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Abstract: Combining the concepts of synthetic symmetrization with the approach of engineering

metal-binding sites, we have developed a new crystallization methodology termed metal-mediated

synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on
the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon

coordination with metal. Metal-mediated synthetic symmetrization greatly expands the packing

and oligomeric assembly possibilities of target proteins, thereby increasing the chances of
growing diffraction-quality crystals. To demonstrate this method, we designed various T4 lysozyme

(T4L) and maltose-binding protein (MBP) mutants and cocrystallized them with one of three metal

ions: copper (Cu21), nickel (Ni21), or zinc (Zn21). The approach resulted in 16 new crystal
structures—eight for T4L and eight for MBP—displaying a variety of oligomeric assemblies and

packing modes, representing in total 13 new and distinct crystal forms for these proteins. We

discuss the potential utility of the method for crystallizing target proteins of unknown structure by
engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the

varied crystallization-prone forms of T4L or MBP engineered in this work could be used as

crystallization chaperones, by fusing them genetically to target proteins of interest.

Keywords: protein crystallization; protein design; metal binding; symmetry

Introduction

A common bottleneck in protein X-ray crystallogra-

phy is the ability to grow diffraction-quality crystals.

Although high-throughput robotics now makes it

possible to screen vast numbers of crystallization

conditions, some proteins remain recalcitrant to

crystallization. Many approaches have been devel-

oped to improve the success rate for crystallization,

for example, systematically truncating the target

protein,1,2 methylating the lysine residues,3,4 remov-

ing post-translational modifications,5–7 screening

homologues of the target protein for crystalliza-

tion,8,9 fusing the target protein to a carrier pro-

tein,10–13 crystallizing racemic mixtures of the target

protein,14–20 and cocrystallizing the target protein

with antibodies or other binding proteins.21–23 A

number of those methods have been reviewed.24

Recently, rational mutagenesis of protein sur-

face residues has been proposed to improve the crys-

tallizability of target proteins, including methods

referred to as ‘‘surface entropy reduction’’ (SER)25

and ‘‘synthetic symmetrization’’ (or crystal lattice en-

gineering).26–28 The SER method typically replaces

Additional Supporting Information may be found in the online
version of this article.

Arthur Laganowsky, Minglei Zhao, and Angela B. Soriaga
contributed equally to this work.
†Laganowsky’s present address is Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Oxford, UK.

Grant sponsor: Department of Energy Office of Science (BER
program); Grant number: DE-FC03-02ER63421; Grant sponsor:
NIH; Grant number: 5T32GM008496, GM067555

*Correspondence to: Todd O. Yeates, Department of Chemistry
and Biochemistry, University of California, Los Angeles, CA
90095-1569. E-mail: yeates@mbi.ucla.edu

1876 PROTEIN SCIENCE 2011 VOL 20:1876—1890 Published by Wiley-Blackwell. VC 2011 The Protein Society



solvent-exposed, flexible amino acids, such as Lys,

Glu, and Gln, with less flexible residues, such as

Ala. It has been successfully used for several protein

targets,29–31 and a web-based server has been cre-

ated to suggest suitable mutation sites in any given

protein sequence.30 Synthetic symmetrization

involves introducing into the surface of a protein

specific motifs likely to drive symmetric self-associa-

tion. Motivation for the approach derives in part

from the observation that protein oligomers tend to

crystallize in space groups that support the point

group symmetry of the oligomer.26 In such cases,

some of the contacts required to establish a crystal

lattice are essentially built in to the oligomer, mean-

ing that fewer fortuitous contacts are required.16

The general strategy is also amenable to variation;

different modes of engineered oligomerization lead

to distinctly different opportunities for crystalliza-

tion. One method already demonstrated for syntheti-

cally dimerizing a protein is to introduce a single

cysteine on the surface and then form an intermolec-

ular disulfide bond. That method was applied first to

crystallize bacteriophage T4 lysozyme (T4L) in sev-

eral new crystal forms26 and then to crystallize an

enzyme of previously unknown structure.27 In a par-

allel strategy (alternately coined crystal lattice engi-

neering), a series of surface-exposed helix residues

were mutated to leucine to promote dimerization by

way of an intermolecular leucine zipper28; a subse-

quent application of that approach produced crystals

by way of heterotypic interactions between the engi-

neered half-leucine zipper and a distinct surface

region from another protein molecule, rather than

by way of a symmetric self-association.32 Despite the

successes demonstrated so far by the disulfide- and

leucine-zipper-based approaches to synthetic sym-

metrization, they suffer from a limited type of sym-

metric association; both are designed to produce

dimers.

