myriad different
mutational changes can produce the same functional outcome,
then particular design solutions may be selectively accessible
from a diverse range of ancestral starting points, and pathways of
protein evolution may be highly idiosyncratic.
Among vertebrates, hummingbirds have some of the highest

basal metabolic rates and the highest metabolic scopes for ac-
tivity, and are therefore especially compelling subjects for studies
of Hb function and blood-O2 transport under hypoxia (10–13).
We conducted an experimental analysis of Hb function in 10
species of Andean hummingbirds that have dramatically different

altitudinal distributions. The species included in this study fall
into three main clades: the Coquettes, the Brilliants, and the
Emeralds + Giant Hummingbird (Patagona gigas) (Fig. 1A).
Each of these three clades contains species that are restricted to
low or moderate elevations, as well as independently derived
high-elevation species that routinely occur at elevations >4,200 m.
We also collected data for one outgroup species from the hermit
subfamily (Phaethornithinae), a primarily lowland clade that
represents the likely ancestral elevational distribution for hum-
mingbirds (14).

Results and Discussion
Hb Isoform Composition. The Hbs of birds and other jawed ver-
tebrates are heterotetramers, composed of two α-chain and two
β-chain subunits (15, 16). During postnatal life, most bird species
express two main Hb isoforms in circulating red blood cells:
a major isoform, HbA ðαA2β2Þ, with α-chain subunits encoded by
the αA-globin gene, and a minor isoform, HbD ðαD2β2Þ, with
α-chain subunits encoded by the αD-globin gene (17) (Fig. S1).
Given that avian HbD has a consistently higher O2-affinity rel-
ative to HbA (17), changes in the intracellular HbA/HbD ratio
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Hummingbirds have exceedingly high oxygen demands be-
cause of their elevated rates of aerobic metabolism, and yet
they thrive in high-altitude environments in the Andes where
oxygen is scarce. Here we report the finding that when hum-
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ary changes in the respiratory properties of hemoglobin were
repeatedly mediated by the same amino acid replacements.
Specifically, ancestral sequence reconstruction and protein en-
gineering experiments revealed that parallel adaptation of
hemoglobin function in multiple species is attributable to re-
peated amino acid replacements at a single pair of interacting
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a surprising degree of reproducibility and predictability in
adaptive protein evolution.
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could substantially alter blood-O2 affinity, and it has been
suggested that regulatory changes in Hb isoform composition

may contribute to adaptive changes in blood-O2 transport in
high-altitude species (18–20). To test this hypothesis we
conducted a proteomic analysis of red cell lysates from each of
the 10 hummingbird study species. Results of this analysis
revealed that each of the hummingbird species express both
HbA and HbD isoforms, and the relative concentration of the
minor HbD isoform ranged from 1.6 to 24.2% (mean ± SD =
13.3 ± 6.2%). However, phylogenetically independent con-
trasts revealed no clear association between HbA/HbD iso-
form ratio and native elevation (R2 = 0.026, P = 0.657).

Altitudinal Variation in Hb-O2 Affinity. Evolutionary adjustments in
Hb-O2 affinity can be achieved via changes in intrinsic O2 affinity
or changes in the sensitivity of Hb to the modulating effects of
physiological allosteric cofactors, such as Cl− ions and organic
phosphates (8, 15). The allosteric regulation of Hb-O2 affinity
involves the oxygenation-linked binding of nonheme ligands that
indirectly modulate heme reactivity by shifting the equilibrium
between a low-affinity “T-state” and a high-affinity “R-state.”
Allosteric cofactor molecules typically reduce Hb-O2 affinity by
preferentially binding and stabilizing deoxygenated Hb, thereby
displacing the R↔T equilibrium in favor of the low-affinity
T-state conformation (Fig. S2). After isolating and purifying the
HbA and HbD isoforms from each hummingbird species, we
measured oxygenation properties in the presence and absence of
the two main allosteric effectors that regulate Hb-O2 affinity:
inositol hexaphosphate (IHP, a chemical analog of the naturally
occurring inositol pentaphosphate in avian red cells, at twofold
molar excess over tetrameric Hb) and Cl− ions (added as KCl;
0.1 mol·L−1). Hb-O2 affinity was indexed by P50, the PO2 at which
Hb is half-saturated. O2-equilibrium measurements revealed that
the major HbA isoforms of the high-altitude hummingbird species
were generally characterized by elevated O2-affinities in the ab-
sence of allosteric effectors (“stripped” Hb) and the difference in
P50 values between highland and lowland species was amplified in
the presence of IHP alone and in the simultaneous presence of
both IHP and Cl− ions (Table 1 and Fig. S3).
Regressions based on phylogenetically independent contrasts

(PICs) revealed a significantly negative relationship between
HbA P50 values and native elevation (i.e., a positive relationship
between Hb-O2 affinity and elevation) (Fig. 1B and Table S1).
Similarly, for five species that expressed the HbD isoform at
levels sufficient for experimental analysis, regressions based on
PICs revealed significantly negative relationships between P50
values and native elevation, both for HbD alone and for the
weighted average of HbA and HbD in their naturally occurring
relative concentrations (Table S1). From this point onward, we

A

B

Fig. 1. Phylogenetically independent contrasts reveal a positive association
between Hb-O2 affinity and native elevation in Andean hummingbirds. (A)
Phylogenetic relationships (25) and elevational distributions (ranges and
midpoints) of 10 hummingbird species included in the analysis of Hb func-
tion. (B) Least-squares regression of phylogenetically independent contrasts
revealed a significant negative relationship between P50(KCl+IHP) and native
elevation (i.e., a positive relationship between Hb-O2 affinity and elevation).
See Table S2 for full results.

Table 1. Functional properties of hummingbird HbA isoforms

Species

Stripped +KCl PHI+lCK+PHI+

P50 n50 P50 n50 P50 n50 P50 n50

Adelomyia melanogenys 2.85 ± 0.01 1.60 ± 0.00 4.60 ± 0.08 1.89 ± 0.08 28.83 ± 1.54 2.16 ± 0.14 32.02 ± 3.84 2.31 ± 0.07
Oreotrochilus estella 2.17 ± 0.12 1.36 ± 0.13 3.39 ± 0.24 1.54 ± 0.13 21.82 ± 1.09 1.98 ± 0.11 20.20 ± 0.28 2.00 ± 0.03
Oreotrochilus melanogaster 2.10 ± 0.06 1.40 ± 0.01 3.86 ± 0.05 1.75 ± 0.05 26.65 ± 0.71 2.25 ± 0.09 19.88 ± 0.27 2.08 ± 0.05
Aglaeactis castelnaudii 2.17 ± 0.06 1.38 ± 0.04 3.23 ± 0.28 1.40 ± 0.02 22.45 ± 0.93 1.51 ± 0.18 17.23 ± 0.66 1.61 ± 0.14
Coeligena coeligena 2.49 ± 0.11 1.48 ± 0.06 4.22 ± 0.16 1.67 ± 0.10 27.83 ± 0.37 1.91 ± 0.08 22.90 ± 3.16 2.19 ± 0.11
Coeligena violifer 2.12 ± 0.04 1.29 ± 0.03 3.74 ± 0.10 1.65 ± 0.08 23.55 ± 0.74 1.96 ± 0.04 19.12 ± 1.27 1.70 ± 0.19
Patagona gigas 2.52 ± 0.06 1.46 ± 0.04 4.14 ± 0.37 1.63 ± 0.13 29.97 ± 1.00 2.28 ± 0.11 25.86 ± 1.66 2.49 ± 0.42
Amazilia viridicauda 2.62 ± 0.03 1.43 ± 0.03 4.47 ± 0.05 1.81 ± 0.05 28.49 ± 1.20 2.13 ± 0.08 24.24 ± 0.87 2.07 ± 0.11
Amazilia amazilia 3.14 ± 0.43 1.38 ± 0.05 5.28 ± 0.25 1.90 ± 0.15 36.77 ± 0.85 2.16 ± 0.08 29.84 ± 0.32 2.42 ± 0.01
Phaethornis malaris 2.83 ± 0.10 1.39 ± 0.12 4.70 ± 0.06 1.83 ± 0.06 37.00 ± 0.44 2.27 ± 0.13 28.13 ± 0.60 2.04 ± 0.11

O2-affinities (P50, torr) and cooperativity coefficients (n50; mean ± SEM) of purified HbA isoforms measured in 0.1 M Hepes buffer at pH 7.40 (± 0.01), 37 °C,
in the absence of allosteric effectors (stripped), in the presence of KCl (0.1 M) or IHP (IHP/Hb tetramer ratio = 2.0), and in the presence of both allosteric
effectors. [Heme], 0.3mM. As explained in the text, P50 is an inversemeasure of Hb-O2 affinity. High-altitude species withmaximum elevational ranges of>3,000m are
denoted by gray shading.
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primarily focus on oxygenation properties of Hb in the presence
of IHP and Cl− ions, the experimental treatment that is most
relevant to in vivo conditions in avian red cells.