It is known that metals play a very important

role in oligomerization and crystallization of pro-

teins.33–35 For example, in the high-resolution crys-

tal structure of truncated alphaA crystallin,36 a zinc-

binding motif is formed by three chains, and zinc

promotes protein oligomerization and crystallization.

The compound tetrathiomolybdate, used in the treat-

ment of copper metabolism disorders, reacts with

the copper binding metallochaperone, Atx1, forming

a stable complex.37 The crystal structure of this com-

plex reveals a trimer of Atx1 molecules mediated

through the bound tetrathiomolybdate molecule.

Tezcan and coworkers38–42 have studied metal-

directed protein self-assembly on the model protein,

cytochrome b562, focusing primarily on the evolution

of metal coordination in protein folds and complexes.

Their work has shown that by introducing histidine

mutations on the alpha helical surface of cytochrome

b562, the protein can oligomerize to form dimers to

tetramers, all of which are mediated through metal

binding. Furthermore, the metals present within a

protein crystal can provide the experimental phases

needed for its structure determination.43 Although

the incorporation of selenomethionine into proteins

has become a standard method for exploiting anoma-

lous scattering information,44 natural metal-binding

sites containing copper, iron, nickel, cobalt, or zinc

atoms have also been utilized for protein structure

determination via anomalous dispersion (see Refs.

45–49 and references therein).

Here, we propose a new crystallization method-

ology, termed metal-mediated synthetic symmetriza-

tion, which combines the idea of synthetic symmetri-

zation with strategies—following work by Tezcan

et al.42—for engineering metal-binding sites at pro-

tein interfaces. This method has the potential to pro-

duce a variety of new crystal forms by introducing

new contacts between protein molecules in the lat-

tice through metal binding interactions, thereby

increasing the chances of obtaining diffraction-qual-

ity crystals. We demonstrate the applicability of

metal-mediated symmetrization using two proteins

commonly used as fusion partners for crystallization

trials: T4L and maltose-binding protein (MBP). We

discuss potential advantages of this method over

current approaches and ways to use the method on

proteins of unknown structure, through either direct

mutations on the target protein or fusion of the tar-

get protein to metal-site mutants of T4L or MBP,

which could serve as crystallization chaperones.

Results

Rationale and design of mutations
On the basis of previous studies regarding natural

or engineered metal-binding sites, we rationalized

that mutations of solvent-exposed residue pairs i

and i þ 4 of a helix50–53 or i and i þ 3 of a helix-

loop37 to a pair of either histidine or cysteine resi-

dues would induce homooligomeric assemblies upon

incubation with metal. Specifically, we predicted the

metal site within these assemblies to take on a

tetrahedral or octahedral coordination, in which the

mutated histidines or cysteines among the molecules

participate in the metal coordination. Such coordina-

tion geometries are commonly found in proteins33,54

and have been engineered previously.37–42 On the

basis of the crystal structures of T4L and MBP in

each protein, we chose three pairs of solvent-accessi-

ble residues that are located close to the ends of heli-

ces (Fig. 1). The introduction of metal-binding sites

near the ends of helices, compared with sites in the

middle of helices, was expected to cause fewer steric

clashes and allow greater coordination possibilities

among molecules. In both T4L and MBP, the muta-

tions were chosen to be distant from the C-terminus,

to avoid potential interference with a fusion protein

Laganowsky et al. PROTEIN SCIENCE VOL 20:1876—1890 1877



that might be attached. The determination of which

residues are on the surface-exposed side of a helix

was straightforward in our test experiments with

T4L and MBP, whereas this represents a challenge

when the structure is unknown. A recent application

of disulfide-based synthetic symmetrization27 illus-

trates the use of sequence alignments and bioinfor-

matics tools to make reasonable choices for engineer-

ing residues on the sides of helices.

T4L and MBP mutants—most containing two

mutations and one containing four mutations (sum-

marized in Table I)—were expressed, purified, and

subjected to cocrystallization in the presence of

either copper (Cu2þ), nickel (Ni2þ), or zinc (Zn2þ).
The ratio of metal to protein was �1.5 to 1. In some

cases, the addition of metal induced slight precipita-

tion of the protein-metal solution that could be

reversed by the addition of EDTA. However, no addi-

tional purification step, besides filtration through a

0.22 lm membrane, was performed once the metal

was added (see Methods for details). Crystallization

was carried out using standard commercial crystalli-

zation screens (typically only three to four 96-well

experiments). For all of the mutant constructs, crys-

tals formed in a variety of conditions within 1 week,

and in some cases within 2 h, of setting up crystal

screens. All structures were solved from crystals

mounted from preliminary screens without any fur-

ther optimization (Supporting Information Table 3).

T4L histidine mutants
For T4L, we created two double-histidine mutants,

T4L76H/80H and T4L61H/65H, and one quadruple-histi-

dine mutant, T4L61H/65H/76H/80H, chosen to emulate

the engineering design by Tezcan et al.33 in which

four histidine mutations are introduced as two pairs

of proximal residues in a long helix. Crystallization

of these mutants with the various metals resulted in

eight crystal structures (Table I), which represent

six distinct crystal forms; in some mutants, nickel

and copper produced similar metal-binding sites and

crystal packing arrangements. The crystal forms

obtained were all different from those observed

before for T4L.55 The molecular structures and crys-

tal packing diagrams are shown in Figures 2 and 3,

and crystallographic statistics are shown in Support-

ing Information Table 1.

Different combinations of mutations and metals

led to various oligomeric forms of T4L. The protein

can form either dimers [Fig. 2(a–c,e)] or trimers

[Fig. 2(d)] through metal coordination, illustrating a

greater range of oligomerization possibilities com-

pared with other methods of symmetrization. More-

over, in one case, a metal-mediated dimer further

associated into a hexameric ring within the crystal

asymmetric unit [Fig. 2(e)]. With respect to metal

site formation, the crystallization results were like-

wise variable and unpredictable. The same mutant

sometimes crystallized in different forms in the pres-

ence of different metals [Fig. 2(a,e)] or even in differ-

ent forms with the same metal [Fig. 2(b,d)]. Unex-

pectedly, in some structures one of the mutated

histidines is not in coordination with the metal [Fig.

2(b–d)]. Instead, either natural (wild type) surface

residues or solvent molecules complete the coordina-

tion (Table I). However, in all of the cases where this

occurs, the neighboring free histidine is in a p stack-

ing arrangement with the coordinating histidine

[Fig. 2(b–d)], indicating it may be necessary for the

coordination. Finally, not all the T4L molecules in

the asymmetric unit are coordinated by the metals.

In two cases, a noncoordinated molecule is present

Figure 1. Surface residues of T4 lysozyme (T4L) and maltose-binding protein (MBP) selected for mutations. (a) T4L is

represented as a cartoon (blue). Three pairs of residues are labeled (red, yellow and green), each corresponding to one double-

residue mutant: D61/K65 to histidines, R125/E128 to cysteines, R76/R80 to either histidines or cysteines in two different

constructs. A quadruple histidine mutant for D61/K65/R76/R80 was also made. (b) MBP is represented as a cartoon (orange).

Three pairs of residues are labeled (green, blue and purple), each corresponding to one double histidine mutant. All selected

pairs are three or four residues apart and are close to the ends of helices. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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[Fig. 2(c,d)]. The variations in metal site geometry

and protein oligomerization enable the numerous

new crystal forms observed here for T4L (Table I

and Fig. 3).

MBP histidine mutants

To demonstrate that this methodology applies not

only to T4L but also to a second protein, MBP, we

prepared three double-histidine mutants of MBP –

MBP216H/220H, MBP26H/30H, and MBP310H/314H – and

crystallized them in the presence of metals (Table I).

The molecular structures and crystal packing dia-

grams of these mutants are shown in Figures 4 and

5, and crystallographic statistics are shown in Sup-

porting Information Table 2. Similar to T4L histi-

dine mutants, MBP mutants can either dimerize

[Fig. 4(a)] or trimerize [Fig. 4(e)] upon addition of

metal ions. In one case, a dinuclear zinc site is pres-

ent [Fig. 4(c)]. Notably for the MBP mutants, metal

coordination can be involved in lattice contacts and

drive the formation of metal-mediated polymers

[Figs.4(b–d) and 5]. Depending on the crystallization

conditions and type of metal, a single mutant con-

struct MBP216H/220H can pack into three different

forms [Fig. 4(a–c)]. Interestingly, in all the struc-

tures, natural surface residues, usually Glu and

Asp, participate in the coordination, and all mole-

cules in the asymmetric unit are coordinated by the

metals. The wild-type MBP construct used as the

starting point in this study crystallized exclusively

in space group P61 in previous work. The structures

of all the MBP mutants shown here are distinct

Figure 2. Crystal structures of metal-mediated symmetrization of T4 Lysozyme (T4L) histidine mutants. For each panel, a