Causative Substitutions and the Structural Mechanisms Underlying
Evolutionary Transitions in Hb-O2 Affinity. Inspection of the geno-
typic and phenotypic data suggested that phylogenetically repli-
cated changes in Hb-O2 affinity were largely attributable to
repeated amino acid replacements at two sites: β13 (position 10 in
the A helix) and β83 (position 7 in the EF interhelical segment)
(Fig. 2 and Fig. S4). Within each clade, the species with the highest
Hb-O2 affinities in the presence of allosteric effectors always pos-
sessed the two-site genotype β13Ser-β83Ser (Oreotrochilus estella,
Oreotrochilus melanogaster, and P. gigas, all of which are predomi-
nantly highland species) or β13Gly-β83Ser (Aglaeactis castelnaudii,
Coeligena violifer, and Amazilia viridicauda, all of which are pre-
dominantly highland species), whereas the species with the lowest
Hb-O2 affinities always possessed β13Gly-β83Gly (Adelomyia
melanogenys, Coeligena coeligena,Amazilia amazilia, and Phaethornis
malaris, all of which are predominantly lowland species) (Fig. 2
and Table 1). Comparisons among HbD isoforms are also in-
formative about the effects of these substitutions because HbA
and HbD isoforms of the same species share identical β-chain
subunits. Among the five species in which HbD was examined,
the only species with the β13Ser-β83Ser genotype (the pre-
dominantly highland P. gigas) had the highest HbD O2 affinity
[P50(KCl+IHP) = 16.56 ± 0.56 torr], and the two species that
shared the alternative β13Gly-β83Gly genotype (the exclusively
lowland A. amazilia and P. malaris) had the two lowest affinities
[P50(KCl+IHP) = 23.20 ± 1.21 and 24.92 ± 0.52 torr].
To identify the structural basis of variation in Hb-O2 affinity,

a comparison between the HbA isoforms of A. melanogenys (an
exclusively lowland species) and O. estella (a high-altitude spe-
cialist) is especially informative because they exhibit pronounced
differences in O2-affinity [P50(KCl+IHP) = 32.02 ± 3.84 vs. 20.20 ±
0.28 torr, respectively] (Table 1), and yet they differ by just one
conservative α-chain substitution (α8Thr→Ser) and two polarity-
changing β-chain substitutions (β13Gly→Ser and β83Gly→Ser)
(Fig. 2). To isolate the functional effects of the two β-chain
substitutions, we used a recombinant expression vector (21) and
site-directed mutagenesis to synthesize the reconstructed an-
cestral Coquette HbA (β13Gly-β83Gly, identical to wild-type
A. melanogenys β-globin), the derived double-mutant genotype
that is identical to wild-type O. estella β-globin (β13Ser-β83Ser),
and each of the alternative single-mutant intermediates (β13Ser-
β83Gly and β13Gly-β83Ser). Consistent with measurements of

the native Hbs in the presence of allosteric effectors, P50(KCl+IHP)
for the recombinant O. estella Hb was significantly lower (i.e.,
O2-affinity was higher) than that of A. melanogenys (Table S2),
confirming the affinity-enhancing effect of the β13Gly→Ser and
β83Gly→Ser substitutions in combination.

Epistasis for Hb-O2 Affinity. Analysis of the alternative single- and
double-mutant recombinant Hbs (rHbs) revealed that pheno-
typic effects of mutations at β13 and β83 are highly context-
dependent; P50(KCl+IHP) values exhibited a significant epistatic
deviation from expectations of an additive model (e = 12.94,
95% confidence interval = 10.05–15.82). In the presence of allo-
steric effectors, the β13Gly→Ser substitution increased O2-affinity
on the ancestral Coquette background (in the presence of β83Gly)
and reduced O2-affinity in the presence of the derived β83Ser.
Similarly, the β83Gly→Ser substitution increased O2-affinity on
the ancestral Coquette background (in the presence of β13Gly)
and reduced O2-affinity in the presence of the derived β13Ser
(Table S2). This is an example of sign epistasis (22, 23), where
the sign of the phenotypic effect of a mutation is conditional on
the genetic background in which it occurs.

Structural Basis of Species Differences in Hb Function. To determine
the structural mechanisms responsible for the additive and epi-
static effects of substitutions at β13 and β83, we conducted ho-
mology-based modeling analyses of hummingbird Hb (Methods).
These analyses revealed that Gly→Ser replacements at β13 and
β83 produce localized changes in secondary structure of the A
and F helices, respectively (Table S3), which impinge indirectly
on the allosteric regulatory control of Hb-O2 affinity. Site β83 is
located within a segment of the β-subunit main chain (residues
81–84) that alternates between helical and nonhelical secondary
structure in the allosteric transition between the oxy and deoxy
states, respectively (Fig. 3 A–C). At β83, either Gly or Ser can
donate a helix-capping, amide H-bond to the carbonyl oxygen of

Fig. 2. Variable residue positions in a multiple alignment of hummingbird
βA-globin sequences. The estimated sequence for the common ancestor of
hummingbirds (Anc1) is included for comparison, and derived Ser residues at
β13 and β83 are shown in red boxes. High-altitude species with maximum
elevational ranges of >3,000 m are denoted by shading. Sequences repre-
sent the most common haplotypes for each species.

B C

A Dα1

α2
β2

β1 α1

α2
β2

β1

Site 1

Site 2β83

β13

β13

β83

β18-22

β42-45

β81-84

β18-22

β42-45

β81-84

β13

β83

Fig. 3. Amino acid replacements at β13 and β83 produce second-order
perturbations of tertiary structure that affect the allosteric regulation of
O2-binding by IHP. (A) Homology-based structural model of hummingbird
Hb showing the locations of amino acid replacements at sites 13 and 83 in
the β1 subunit (shown in cyan). β-Chain residues 18–22, 42–45, and 81–84
(including the variable site 83, the penultimate C-terminal residue in the EF
interhelical loop) alternate between helical and nonhelical secondary struc-
ture in the allosteric transition between the oxy (B) and deoxy (C) states. (D)
Structural model of hummingbird Hb (with the β1 subunit removed) showing
alternative IHP-binding sites in the central cavity. Polarity-changing amino
acid replacements at β13 and β83 produce nonadditive changes in the
favorability of alternative conformation states for polyphosphate-binding:
IHP preferentially binds at “site 1” in the β13Gly-β83Gly and β13Ser-β83Ser
mutants (representing wild-type β-globin genotypes for A. melanogenys and
O. estella, respectively) and at “site 2” in the β13Ser-β83Gly and β13Gly-
β83Ser mutants.
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β85Phe (the N-terminal residue of the F-helix), but the polar -OH
side-chain of β83Ser forms additional intermolecular H-bonds that
alter the torsion angle of the F-helix, thereby constraining allo-
steric movement. When nonpolar Gly is replaced by polar, hydro-
philic Ser at β83 (as in the predominantly highland Oreotrochilus,
A. castelnaudii, C. violifer, P. gigas, and A. viridicauda) (Fig. 2), the
effect on Hb allostery is contingent on the presence of Gly or Ser at
β13. Changes in the network of atomic contacts involving β13 and
β83 (Table S3) alter the favorability of alternative conformation
states for IHP-binding in the central cavity (Fig. 3D), and the re-
sultant changes in the location of IHP-binding account for the
observed epistasis for Hb-O2 affinity in the presence of IHP (Table
S2). Our experimental results for the hummingbird rHb mutants
are consistent with functional studies of a naturally occurring
human Hb mutant, Hb Pyrgos (β83Gly→Asp), which is also char-
acterized by an increased O2-affinity in the presence of organic
phosphates (24).