close-up view of the metal binding site is shown as an inset with coordinating residues labeled. Copper and zinc atoms are

shown as bronze and grey spheres, respectively. Coordination to metal atoms is shown as dashed yellow lines. (a) The

mutated histidine residues of T4L76H/80H form a twofold NCS (noncrystallographic symmetry) dimer mediated through the

bound copper atom. T4L76H/80H has similar packing and interactions when cocrystallized with nickel (data not shown). Two

coordinating water molecules are shown in red. (b) The quadruple histidine mutant, T4L61H/65H/76H/80H, forms a dimer through

two copper atoms. Three mutated histidine residues, H61/H65/H76, and a natural aspartate, D72, complete each copper

binding site. (c) The double histidine mutant, T4L61H/65H, forms a dimer (purple and green) through two copper atoms. This

dimer is accompanied by a non-copper bound molecule (blue) packed within one asymmetric unit. Each copper site is

formed by one mutated histidine residue, H65, a natural glutamine, Q69, and completed by N-terminal glycine residues

derived from the tobacco etch virus (TEV) protease cleavage site. (d) The four histidine mutant, T4L61H/65H/76H/80H, also forms

a trimer. The copper binding site is formed by the mutated histidine, H61, located on a threefold crystallographic axis. Three

other protein molecules in the asymmetric unit, not bound to copper ions, are also shown (light yellow, light orange and light

red). (e) The double histidine mutant, T4L76H/80H, also forms a hexameric ring structure mediated by three zinc atoms. The

zinc binding sites are formed by two mutated histidine residues, H76/H80, from two neighboring molecules. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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tetrathiomolybdate and copper, in which natural

Cys15 and Cys18 of Atx1 participate in a complex

metal binding network.37 Both mutants were puri-

fied in the presence of 1 mM dithiothreitol (DTT) to

prevent cysteine oxidation, and crystallization was

carried out in the presence of zinc. Interestingly,

T4L125C/128C crystallized as a trimer mediated by a

novel multinuclear zinc sulfur cluster, which to our

knowledge has not been reported previously [Fig.

6(a) and Supporting Information Fig. 1]. Four zinc

atoms form a tetrahedron with six sulfur atoms—

two from each protein—coordinating from six edges,

forming an adamantane-like cage. The zinc sulfur

cluster is reminiscent of the copper (Cu1þ) sulfur

cluster stabilized by Atx-1 and tetrathiomolybdate in

anaerobic conditions.37 The second double cysteine

mutant, T4L76C/80C, crystallized in more than 60% of

the crystallization conditions from an initial screen,

and some crystals diffracted to �1.5 Å without any

further optimization. The structure of this mutant

revealed a D2 tetramer covalently linked by four di-

sulfide bonds [Fig. 6(b)]. The tetramer is constituted

by two dimers that have similar structures to the

copper-bound T4L76H/80H [Fig. 2(a)]. The disulfide

bonds are all homotypic, with the two Cys76-Cys76
bonds lying on one dyad axis of symmetry and the

two Cys80-Cys80 bonds lying on one of the other

dyad axes. Surprisingly, no metal ions were observed

in the electron density, although zinc ions were

added to the crystallization drops. For both double

cysteine mutants of T4L, the crystal packing modes

are novel (Fig. 7), although in the second case, there

was no mediation through zinc.

Discussion

In this study, we demonstrate a crystallization

method that combines the concept of synthetic sym-

metrization with the approach of engineering metal

binding sites. We generated several different double

or quadruple histidine mutants of proteins T4L and

MBP, which were chosen in part for their prior use

as fusion proteins. On incubating these constructs

Figure 4. Crystal structures of metal-mediated symmetrization of maltose-binding protein (MBP) histidine mutants. The insets

show close-up views of the metal binding sites. Metal atoms are colored the same as described in Figure 1. Water and

chloride ions are shown as blue and green spheres, respectively. (a–c) A double histidine mutant, MBP216H/220H, forms a

variety of metal mediated interactions. (a) A copper mediated dimer is formed through the mutated histidine, H216, the natural

histidine, H40, and glutamate, E222, residues. (b) A polymeric assembly is created through crystal lattice contacts mediated

by zinc atoms. The zinc binding site is formed by the mutated histidine, H216, and the natural glutamate residues, E39/E222.

(c) Crystal lattice contacts are produced through zinc binding. Two zinc atoms are bound by the two mutated histidines,

H216/H220, the two natural glutamates, E222/E310, and also by acetate ions (orange). The MBP216H/220H mutant protein

displays the versatility of metal binding through use of different metals. (d) Crystal lattice contacts are mediated through zinc

atoms for the double histidine mutant, MBP26H/30H. The two mutated histidines, H26/H30, and the natural aspartate, D165,

form the zinc binding site. (e) The double histidine mutant, MBP310H/314H, forms a trimer assembled through three zinc atoms.

Two natural glutamates, E292/E289, and the mutated histidines, H310/H314, complete each zinc binding site. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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with various metals (Cu2þ, Ni2þ, and Zn2þ), we

obtained 14 new crystal structures, representing 11

new and distinct crystal forms, showing various

symmetries and packing modes mediated by the

added metal ions (Table I). Moreover, we crystallized

two different double cysteine mutants of T4L with

added zinc ions, and obtained two further distinct

crystal forms exhibiting more complex packing

arrangements, in one case based on direct disulfide

bonding rather than metal-mediated interactions.

We obtained crystals with new symmetry and

packing from all the mutation pairs we tested. Some

mutants crystallized with great ease and variety.

For example, MBP216H/220H and T4L61H/65H/76H/80H

could be crystallized in many different forms,

depending on the crystallization condition and the

type of metal. Crystals having the same unit cell

dimensions and symmetry as the wild-type protein

(P3221 for T4L and P61 for MBP) were also some-

times obtained, but at a relatively low rate (less

Figure 5. Crystal packing of MBP histidine mutants. (a–e) Crystal packings of five MBP histidine mutants are shown. The

annotation below each image indicates the construct, the cocrystallizing metal and the space group. The metal binding sites

are highlighted by red dots. Different chains in the asymmetric unit are colored differently in panels a, d, and e. Molecules

related by crystallographic symmetry are shown in the same color. The packing arrangements are shown projected along one

of the unit cell edges as denoted by a coordinate system at lower left corner of each image. A projection of the unit cell is

also shown by a black quadrilateral in each image. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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than 1/3 of the time). Analysis of the crystallization

conditions for all mutants (Supporting Information

Table 3) shows that conditions that facilitated metal-

mediated oligomeric assembly tended to either have

high concentrations of salt or polyethylene glycol of

various molecular weights.

The metal ions were incorporated into the crystal

lattice in different ways in different crystals. In a

number of structures, the metal fell on a crystallo-

graphic axis (Table I), suggesting that the metal-

induced homooligomeric assembly helped drive lattice

formation. This is especially apparent in the poly-

meric assemblies of MBP216H/220H and MBP26H/30H in

the presence of zinc (Fig. 5), in which metal coordina-

tion generates helical arrangements of subunits com-

patible with crystal symmetry. Both types of situation

support the notion that symmetrized oligomers may

gain an advantage over asymmetric monomers in crys-

tal formation. We note that in all the crystal structures

obtained, despite the variety of protein oligomeric

states induced, that generally the individual metal

ions added were coordinated by two subunits. We also

observed that in slightly more than half of the struc-

tures, only one of the two introduced histidines partici-

pated in the coordination. In those cases, natural sur-

face residues, usually Glu or Asp, or solvent molecules

were involved in metal binding instead. This suggests

the possibility in future work of combining Glu and

Asp with single or double His mutations for metal-

mediated synthetic symmetrization.

The oligomeric protein arrangements observed

by metal-mediated symmetrization were highly

variable. It is likely that even greater diversity

could have been realized through additional

Figure 6. Crystal structures of metal-mediated symmetrization of T4 Lysozyme (T4L) double cysteine mutants. (a) The double

cysteine mutant, T4L125C/128C, forms a trimeric complex assembled through a zinc cluster. Three pairs of cysteines from

neighboring molecules coordinate four zinc atoms in an adamantane-like structure stabilized by four chloride ions (shown in

the inset). (b) A covalent tetramer is formed by the double cysteine mutant, T4L76C/80C, through disulfide bonds. Shown are

four molecules related by D2 (or 222) symmetry. Four disulfide bonds between the mutated cysteines, C76 and C80,

covalently link the four protein molecules into a ring. The disulfide bonds are highlighted in the inset. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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investigations. For several constructs, there were too

many favorable leads from initial crystallization tri-

als to permit a complete characterization of all the

possible crystal forms. Furthermore, other experi-

mental variables that might have produced addi-

tional crystal forms were not investigated. The rela-

tive concentration of metal ions was held fixed in

our experiments, although this variable might be

expected to influence the oligomeric modes of metal-

mediated protein association.