Parallelism of β-Chain Substitutions Among Species. We sequenced
βA-globin in 63 hummingbird species and we then used maxi-
mum-likelihood and parsimony to map the β13 and β83 replace-
ments onto an independently derived and well-resolved phylogeny
(25). This analysis revealed that the substitutions (and, by im-
plication, the associated changes in Hb-O2 affinity) occurred at
least 17 times independently (≥4 and ≥13 transitions between
Gly and Ser at β13 and β83, respectively). Maximum-likelihood
ancestral-state estimates for native elevation indicated that
hummingbird species have shifted upwards and downward dur-
ing the evolution of the group, in conjunction with repeated
substitutions and back-substitutions at β13 and β83 (Fig. 4 and
Fig. S5). Hence, the negative correlation between P50 and native
elevation (Fig. 1B) is attributable to derived increases in Hb-O2
affinity in highland lineages, as well as derived reductions in Hb-O2
affinity in lowland lineages. For example, the common ancestor
of the highland genus Oreotrochilus (β13Ser-β83Ser) evolved
a derived increase in Hb-O2 affinity relative to the likely ances-
tral state of the Coquette clade (β13Gly-β83Gly). In contrast, in

the Brilliants the lowland C. coeligena (β13Gly-β83Gly) evolved
a derived reduction in Hb-O2 affinity relative to the likely an-
cestral state for that clade (β13Gly-β83Ser) (Fig. 4). Species’
maximum elevation was strongly associated with β13-β83 geno-
type in a phylogenetic general linear model (R2 = 0.53; P < 10−11)
(Fig. 4).
Among distantly related species, parallel substitutions at sites

β13 and β83 are likely attributable to the repeated fixation of
identical-by-state alleles that had independent mutational ori-
gins. Among some of the more closely related species, the sorting
of ancestral polymorphism may produce the same pattern of
parallelism because of the repeated fixation of identical-by-
descent alleles in recently diverged lineages (26). Further work is
needed to elucidate the mutational origins of the β13 and β83
variants, but it is clear that repeated changes at both sites have
contributed to the repeated elevational shifts in Hb function
among different lineages. Aside from the variation at sites β13
and β83, no other substitutions in the αA-, αD-, or βA-globin genes
exhibited any obvious association with species differences in P50
values for HbA or HbD, although it is likely that particular lin-
eage-specific substitutions (Fig. S4) account for residual varia-
tion in Hb-O2 affinity among species.

Possible Adaptive Significance of Altitudinal Differences in Hb-O2

Affinity. The evolution of divergent Hb-O2 affinities between
highland and lowland hummingbirds is consistent with theoreti-
cal predictions (1–6). At low altitude, a low Hb-O2 affinity is
expected to be physiologically advantageous for hummingbirds
and other animals with high mass-specific metabolic rates be-
cause O2 unloading in the peripheral circulation can occur at
relatively high PO2, thereby optimizing tissue oxygenation by
increasing the O2 diffusion gradient between capillary blood and
tissue mitochondria. At low altitude, the trade-off with pulmo-
nary O2 loading is alleviated because arterial O2 saturation will
still be near-maximal. However, under conditions of severe en-
vironmental hypoxia at very high altitudes, an increased Hb-O2
affinity becomes advantageous because tissue O2 delivery can be
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Fig. 4. Ancestral state estimates for β13 and β83 in
hummingbirds. Pie diagrams at the nodes indicate
the probability of each genotype based on a step-
wise, single-rate maximum-likelihood model with
two reversible transitions, as indicated in the inset
diagram. Terminal branches of the phylogenetic
tree are color-coded according to the upper limit of
the species’ elevational range, and internal branches
are color-coded based on maximum-likelihood esti-
mates of the ancestral states. The phylogenetically
corrected association between β13-β83 genotype and
native elevation was highly significant (see text for
details). Parsimony analysis revealed a minimum of 17
changes in genotype across the tree (Fig. S5). β83Asn
was observed in a single species, Doryfera ludoviciae,
and was therefore binned with the β83Ser character
state because side-chains of the two residues have
the same polarity and the underlying codons are
connected by a single mutational step. Similarly,
β83Ala was observed in a single species, Phlogophilus
harterti, and was binned with the β83Gly character
state in this analysis. Branch lengths are proportional
to relative time, except where indicated. Species
names in bold are those that were included in the
experimental analysis of Hb function.
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preserved more effectively by safeguarding arterial O2 saturation
than by maximizing O2 unloading from partially desaturated
blood (1–6, 8, 9).

Mechanisms of Hb Adaptation and Causes of Parallelism at the
Sequence Level. Comparative studies of Hb function in different
animal species and experimental studies of naturally occurring or
recombinant human Hb mutants have demonstrated that ge-
netically based changes in Hb-O2 affinity can be produced by
numerous possible structural changes (27–29). In Andean hum-
mingbirds, amino acid replacements at β13 and β83 contribute to
species differences in Hb-O2 affinity, but it is certainly not be-
cause they represent the only possible mutational changes that
are capable of producing the observed changes in protein func-
tion. Although there may be numerous possible mutations that
can produce identical changes in Hb-O2 affinity, many of those
changes are known to have deleterious pleiotropic effects. For
example, active site mutations that alter the polarity or hydro-
phobicity of the distal heme pocket can produce direct changes
in the association constant for O2 binding, but such mutations
typically compromise structural stability or increase the suscep-
tibility to heme autoxidation (the spontaneous oxidation of the
heme iron from the ferrous Fe2+ state to the ferric Fe3+ state,
which renders Hb functionally inert as an O2-transport molecule)
(29). In contrast, mutations remote from the active site—like
those at β13 and β83—can potentially produce fine-tuned changes
in O2-affinity with minimal pleiotropic effects through subtle dis-
placements of the allosteric equilibrium (28–30). Within the set of
all possible mutations that produce functionally equivalent effects
on Hb-O2 affinity, those that incur a lesser magnitude of delete-
rious pleiotropy are predicted to have a higher fixation probability,
and such mutations may therefore contribute disproportionately
to biochemical adaptation (31–33). When such changes are driven
by positive directional selection, theory predicts that they are es-
pecially likely to evolve in parallel (34).
The parallel β13 and β83 substitutions that we have docu-

mented in hummingbirds have not been implicated in the ad-
aptation of Hb function in other high-altitude birds or mammals
(35–39), although a survey of sequence variation in the globin
genes of Andean waterfowl documented a shared β13Gly/Ser
polymorphism in speckled teals (Anas flavirostris) and yellow-
billed pintails (Anas georgica), and in both species the derived
Ser variant was present at high frequency in high-altitude pop-
ulations (40). The phenotypic effects of the β13Gly/Ser variants
in these waterfowl species have not yet been investigated, but the
similar altitudinal patterns in Andean ducks and hummingbirds
suggest parallel mechanisms of Hb evolution. At β13 and β83 in
Andean hummingbirds, it may be that recurrent mutation and
retention of ancestral polymorphism both contributed to varia-
tion in Hb function—variation that was then recruited when
selection favored fine-tuned adjustments in blood-O2 transport
(e.g., during elevational range shifts). When closely related species
independently adapt to a shared environmental challenge, nat-
ural selection may be predisposed to hit upon the same design
solution in different lineages if one particularly accessible (and
minimally pleiotropic) solution happens to be located within
striking distance from the same ancestral starting point.

Methods
Specimen Collection. We preserved blood and tissue samples from voucher
specimens of hummingbirds that were collected from numerous Andean
localities spanning an elevational range of ∼4,500 m (Table S4). Our analysis
of Hb function was based on blood samples from 70 hummingbird speci-
mens (n = 3–8 individuals per species). All hummingbirds were live-trapped
in mistnets and were bled and killed in accordance with guidelines of the
Ornithological Council (41), and protocols approved by the University of
New Mexico Institutional Animal Care and Use Committee (Protocol number
08UNM033-TR-100117; Animal Welfare Assurance number A4023-01). All
fieldwork was carried out under permits issued by the management

authorities of Peru (76-2006-INRENA-IFFS-DCB, 087–2007-INRENA-IFFS-DCB,
and 135–2009-AG-DGFFS-DGEFFS).

For each individual bird, we collected 0.03–0.20 mL of whole blood from
the brachial or ulnar vein using heparinized microcapillary tubes. Red blood
cells were separated from the plasma fraction by centrifugation, and the
packed red cells were then snap-frozen in liquid nitrogen and were stored
at −80 °C before use as a source of Hb for experimental studies. We collected
liver and pectoral muscle from each specimen as sources of genomic DNA
and globin mRNA, respectively. Muscle samples were snap-frozen or pre-
served using RNAlater and were subsequently stored at −80 °C before RNA
isolation. Voucher specimens were preserved along with ancillary data and
were deposited in the collections of the Museum of Southwestern Biology of
the University of New Mexico and the Centro de Ornitología y Biodiversidad
(CORBIDI), Lima, Peru. Complete specimen data are available via the ARCTOS
online database (Table S4).