Polymorphic assembly behavior was also ob-

served under different crystallization conditions for

some individual combinations of protein constructs

and metals. This was evident in the multiple struc-

tures of T4L61H/65H/76H/80H with copper, for example,

in which slight variations in the crystallization

conditions (Supporting Information Table 3) led to

outcomes in which the geometry of the metal coordi-

nation by T4L molecules varied from square planar

to tetrahedral [Table I and Fig. 2(b,d)]. In such

cases, alternate metal-driven protein arrangements

may be favored by slightly different solution condi-

tions, or by different crystal packing arrangements.

The likelihood that multiple distinct arrangements

coexist in solution in some cases raises the possibil-

ity that heterogeneity could hinder crystallization.

However, the multitude of our successful crystalliza-

tion results, including multiple distinct forms from

some individual combinations of protein construct

and metal ion, argues otherwise. The reversibility of

metal coordination probably has a positive effect in

this regard, making it possible for favorable crystal

packing arrangements to drive otherwise heteroge-

neous mixtures into specific, well-ordered crystal

forms. Furthermore, the coordination geometries of

the metal sites were often slightly distorted (Table

I), suggesting that flexibility in metal coordination

could also help enable the formation of well-ordered

crystal packing arrangements.

Another potential advantage of metal-mediated

synthetic symmetrization is the phasing power intro-

duced by metals. The metal sites are well defined

in most of our structures (Supporting Information

Table I and II), and anomalous signals were

observed for most of them, despite that the data were

not collected using an X-ray wavelength close to the

absorption edge for the metals introduced (Support-

ing Information Fig. 1). For the T4L125C/128C mutant,

we confirmed that experimental phases could be

obtained using the anomalous scattering from the

zinc atoms (Supporting Information Fig. 1). By using

synchrotron radiation tuned to the optimal wave-

length, we anticipate that it will be generally possible

to obtain diffraction phases from crystals grown by

the metal-mediated symmetrization approach.

On the basis of our findings, we propose that

one could utilize the concept of metal-mediated syn-

thetic symmetrization to crystallize more difficult

protein targets that have eluded crystallization

using traditional methodologies. Figure 8 summa-

rizes the ‘‘rational mutagenesis of surface residues’’

methods that have been developed to facilitate pro-

tein crystallization. In contrast to previously pro-

posed methods, our approach allows the formation of

Figure 7. Crystal packing of T4L cysteine mutants (a and

b). Crystal packings of two T4L cysteine mutants are

shown. The annotation below each image indicates the

construct, the cocrystallizing metal and the space group.

The metal binding sites are highlighted by red dots. Note

that the packing of T4L76C/80C is mediated by disulfide

bonds instead of metals. Different chains in the asymmetric

unit are colored differently in panel a. Molecules related by

crystallographic symmetry are shown in the same color.

The packing arrangements are shown projected along one

of the unit cell edges as denoted by a coordinate system at

lower left corner of each image. A projection of the unit cell

is also shown by a black quadrilateral in each image. [Color

figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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oligomers in diverse arrangements and symmetries,

giving rise to greatly expanded opportunities to

grow diffraction-quality crystals. The flexibility of

our approach also allows it to be potentially com-

bined with methods such as SER in which high-en-

tropy surface residues can be mutated.

We propose two variations by which the

approach could be used to promote the crystalliza-

tion of new target proteins: (i) crystallizing fusion

constructs in which a target protein is fused to the

various engineered forms of T4L or MBP described

here, or (ii) directly crystallizing a target protein

after mutating pairs of surface residues to histidine

or cysteine. The first approach is based on the obser-

vation that both T4L and MBP have been success-

fully used to crystallize otherwise difficult proteins,

including membrane proteins and amyloid pro-

teins.10,57–61 The mutation pairs characterized in

this study could be readily used to increase the

chance of getting crystals. The crystal packing

arrangements of such fusion proteins would depend

on surface properties of the target protein and would

therefore likely be different from the structures pre-

sented here. In the second, direct approach, posi-

tions for making mutation pairs in a target protein

would be chosen based on predictions of secondary

structure and surface exposure, or based on a homo-

logy model, when available. Double histidine or cys-

teine mutations are preferably introduced close to

the ends of a helix (Fig. 1). For long helices, two his-

tidine pairs can be introduced at both ends. The

spacing between the two histidines are preferably i

and i þ 4, and for cysteines either i and i þ 3 or i

and i þ 4. Theoretically, histidine mutations should

have a broader application, because they will not

interfere with native cysteines. Although additional

purification of oligomeric species after metal addi-

tion was not necessary for success in our studies,

this step might be useful in confirming metal-medi-

ated assembly and optimizing the chances of success

with more difficult protein targets.