Molecular Cloning and Sequencing.We cloned and sequenced the adult globin
genes (αA-, αD-, and βA-globin) from at least two specimens per species. We
used the RNeasy Mini Kit (Qiagen) to isolate RNA, and we used 5′ and 3′
RACE (Invitrogen Life Technologies) to obtain cDNA sequence for the 5′ and
3′ UTRs of each adult-expressed globin gene. After designing paralog-spe-
cific PCR primers with annealing sites in the 5′ and 3′ UTRs, complete cDNAs
were synthesized for each gene by reverse transcription using the OneStep
RT-PCR kit (Qiagen). We cloned gel-purified RT-PCR products into pCR4-
TOPO vector using the TOPO TA Cloning Kit (Invitrogen Life Technologies).
All new sequences were deposited in GenBank under accession nos. KF222496,
KF222499, KF222501, KF222503, KF222506, and KF222510–KF222539.

Characterization of Hb Isoform Composition. We used isoelectric focusing (IEF;
PhastSystem, GE Healthcare Bio-Sciences) to characterize Hb isoform com-
position in red cell lysates from each of the 70 hummingbird specimens. After
separating native Hbs by means of IEF, gel bands were excised and digested
with trypsin. The resultant peptides were then identified bymeans of tandem
mass spectrometry (MS/MS). Database searches of the resultant MS/MS
spectra were performed using Mascot (Matrix Science, v1.9.0), whereby
peptide mass fingerprints were used to query a custom database of avian
α- and β-chain sequences (17, 42–44), including αA-, αD-, and βA-globin
sequences from each of the surveyed hummingbird species. After sep-
arating the HbA and HbD isoforms by native gel IEF and identifying
each of the constituent subunits by MS/MS, the relative abundance of
the different isoforms in the hemolysates of each individual was
quantified densitometrically using ImageJ (45).

Protein Purification and Measurement of Hb-O2 Equilibria. The HbA and HbD
isoforms (isoelectric points = 8.9–9.1 and 6.8–7.3, respectively) were sepa-
rated and stripped of organic phosphates by means of ion-exchange chro-
matography. O2 equilibria of purified Hb solutions [3 μL thin-layer samples,
(heme) 0.3 mM] were measured at 37 °C in the presence of 0.1 M Hepes
buffer (pH 7.4). To characterize the allosteric regulation of Hb-O2 affinity,
we measured O2-equilibrium curves in the absence of allosteric effectors
(stripped), in the presence of Cl− ions (0.1 M KCl), in the presence of IHP (IHP/
Hb tetramer ratio = 2.0), and in the simultaneous presence of both effectors.
For details of the purification protocol and the measurement of Hb-O2

equilibrium curves, see SI Methods.

Vector Construction, Site-Directed Mutagenesis, and Synthesis of rHbs. To
produce rHbs for the protein engineering experiments, the αA- and βA-globin
genes of A. melanogenys were synthesized by Genscript after optimizing
nucleotide sequences with respect to Escherichia coli codon preferences.
Gene cassettes for the αA- and βA-globin genes and the methionine amino-
peptidase (MAP) gene were tandemly cloned into the custom pGM expres-
sion plasmid described by Natarajan et al. (21). All rHbs were expressed in
the JM109 (DE3) E. coli strain. See SI Methods for details regarding the site-
directed mutagenesis experiments, the expression and purification of the
hummingbird rHb mutants, the measurement of rHb oxygenation proper-
ties, and the measurement of epistasis.

Ancestral State Estimates. To infer the polarity of character-state changes at
β13 and β83, we sequenced the βA-globin gene of 63 hummingbird species
with known phylogenetic relationships. Orthologous sequence from the
common swift (Apus apus) was used as an outgroup. Fifty-six of the 63 nodes
in the independently derived phylogeny were resolved with >95% posterior
probability (Dataset S1). We estimated ancestral states of the β13-β83 geno-
types using maximum-likelihood and parsimony with the APE package in R (46).
Two of the observed genotypes included rare variants at β83 (β13Gly-β83Asn
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and β13Gly-β83Ala) that differed by a single codon change from physi-
ochemically similar alternative states (β83Ser and β83Gly, respectively). We
binned each of these singleton changes with the related codon state, resulting
in three classes of two-site β13-β83 genotypes. In the maximum-likelihood
model, we allowed only the two reversible transitions that each comprised
a single nucleotide change. We applied a model with one rate for all transitions
because likelihood ratio tests indicated that models with two to four rate
parameters were not justified (46) (Fig. 4). For details regarding the phyloge-
netic topology and phylogenetic comparative methods, see SI Methods.

Structural Modeling and Molecular Docking. Homology-models of humming-
bird Hb were built by the SWISS-MODEL server in the automated model (47),
using Anas platyrhynchos Hb (PDB ID code 3EOK) as template. For each of
the four rHb mutants, the root-mean-square-deviation was 0.74 �Å between
model and template and the QMEAN value remained between 0.70 and 0.78
for all models. Molecular docking of IHP in the Hb central cavity was performed

using AutoDock Vina (48). Internal molecular contacts were identified by the
Frustratometer program (49).
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SI Methods
Protein Purification. The HbA and HbD isoforms were separated
by passing the samples through an ion-exchange chromatography
column (HiTrap QHP, 5 × 1 mL, 17–1153-01; GE Healthcare)
equilibrated with 20 mM Tris buffer (pH 8.2) and eluted using
a linear gradient of 0–0.2 M NaCl. Samples were desalted by
overnight dialysis against three changes of 10 mM Hepes buffer
(pH 7.6) at 4 °C. Samples were concentrated (to >1 mM heme)
using Millipore centrifugal filter units (MW = 30,000; Millipore)
at 7,000 × g before freezing at −80 °C. Heme oxy concentration
(millimolar) was calculated from the absorbance peaks in the
visible region of the spectrum (577 nm and 540 nm) using stan-
dard extinction coefficients.

Hb-O2 Equilibria. O2-equilibrium curves were measured using
a modified O2 diffusion chamber where changes in absorption
(436 nm) of ultrathin (∼1.4 μm) layers of Hb solutions were
recorded following complete oxygenation (100% saturation) and
deoxygentation (0% saturation) of Hb, achieved via equilibra-
tion with pure O2 and N2, respectively, and complete equilibra-
tion to gas mixtures of varying O2 tension generated by precision
Wösthoff gas-mixing pumps, as described previously (1–3). Values
of P50 and n50 (Hill’s cooperativity coefficient at half-saturation)
were interpolated from the linear portion of Hill plots [log
([HbO2]/[Hb] vs. log PO2] based on four to six equilibration
steps between 30% and 70% oxygenation. Free Cl− concen-
trations were measured with a model 926S Mark II chloride
analyzer (Sherwood Scientific). We used standard concen-
trations of Cl− (0.1 M KCl) and inositol hexaphosphate (IHP;
IHP/Hb tetramer ratio = 2.0) (4, 5) that closely approximate
intraerythrocytic effector concentrations in vivo (6–8). Predicted
P50s of composite hemolysates were calculated as the average
value for HbA and HbD, weighted according to the naturally
occurring relative concentration of each isoform.

Vector Construction and Site-Directed Mutagenesis. The αA- and
βA-globin genes of Adelomyia melanogenys were synthesized by
Genscript after optimizing nucleotide sequences with respect
to Escherichia coli codon preferences. Gene cassettes for the
αA- and βA-globin genes and the methionine aminopeptidase
(MAP) gene were tandemly cloned into the custom pGM ex-
pression plasmid described by Natarajan et al. (9). To maxi-
mize efficiency in the posttranslational cleaving of N-terminal
methionines from the α- and β-chain polypeptides, an addi-
tional copy of the MAP gene was cloned into the pCO-MAP
plasmid with a kanamycin resistant gene and was coexpressed
with the pGM expression plasmid.
The A. melanogenys βA-globin was converted into theOreotrochilus

estella sequence by engineering two codon changes (β13Gly→Ser
and β83Gly→Ser) using site-directed mutagenesis. The same
procedure was used to engineer the two possible mutational
intermediates between the β-chain Hbs of the two species
(β13Ser-β83Gly and β13Gly-β83Ser). The mutagenesis ex-
periments were performed with the QuikChange II XL Site-
Directed Mutagenesis kit from Stratagene in accordance with
the manufacturer’s protocol. The presence of each engineered
codon change was verified by DNA sequencing. In addition to
the two above-mentioned β-chain substitutions, the major Hb
isoforms of A. melanogenys and O. estella are also distinguished
from one another by a single conservative α-chain substitution. We
retained the A. melanogenys character state at this site (α8Thr) in

all engineered rHbs to control for the effects of substitutions at
β13 and β83.

Expression, Purification, and Functional Analysis of Recombinant
Hemoglobins.All recombinant hemoglobins (rHbs) were expressed
in the JM109 (DE3) E. coli strain and the bacterial cells were
subject to dual selection in an LB agar plate containing ampicillin
and kanamycin to ensure that the transformants receive both the
pGM and pCO-MAP plasmids. Large-scale production was con-
ducted in 1- to 1.5-L batches containing TB medium. Cells were
grown at 37 °C in an orbital shaker at 200 rpm until absorbance
values reached 0.6–0.8 at 600 nm. The cells were induced with
0.2 mM isfopropyl-β-D-thiogalactopyranoside (IPTG) and were
then supplemented with hemin (50 μg/mL) and glucose (20 g/L).
The cells were then subsequently grown at 28° C for 16 h in an
orbital shaker at 200 rpm. The bacterial culture was saturated
with CO for 15 min and the cells were harvested by centrifuga-
tion and stored at −80 °C. Subsequently the cells were re-
suspended in lysis buffer (3 mL/g of cells, 50 mM Tris base,
1 mM EDTA, 0.5 mM DTT) and lysozyme (1 mg/g cells) was
added before sonication. Polyethyleneimine solution (0.5–1%)
was added to the crude lysates to precipitate nucleic acids. After
centrifugation (15,000 × g for 45 min at 4 °C), the clarified su-
pernatants were dialyzed overnight against three changes of 20 mM
Tris buffer (0.5 mM EDTA, 0.5 mM DTT, pH 7.6) at 4 °C.
Centrifugation at 14,000 × g was used to pellet cell debris. Re-
combinant Hbs were then purified in a two-step process using ion-
exchange chromatography. In the first step, the sample was passed
through a column (HiTrap SPHP, 5 × 5 mL, 17–1152-01) equili-
brated with 20 mM Tris buffer (0.5 mM EDTA, 0.5 mMDTT, pH
6.0) and was eluted using a linear gradient of 0–0.5 M NaCl. In the
second step the sample was passed through another ion-exchange
column (HiTrap QHP, 5 × 5 mL, 17–1153-01; GE Healthcare)
equilibrated with 20 mM Tris buffer (0.5 mM EDTA, 0.5 mM
DTT, pH 8.5) and was eluted using a linear gradient of 0–0.5 M
NaCl. Samples were desalted by overnight dialysis against three
changes of 10 mM Hepes buffer (pH 7.6) at 4 °C. If necessary,
samples were concentrated to >1 mM heme using Millipore
centrifugal filter units (MW = 30,000; Millipore) at 7000 × g be-
fore freezing at −80 °C. As a means of quality assessment, ab-
sorbance spectra of oxy, deoxy, and CO derivatives were measured
at 450–600 nm to confirm that the absorbance maxima of rHb
mutants corresponded to those of the native Hbs. O2-binding
equilibria of rHb solutions were measured using the same protocol
described above for the native Hb samples, and we used an en-
zymatic metHb reductase system (10) to maintain heme iron in
the ferrous Fe2+ state. The measured P50 values for the native Hbs
were based on pooled samples from multiple individuals per
species, so allelic variation in the α- and β-chain subunits con-
tributes to discrepancies in measured P50 values between the na-
tive Hbs, which have a heterogeneous amino acid composition,
and the recombinant Hbs, which have an invariant amino acid
composition.

Measurement of Epistasis. For the set of four rHb mutants rep-
resenting each possible two-site combination of amino acid
substitutions at β13 and β83, we tested for epistatic deviations
from the expectations of an additive model: e = (Pii + Pjj) − (Pij+
Pji), where Pij is the measured P50 of the rHb with substitutions
i and j at each site. The SE of the measured epistatic deviation,
a linear function of Pij, was calculated using the method of error
propagation:
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σe =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σP2

ii + σP2
jj + σP2

ij + σP2
ji

q
, and the 95% confidence interval

for e was computed as e ± σe × 1.96 (11). Epistasis between
a given pair of sites was considered to be statistically significant if
the 95% confidence interval for e did not include zero.

Phylogenetically Independent Contrasts.We used a four-gene DNA
sequence alignment for 151 species of hummingbirds (12), aug-
mented with 143 additional species and two additional nuclear
genes to estimate an ultrametric phylogeny using BEAST (13),

with branch-lengths scaled to relative time (Dataset S1). For the
10 species that were used in the experimental studies of Hb
function, we calculated phylogenetically independent contrasts
(PICs) of P50 values and regressed them against PICs of native
elevation. All nodes in the phylogeny of these 10 focal species
were resolved with 100% posterior probability. Elevational range
data were primarily taken from Parker et al. (14). Results were
consistent whether we used the maximum, midpoint, or mini-
mum of the species’ elevational range or the actual elevation at
which the specimens were collected.
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Fig. S1. Postnatally expressed Hb isoforms in avian red blood cells. The major isoform, HbA ðαA2β2Þ, has α-type subunits encoded by the αA-globin gene, and
the minor isoform, HbD ðαD2β2Þ, has α-type subunits encoded by the αD-globin gene. Both isoforms share identical β-type subunits encoded by the βA-globin
gene. The remaining members of the α- and β-globin gene families (αE-, ρ-, βH, and e-globin) are not expressed at appreciable levels in the definitive eryth-
rocytes of adult birds. Within each gene cluster, the intergenic spacing is not drawn to scale.
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Fig. S2. Diagram illustrating the allosteric regulation of Hb-O2 affinity. (A) The oxygenation reaction of tetrameric Hb (α2β2) involves an allosteric transition in
quaternary structure from the low-affinity T-state to the high-affinity R-state. The oxygenation-induced T→R transition entails a breakage of salt bridges and
hydrogen bonds within and between subunits (open squares), dissociation of allosterically bound organic phosphates (OPHs), Cl− ions, and protons, and the
release of heat (heme oxygenation is an exothermic reaction). Deoxygenation-linked proton binding occurs at multiple residues in the α- and β-chains, Cl−

binding mainly occurs at the N-terminal α-amino groups of the α- and β-chains in addition to other residues in both chains, and phosphate binding occurs
between the β-chains in the central cavity of the Hb tetramer. (B) O2-equilibrium curves for purified Hb in the absence of allosteric effectors (stripped) and in
the presence of chloride ions (+Cl−) and organic phosphates (+OPH). The preferential binding of allosteric effectors to deoxyHb stabilizes the T-state, thereby
shifting the allosteric equilibrium in favor of the low-affinity quaternary structure. The O2-equilibrium curves are therefore right-shifted (Hb-O2 affinity is
reduced) in the presence of allosteric effectors. Hb-O2 affinity is indexed by the P50 value, the PO2 at which Hb is half-saturated. The sigmoidal shape of the
O2-equilibrium curves reflects cooperative O2-binding, involving a PO2-dependent shift from low- to high-affinity conformations.
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Fig. S3. O2-equilibrium curves for purified HbA isoforms of high- and low-altitude hummingbird species. (A) Within the Coquettes, the Andean hillstar
(Oreotrochilus estella), a montane species that occurs at elevations up to ∼4,600 m, has a much higher Hb-O2 affinity (i.e., a left-shifted O2-equilibrium curve)
relative to the speckled hummingbird (Adelomyia melanogenys), which is a middle-elevation species (1,000–2,900 m). (B) Within the Brilliants, the white-tufted
sunbeam (Aglaeactis castelnaudii), a montane species that occurs at elevations up to ∼4,600 m, has a much higher Hb-O2 affinity relative to the bronzy Inca
(Coeligena coeligena), which is native to the subtropical zone (1,000–2,200 m). (C) The giant hummingbird (Patagona gigas), which occurs at elevations up to
∼4,300 m, has a higher Hb-O2 affinity than the Amazilia hummingbird (A. amazilia), which is generally restricted to sea-level environments. See Table 1 for
a summary of data on Hb function for all 10 species.
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αA
-globin αD

-globin βA -globin
8 13 15 22 23 28 69 70 76 83 11 13 15 16 26 30 34 38 55 90 101 111 115 116 118 121 139 13 21 22 44 52 83

Common swift, Apus apus T V A E A A A A I L Q V D K A Q T Q I N L T K D T I K G A D S T S
Adelomyia melanogenys · · · · · T · V · · T · · · · T V T V · · · · · · V E · E Q · · G
Oreotrochilus estella S · · · · T · V · · T · · · · T V T · · · · · · · · · S E Q · · ·
Oreotrochilus melanogaster S · · · · T · V · · T · · · · T V T · · · · · · · · · S E Q N · ·
Aglaeactis castelnaudii · L G D · T · V · · S I · · · T V · · · · · · · S V · · E Q · · ·
Coeligena coeligena · L G · · · · · · · S · · · V T V · · D P · E G S V · · E Q · S G
Coeligena violifer · L G · · · · V M · S I · R · T V · · · · · · · S V · · E Q · · ·
Patagona gigas · · · · · T · V · · S · · · · T V T · · · · · · · V E S · · · · ·
Amazilia viridicauda · I · · D T · V · · T I E · · T V · V · · · · · · V · · · · · · ·
Amazilia amazilia · I · · D T · V · · T I E · · A V · V · · · · · · V · · · E · · G
Phaethornis malaris · I · · D T P V · F A I · · · T A · V · · S · E · V · · · E · · G