Considering that it is easy to introduce double

mutations, and all the crystals in this study were

solved directly from robotic screens without any opti-

mization, one could apply the approach relatively

easily to generate and test several varied constructs

for a given protein of interest. Such an approach

could prove valuable for crystallizing asymmetric

proteins or protein complexes that have eluded tra-

ditional crystallization methodologies.

Methods

T4L plasmid construction
Cysteine-less T4L (a kind gift from Mark Fleissner

and Wayne Hubbell at UCLA), residues 1–162, was

PCR amplified with Platinum Taq Polymerase (Invi-

trogen, Carlsbad, CA). The N-terminal primers con-

tained a six base pair overhang, NdeI restriction site,

TEV protease cleavage site, and a short linker of resi-

dues GP to aid TEV protease cleavage. The C-termi-

nal primer contained a stop codon, XhoI restriction

site, and a three base pair overhang. The PCR prod-

uct was agarose gel purified and extracted using the

QIAquick Gel Extraction Kit (Qiagen, Valencia, CA).

Purified PCR product and pET28b (Novagen, Gibbs-

town, NJ) were digested with NdeI and XhoI accord-

ing to manufacturer protocol (New England Biolabs,

Ipswich, MA). Digested pET28b and T4L products

were gel purified and extracted (as described above).

DNA concentrations were determined using BioPho-

tometer UV/VIS Photometer (Eppendorf, Westbury,

NY). The vector pET28 and T4L were ligated using

the Quick Ligation Kit (New England Biolabs, Ips-

wich, MA) according to manufacturer protocol, and

transformed into E. coli cell line TOP10 (Invitrogen,

Carlsbad, CA). A colony was grown overnight, and

the pET28-TEV-T4L plasmid was purified using

QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA).

T4L and MBP mutants

All mutations in the DNA sequence were performed on

the pET28-TEV-T4L or the pMal-a1 (a kind gift from

Figure 8. A scheme summarizing approaches for

crystallizing protein targets by rational mutagenesis of

surface residues. A protein (red box) can be mutated

according to the idea of ‘‘surface entropy reduction"30

(orange box), which typically involves replacing long flexible

amino acid side chains by alanine. Alternatively, or in

combination, surface residues can be modified in a way

that specifically promotes symmetric oligomerization. This

general idea is referred to as ‘‘synthetic symmetrization"26;

a closely related idea has been called ‘‘crystal lattice

engineering.’’28 Single cysteine mutations have been used

successfully for dimerization26,27 (green box). A method

based on inserting multiple leucine residues in a surface

helix has been used successfully by others (blue box).28,32

In this work we propose metal-mediated synthetic

symmetrization (purple boxes), which involves introducing

either double histidine mutations (lower right box) or double

cysteine mutations (lower left box), followed by the addition

of metal ions. The metal-mediated approach leads to a rich

variety of oligomeric arrangements and crystal packing

opportunities. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Prof. Cynthia Wolberger at Johns Hopkins University)

plasmids using a Site-Directed Mutagenesis kit (Quick-

Change II XL, Agilent, Santa Clara, CA) with site-

directed primers designed using manufacturers Quick-

Change Primer Design Program available online (Agi-

lent, Santa Clara, CA), according to the manufacturer’s

protocol. The final constructs were sequenced prior to

transformation into E. coli expression cell line BL21

(DE3) gold cells (Novagen, Gibbstown, NJ).

Protein expression
A single colony was inoculated into LB Miller Broth

(Fisher BioReagents, Fisher Scientific, Pittsburgh, PA)

supplemented with 30 lg/mL Kanamycin (Fisher Sci-

entific, Pittsburgh, PA; LBKan) or 100 lg/mL Ampicil-

lin (Fisher Scientific, Pittsburgh, PA; LBAmp) for T4L

and MBP mutants, respectively. One liter of LBKan or

LBAmp in a 2-L shaker flask was inoculated with 7

mL of overnight culture and grown at 37�C until the

culture reached an OD600 ¼ 0.6–0.8. For T4L

mutants, isopropyl b-D-1-thiogalactopyranoside (IPTG)

was added to a final concentration of 0.5 mM, and

grown for 1.5 h at 37�C. For MBP mutants, IPTG was

added to a final concentration of 1 mM, and grown for

4 h at 37�C. Cells were harvested by centrifugation at

5,000g for 10 min at 4�C. The cell pellet was frozen

and stored at �80�C prior to purification.