Fig. S4. Variable residue positions in a multiple alignment of hummingbird globin sequences. Orthologous sequences from the common swift (Apus apus) are
included for comparison. High-altitude species with maximum elevational ranges of >3,000 m are denoted by shading. Sequences represent the most common
haplotypes for each species. Across all three adult-expressed globin genes (αA-, αD-, and β-globin), 33 of 428 amino acid sites are variable. Of the 33 variable
sites, 12 have undergone repeated changes (parallelisms or reversals). Of those 12 sites, only β13 and β83 have undergone repeated amino acid replacements
that are significantly associated with shifts in elevation (see text for details).
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Fig. S5. Parsimony reconstructions reveal repeated substitutions and back-substitutions at β13 and β83 that are coincident with elevational range shifts during
the diversification of Andean hummingbirds. Parsimony reconstructions of β13-β83 genotype were performed using accelerated (ACCTRAN) and delayed
(DELTRAN) optimization to maximize reversals and parallel changes, respectively. The minimum number of transitions between Gly and Ser across the phy-
logeny of these 63 hummingbird species is 17, including 13 changes at β83 and 4 changes at β13. Regardless of the optimization scheme, Gly→Ser replacements
at both sites are associated with upward shifts in elevation (+ symbols) relative to the immediate ancestor, whereas Ser→Gly replacements are associated with
downward shifts in elevation (– symbols). In the ACCTRAN optimized scenario, the change that maps to the common ancestor of all hummingbirds is not
associated with any inferred elevation change, which is why only 16 changes were included in the contingency table. Ancestral states for maximum elevation
were estimated using maximum-likelihood.
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Table S1. Linear regressions of Hb-O2 affinity (P50, torr) vs. native elevation for South
American hummingbirds

PIC Nonphylogenetic

X Y R2 P value R2 P value

Midpoint elevation HbA (stripped) 0.884 5.3 × 10−5 0.842 1.8 × 10−4

HbA (+KCl) 0.538 0.016 0.796 0.001
HbA (+IHP) 0.430 0.040 0.802 0.001
HbA (+KCl+IHP) 0.737 0.001 0.651 0.005
HbD (stripped) 0.877 0.019 0.820 0.034
HbD (+KCl) 0.767 0.052 0.955 0.004
HbD (+IHP) 0.890 0.016 0.851 0.026
HbD (+KCl+IHP) 0.779 0.047 0.800 0.041
HbA+HbD (stripped) 0.973 0.002 0.970 0.006
HbA+HbD (+KCl) 0.928 0.008 0.887 0.017
HbA+HbD (+IHP) 0.995 1.5 × 10−4 0.995 1.4 × 10−4

HbA+HbD (+KCl+IHP) 0.983 9.7 × 10−4 0.969 0.002
Maximum elevation HbA (stripped) 0.800 4.7 × 10−4 0.749 0.001

HbA (+KCl) 0.497 0.023 0.754 0.001
HbA (+IHP) 0.384 0.056 0.710 0.002
HbA (+KCl+IHP) 0.581 0.010 0.512 0.020
HbD (stripped) 0.978 0.001 0.949 0.005
HbD (+KCl) 0.967 0.003 0.956 0.004
HbD (+IHP) 0.987 0.001 0.974 0.002
HbD (+KCl+IHP) 0.889 0.016 0.926 0.009
HbA+HbD (stripped) 0.865 0.022 0.793 0.043
HbA+HbD (+KCl) 0.947 0.005 0.904 0.013
HbA+HbD (+IHP) 0.893 0.015 0.855 0.024
HbA+HbD (+KCl+IHP) 0.787 0.045 0.714 0.072

Analysis of the HbA isoform was based on data from all 10 species, whereas the analysis of HbD and the
weighted average of both isoforms (HbA+HbD) was based on data from a subset of five species (see main text
for details). Coefficients of determination (R2) and associated P values are given for regressions based on
phylogenetically independent contrasts (PICs) and ordinary least-squares regressions that treat values for each
species as independent datapoints. Results are shown for PIC and nonphylogenetic regressions using the mid-
points and upper limits of the species-typical elevational ranges.

Table S2. Functional properties of recombinant hummingbird HbA mutants

rHb mutant

Stripped + IHP + KCl + IHP

P50 n50 P50 n50 P50 n50

β13Gly-β83Gly 2.74 ± 0.03 1.33 ± 0.04 24.22 ± 0.90 2.03 ± 0.17 19.38 ± 0.41 1.42 ± 0.07
β13Ser-β83Gly 3.21 ± 0.14 1.40 ± 0.03 13.79 ± 0.24 1.52 ± 0.10 10.99 ± 0.06 1.50 ± 0.11
β13Gly-β83Ser 3.08 ± 0.06 1.42 ± 0.02 16.73 ± 0.65 1.52 ± 0.10 11.76 ± 1.09 1.36 ± 0.06
β13Ser-β83Ser 3.21 ± 0.06 1.55 ± 0.07 24.70 ± 0.40 1.98 ± 0.08 16.31 ± 0.90 1.89 ± 0.11

O2-affinities (P50, torr) and cooperativity coefficients (n50; mean ± SEM) measured in 0.1 M Hepes buffer at pH
7.40, 37 °C. Measurements were conducted in the absence of allosteric effectors (stripped), in the presence of
IHP (IHP/Hb tetramer ratio = 2.0), and in the presence of both KCl (0.1 M) and IHP. [Heme], 0.3 mM.
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Table S3. Variation among hummingbird β-globin variants in the nature of atomic contacts
involving residue positions β13 and β83

Hb Res 1 Res 2 CF MF SASA1 SASA2 Interaction

β13Gly-β83Gly 13G 15W −0.215 −0.208 0.493 0.252 Short
13G 16G −0.818 −0.673 0.493 0.827 Short
13G 17K −0.910 −0.636 0.493 0.618 Water
13G 18V −1.324 0.792 0.493 0.107 Water
13G 75V −0.245 0.796 0.493 0.099 Water
13G 126C −0.875 0.763 0.493 0.048 Long
83G 85F −0.385 −0.315 0.613 0.028 Short
83G 86A −1.569 −1.227 0.613 0.432 Short
83G 87Q −1.113 −0.898 0.613 0.844 Water
83G 89S 0.070 −0.766 0.613 0.020 Long
83G 140A −0.248 0.316 0.613 0.029 Long
83G 143R 0.511 −0.895 0.613 0.440 Water

β13Ser-β83Ser 13S 15W −0.172 −0.572 0.535 0.252 Water
13S 16G −1.223 −1.082 0.535 0.824 Water
13S 17K −0.874 −0.957 0.535 0.588 Water
13S 121D −1.203 −0.141 0.535 0.602 Water
13S 126C −0.560 0.680 0.535 0.048 Long
83S 85F −0.185 −0.399 0.631 0.028 Long
83S 86A −1.672 −1.011 0.631 0.427 Short
83S 140A −0.312 0.365 0.631 0.029 Long

β13Ser-β83Gly 13S 15W −0.220 −0.573 0.535 0.252 Water
13S 16G −1.184 −1.102 0.535 0.824 Water
13S 17K −0.796 −0.949 0.535 0.588 Water
13S 121D −1.211 −0.141 0.535 0.602 Water
13S 126C −0.561 0.640 0.535 0.048 Long
83G 85F −0.429 −0.303 0.609 0.028 Short
83G 86A −1.571 −1.143 0.609 0.432 Short
83G 87Q −1.128 −0.934 0.609 0.844 Water
83G 89S −0.000 −0.811 0.609 0.020 Long
83G 140A −0.267 0.338 0.609 0.029 Long
83G 143R 0.395 −0.854 0.609 0.440 Water

β13Gly-β83Ser 13G 15W −0.199 −0.198 0.493 0.252 Short
13G 16G −0.847 −0.703 0.493 0.827 Short
13G 17K −0.863 −0.700 0.493 0.618 Water
13G 18V −1.247 0.736 0.493 0.107 Water
13G 75V −0.221 0.754 0.493 0.099 Water
13G 126C −0.821 0.844 0.493 0.048 Long
83S 85F −0.179 −0.404 0.631 0.028 Long
83S 86A −1.798 −1.148 0.631 0.429 Short
83S 140A −0.264 0.321 0.631 0.029 Long

β13Gly-β83Gly and β13Ser-β83Ser represent the wild-type genotypes of A. melanogenys and O. estella, re-
spectively, and the other two genotypes represent mutational intermediates. Res 1 and 2 are identities of
residues forming the contact (numbered from 1 to N). CF, configurational frustration index, which measures
the interaction free energy for a given pair of native residues relative to the interaction free energies of all
possible amino acid site-pairs in a similarly compact structure; MF, mutational frustration index, which measures
the interaction free energy for a given pair of native residues relative to the interaction free energies between
all possible amino acid site-pairs with the same coordinates; SASA1 and 2, solvent accessible surface area
fractions for sites 1 and 2, respectively. Interaction: type of atomic contact: short range (short), long range
(long), mediated by water molecule (water).
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Table S4. Voucher specimens of South American hummingbirds used in the experimental analysis of Hb function

Species Elevation (m) NK tissue no. MSB catalog number and direct Weblink to specimen data

Adelomyia melanogenys 1,395 161266 http://arctos.database.museum/guid/MSB:Bird:27492
Adelomyia melanogenys 1,395 161331 http://arctos.database.museum/guid/MSB:Bird:27552
Adelomyia melanogenys 2,102 163564 http://arctos.database.museum/guid/MSB:Bird:31892
Adelomyia melanogenys 2,111 163645 http://arctos.database.museum/guid/MSB:Bird:31973
Adelomyia melanogenys 2,052 163657 http://arctos.database.museum/guid/MSB:Bird:31985
Adelomyia melanogenys 2,144 163756 http://arctos.database.museum/guid/MSB:Bird:32084
Adelomyia melanogenys 2,147 163838 http://arctos.database.museum/guid/MSB:Bird:32166
Aglaeactis castelnaudii 4,470 159782 http://arctos.database.museum/guid/MSB:Bird:27124
Aglaeactis castelnaudii 4,330 159783 http://arctos.database.museum/guid/MSB:Bird:27125
Aglaeactis castelnaudii 4,030 159798 http://arctos.database.museum/guid/MSB:Bird:27140
Aglaeactis castelnaudii 4,330 159801 http://arctos.database.museum/guid/MSB:Bird:27143
Aglaeactis castelnaudii 4,470 159808 http://arctos.database.museum/guid/MSB:Bird:27149
Aglaeactis castelnaudii 4,300 159809 http://arctos.database.museum/guid/MSB:Bird:27150
Aglaeactis castelnaudii 4,578 169373 http://arctos.database.museum/guid/MSB:Bird:34147
Amazilia amazilia 366 162007 http://arctos.database.museum/guid/MSB:Bird:27595
Amazilia amazilia 366 162009 http://arctos.database.museum/guid/MSB:Bird:27597
Amazilia amazilia 366 162020 http://arctos.database.museum/guid/MSB:Bird:27604
Amazilia amazilia 366 162024 http://arctos.database.museum/guid/MSB:Bird:27608
Amazilia amazilia 366 162026 http://arctos.database.museum/guid/MSB:Bird:31222
Amazilia amazilia 366 162027 http://arctos.database.museum/guid/MSB:Bird:31223
Amazilia amazilia 352 163017 http://arctos.database.museum/guid/MSB:Bird:31453
Amazilia amazilia 132 168989 http://arctos.database.museum/guid/MSB:Bird:33763
Amazilia amazilia 115 169303 http://arctos.database.museum/guid/MSB:Bird:34077
Amazilia viridicauda 3,005 159899 http://arctos.database.museum/guid/MSB:Bird:27227
Amazilia viridicauda 3,005 159900 http://arctos.database.museum/guid/MSB:Bird:27228
Amazilia viridicauda 3,005 159901 http://arctos.database.museum/guid/MSB:Bird:27229
Amazilia viridicauda 2,953 168478 http://arctos.database.museum/guid/MSB:Bird:33259
Amazilia viridicauda 2,953 168480 http://arctos.database.museum/guid/MSB:Bird:33261
Amazilia viridicauda 2,900 168488 http://arctos.database.museum/guid/MSB:Bird:33269
Amazilia viridicauda 2,953 168493 http://arctos.database.museum/guid/MSB:Bird:33274
Coeligena coeligena 2,052 163658 http://arctos.database.museum/guid/MSB:Bird:31986
Coeligena coeligena 2,052 163741 http://arctos.database.museum/guid/MSB:Bird:32069
Coeligena coeligena 2,131 163914 http://arctos.database.museum/guid/MSB:Bird:32242
Coeligena coeligena 2,100 163915 http://arctos.database.museum/guid/MSB:Bird:32243
Coeligena coeligena 2,052 167517 http://arctos.database.museum/guid/MSB:Bird:32345
Coeligena coeligena 2,240 167534 http://arctos.database.museum/guid/MSB:Bird:32362
Coeligena coeligena 2,052 167823 http://arctos.database.museum/guid/MSB:Bird:32651
Coeligena violifer 2,798 163129 http://arctos.database.museum/guid/MSB:Bird:31564
Coeligena violifer 2,778 163210 http://arctos.database.museum/guid/MSB:Bird:31645
Coeligena violifer 2,810 163213 http://arctos.database.museum/guid/MSB:Bird:31648
Coeligena violifer 3,710 163485 http://arctos.database.museum/guid/MSB:Bird:31813
Coeligena violifer 2,858 168451 http://arctos.database.museum/guid/MSB:Bird:33232
Coeligena violifer 3,688 169121 http://arctos.database.museum/guid/MSB:Bird:33895
Coeligena violifer 3,688 169124 http://arctos.database.museum/guid/MSB:Bird:33898
Coeligena violifer 3,779 169232 http://arctos.database.museum/guid/MSB:Bird:34006
Oreotrochilus estella 4,363 169336 http://arctos.database.museum/guid/MSB:Bird:34110
Oreotrochilus estella 4,391 169357 http://arctos.database.museum/guid/MSB:Bird:34131
Oreotrochilus estella 4,512 169396 http://arctos.database.museum/guid/MSB:Bird:34170
Oreotrochilus melanogaster 3,840 163409 http://arctos.database.museum/guid/MSB:Bird:31737
Oreotrochilus melanogaster 3,750 163419 http://arctos.database.museum/guid/MSB:Bird:31747
Oreotrochilus melanogaster 3,974 168616 http://arctos.database.museum/guid/MSB:Bird:33397
Oreotrochilus melanogaster 4,150 168641 http://arctos.database.museum/guid/MSB:Bird:33422
Oreotrochilus melanogaster 4,088 168649 http://arctos.database.museum/guid/MSB:Bird:33430
Oreotrochilus melanogaster 4,082 168655 http://arctos.database.museum/guid/MSB:Bird:33436
Oreotrochilus melanogaster 4,140 168656 http://arctos.database.museum/guid/MSB:Bird:33437
Patagona gigas 3,360 159890 http://arctos.database.museum/guid/MSB:Bird:27221
Patagona gigas 3,967 163090 http://arctos.database.museum/guid/MSB:Bird:31526
Patagona gigas 3,967 163099 http://arctos.database.museum/guid/MSB:Bird:31535
Patagona gigas 3,973 163100 http://arctos.database.museum/guid/MSB:Bird:31536
Patagona gigas 3,973 163108 http://arctos.database.museum/guid/MSB:Bird:31544
Patagona gigas 3,750 163373 http://arctos.database.museum/guid/MSB:Bird:31701
Patagona gigas 3,750 163391 http://arctos.database.museum/guid/MSB:Bird:31719
Patagona gigas 4,082 168693 http://arctos.database.museum/guid/MSB:Bird:33474
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Other Supporting Information Files

Dataset S1 (PDF)

Table S4. Cont.

Species Elevation (m) NK tissue no. MSB catalog number and direct Weblink to specimen data

Phaethornis malaris 353 162160 http://arctos.database.museum/guid/MSB:Bird:27711
Phaethornis malaris 350 162199 http://arctos.database.museum/guid/MSB:Bird:27743
Phaethornis malaris 360 162253 http://arctos.database.museum/guid/MSB:Bird:31267
Phaethornis malaris 323 162297 http://arctos.database.museum/guid/MSB:Bird:31273
Phaethornis malaris 365 162333 http://arctos.database.museum/guid/MSB:Bird:27859
Phaethornis malaris 317 162362 http://arctos.database.museum/guid/MSB:Bird:27883

The listed Weblinks to the Museum of Southwestern Biology (MSB) online catalog provide detailed locality information and
ancillary data for each of the 70 specimens.
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Dataset S1. Phylogeny and trait data for comparative analyses. (A) The phylogeny that was 
used for the ancestral state estimates of elevation and β13- β83 genotype as depicted in Figure 
4, in Newick format. Node labels are posterior probability estimates for each clade. Branch 
lengths are proportional to relative time. (B) The data used for comparative analyses of 63 
hummingbird species, including the species’ maximum elevation, minimum elevation, and the 
amino acids at positions β13 and β83. 
 
A.  
(apus_apus:42.5,((florisuga_mellivora:21.58251284,(eutoxeres_condamini:19.59179945,((threnetes_leuc
urus:7.593799152,glaucis_hirsutus:7.593799152)1.00:5.458735986,((phaethornis_syrmatophorus:7.0404
04114,(phaethornis_guy:4.536745179,phaethornis_malaris:4.536745179)0.87:2.503658935)1.00:0.7325
615839,(phaethornis_hispidus:7.526412547,phaethornis_ruber:7.526412547)0.94:0.2465531508)1.00:5.
27956944)1.00:6.539264308)1.00:1.990713397)1.00:0.8030054618,(((doryfera_ludovicae:12.78813896,(
schistes_geoffroyi:11.77392866,colibri_coruscans:11.77392866)1.00:1.014210299)1.00:5.76138279,anth
racothorax_nigricollis:18.54952174)1.00:1.5234818,((((haplophaedia_aureliae:11.4814989,(eriocnemis_a
linae:7.215116008,eriocnemis_luciani:7.215116008)1.00:4.266382893)1.00:2.348433693,((lafresnaya_la
fresnayi:11.83844458,aglaeactis_castelnaudii:11.83844458)0.88:1.356892144,((((ensifera_ensifera:10.2
1230199,pterophanes_cyanopterus:10.21230199)1.00:1.625966458,(boissonneaua_matthewsii:10.1139
4209,ocreatus_underwoodii:10.11394209)1.00:1.724326357)0.97:0.5522489052,(clytolaema_rubricauda:
9.184226467,((heliodoxa_imperatrix:4.600810376,heliodoxa_rubinoides:4.600810376)1.00:0.485043223
3,heliodoxa_leadbeateri:5.085853599)1.00:4.098372868)0.99:3.206290882)1.00:0.4065088099,(coelige
na_coeligena:9.655568467,(coeligena_torquata:6.102444883,(coeligena_violifer:4.772037487,(coeligena
_iris:3.203338608,coeligena_lutetiae:3.203338609)1.00:1.568698878)1.00:1.330407396)1.00:3.5531235
83)1.00:3.141457693)0.73:0.3983105689)1.00:0.6345958663)1.00:1.671283968,(((lophornis_chalybeus:
2.267283906,lophornis_delattrei:2.267283906)1.00:5.543762026,(discosura_longicauda:4.997402833,dis
cosura_langsdorffi:4.997402834)1.00:2.813643099)1.00:6.403304237,(phlogophilus_harterti:13.2108949
2,((heliangelus_amethysticollis:3.530452247,(heliangelus_viola:3.261148903,heliangelus_micraster:3.26
1148903)0.99:0.269303344)1.00:8.587493192,((adelomyia_melanogenys:8.596382441,aglaiocercus_kin
gi:8.59638244)1.00:1.364615777,((oreotrochilus_estella:1.211047725,oreotrochilus_melanogaster:1.211
047726)1.00:6.627644559,(polyonymus_caroli:7.495200005,((chalcostigma_herrani:5.130842394,(chalc
ostigma_stanleyi:4.811536371,(chalcostigma_ruficeps:4.571696761,chalcostigma_olivaceum:4.5716967
61)0.46:0.23983961)0.86:0.3193060232)1.00:0.9657565811,(metallura_phoebe:4.476686487,metallura_
tyrianthina:4.476686487)1.00:1.619912488)1.00:1.398601031)0.94:0.3434922789)1.00:2.122305934)1.0
0:2.15694722)1.00:1.092949481)1.00:1.003455251)1.00:1.286866392)1.00:0.8534145773,(patagona_gi
gas:14.38065922,((eugenes_fulgens:11.524263,((calliphlox_amethystina:3.341953595,thaumastura_cora
:3.341953595)1.00:1.683541112,selasphorus_platycercus:5.025494707)1.00:6.498768296)1.00:2.33638
6548,(chlorostilbon_aureoventris:12.43311726,(thalurania_furcata:11.33366768,(taphrospilus_hypostictu
s:8.855630206,((amazilia_amazilia:4.105048477,chrysuronia_oenone:4.105048477)1.00:1.242588118,(a
mazilia_lactea:2.914837093,(amazilia_chionogaster:1.796389023,amazilia_viridicauda:1.796389023)1.0
0:1.118448069)1.00:2.432799503)1.00:3.507993611)1.00:2.478037477)1.00:1.099449577)1.00:1.42753
2291)1.00:0.520009674)1.00:1.973971915)1.00:3.718372406)1.00:2.312514759)1.00:20.1144817); 

 
B.  

Species Maximum 
elevation (m) 

Minimum 
elevation (m) β13 β83  

Adelomyia melanogenys 2900 1000 Gly Gly 
Aglaeactis castelnaudii 4200 3100 Gly Ser 
Aglaiocercus kingi 2600 1300 Gly Gly 
Amazilia amazilia 1000 0 Gly Gly 
Amazilia chionogaster 2800 0 Gly Ser 
Amazilia lactea 900 0 Gly Gly 
Amazilia viridicauda 3100 1000 Gly Ser 



Anthracothorax nigricollis 1000 0 Gly Gly 
Apus apus 3300 0 Gly Ser 
Boissonneaua matthewsii 2700 1550 Gly Ser 
Calliphlox amethystina 1050 0 Gly Gly 
Chalcostigma herrani 3400 2700 Gly Ser 
Chalcostigma olivaceum 4500 3150 Ser Ser 
Chalcostigma ruficeps 3300 2250 Gly Ser 
Chalcostigma stanleyi 4400 3350 Ser Ser 
Chlorostilbon aureoventris 2500 0 Gly Gly 
Chrysuronia oenone 1650 0 Gly Gly 
Clytolaema rubricauda 2000 750 Gly Gly 
Coeligena coeligena 2200 1000 Gly Gly 
Coeligena iris 3500 1500 Gly Ser 
Coeligena lutetiae 3750 3000 Gly Ser 
Coeligena torquata 2800 1700 Gly Gly 
Coeligena violifer 3900 2500 Gly Ser 
Colibri coruscans 3600 1300 Gly Ser 
Discosura langsdorffi 800 0 Gly Gly 
Discosura longicauda 700 0 Gly Gly 
Doryfera ludovicae 2800 1200 Gly Asn 
Ensifera ensifera 3600 2200 Gly Ser 
Eriocnemis alinae 2800 2000 Gly Ser 
Eriocnemis luciani 3750 2600 Gly Ser 
Eugenes fulgens 3300 1300 Gly Ser 
Eutoxeres condamini 2750 0 Gly Gly 
Florisuga mellivora 900 0 Gly Gly 
Glaucis hirsutus 1100 0 Gly Gly 
Haplophaedia aureliae 2500 1400 Gly Gly 
Heliangelus amethysticollis 3300 1800 Gly Gly 
Heliangelus micraster 2900 2400 Gly Gly 
Heliangelus viola 3050 2150 Gly Gly 
Heliodoxa imperatrix 1800 900 Gly Gly 
Heliodoxa leadbeateri 2300 1050 Gly Gly 
Heliodoxa rubinoides 2650 1700 Gly Gly 
Lafresnaya lafresnayi 3350 2300 Gly Ser 
Lophornis chalybeus 600 0 Gly Gly 
Lophornis delattrei 2000 0 Gly Gly 
Metallura phoebe 4400 2500 Gly Ser 
Metallura tyrianthina 3500 2400 Gly Ser 
Ocreatus underwoodii 2500 1050 Gly Ser 
Oreotrochilus estella 4600 3400 Ser Ser 
Oreotrochilus melanogaster 4800 3500 Ser Ser 
Patagona gigas 4300 0 Ser Ser 



Phaethornis guy 2000 800 Gly Gly 
Phaethornis hispidus 500 0 Gly Gly 
Phaethornis malaris 1300 0 Gly Gly 
Phaethornis ruber 900 0 Gly Gly 
Phaethornis syrmatophorus 2400 1100 Gly Gly 
Phlogophilus harterti 1200 750 Gly Ala 
Polyonymus caroli 2800 1500 Gly Ser 
Pterophanes cyanopterus 3700 2600 Gly Ser 
Schistes geoffroyi 2250 1100 Gly Gly 
Selasphorus platycercus 3750 1900 Gly Ser 
Taphrospilus hypostictus 1350 750 Gly Gly 
Thalurania furcata 1700 0 Gly Ser 
Thaumastura cora 3000 0 Gly Ser 
Threnetes leucurus 1050 0 Gly Gly 
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