T4L protein purification
The cell pellet was thawed and resuspended in

buffer A [50 mM sodium phosphate, 0.3M sodium

chloride, and 20 mM imidazole (pH ¼ 8.0)] supple-

mented with Halt Protease Inhibitor Cocktail (Peirce,

Thermo Fisher Scientific, Rockford, IL) and 1 mM

DTT for cysteine containing mutants at 25 mL per 1

L of culture volume. The resuspended was culture

sonicated and centrifuged at 12,000g for 25 min at

4�C. The clarified lysate was filtered through a 0.45-

lm syringe filtration device (HPF Millex-HV, catalog

no. SLHVM25NS, Millipore, Billerica, MA) before

loading onto a 5-mL HisTrap-HP column (GE Health-

care, Piscataway, NJ). The HisTrap-HP column was

washed with five column volumes of buffer A and

protein eluted with linear gradient to 100% in four

column volumes of buffer B [50 mM sodium phos-

phate, 0.3M sodium chloride, and 500 mM imidazole,

(pH ¼ 8.0)]. For cysteine containing mutants, buffers

A and B were supplemented with 5 mM beta-mercap-

toethanol (BME). Protein eluted around 40–60%

buffer B and peak fractions were pooled. TEV prote-

ase, produced and purified as described,36 was added

at a volume of 1/100th the pooled volume, and ethyle-

nediaminetetraacetic acid (EDTA) was added to final

concentration of 1 mM. After 20–30 min, pooled pro-

tein was transferred to a Slide-A-Lyzer 10,000

MWCO dialysis cassette (Pierce, Thermo Fisher Sci-

entific, Rockford, IL), and dialyzed against buffer C

(20 mM TRIS pH 8.0, 200 mM sodium chloride, 20

mM imidazole, 1 mM DTT) at room temperature

overnight. The dialyzed protein fraction was trans-

ferred to a 50 mL conical falcon tube (Fisher Scien-

tific, Pittsburgh, PA). After 2 days of TEV protease

cleavage, cut protein was passed over a 5 mL

HisTrap HP column pre-equilibrated in buffer A and

the flow-through containing His-tag removed T4L

was collected and concentrated prior to loading onto a

Superdex Prep Grade 75 gel filtration column equili-

brated in GF buffer [100 mM sodium chloride, 1 mM

DTT, and 20 mM TRIS (pH ¼ 8.0)]. Peak fractions

were pooled and concentrated. Protein concentration

was determined by UV absorbance at 280 nm with

extinction coefficient of 24750 M�1 cm�1 of protein.

MBP protein purification

Cells were resuspended in a lysis buffer containing

100 mM Tris-HCl (pH ¼ 8.0), 100 mM NaCl, and 1

mM EDTA. Phenylmethylsulfonyl fluoride (PMSF)

was added to the cell resuspension to a final concen-

tration of 1 mM. Clarified cell lysate, as described

above, was loaded onto a self-packed amylose

column (150 mL column volume, resin from New

England Biolabs, Ipswich, MA). The column was

first washed with Buffer A [20 mM Tris-HCl (pH ¼
8.0) and 100 mM NaCl] for one column volume and

then eluted with Buffer B [20 mM Tris-HCl (pH ¼
8.0), 100 mM NaCl, and 10 mM maltose]. Peak frac-

tions were pooled and concentrated using an Amicon

Ultra-15 concentrator (30 kDa MW cutoff; Millipore,

Billerica, MA) prior to loading onto a Superdex S-

200 column (GE Healthcare, Piscataway, NJ) equili-

brated in SEC buffer [20 mM Tris-HCl (pH ¼ 8.0),

100 mM NaCl, and 5 mM maltose]. Peak fractions

were pooled and concentrated. Protein concentration

was determined by absorbance at 280 nm with the

calculated extinction coefficient of 67800 M�1 cm�1.

Protein crystallization

Concentrated T4L and MBP protein mutants were

diluted to � 1 mM and supplemented with 1.25–1.5

mM of metal: copper sulfate, nickel sulfate, or zinc

acetate. Protein solutions containing metals were fil-

tered through a 0.22 lm Ultrafree-MC centrifugal

filter device (Amicon, Bedford, MA) prior to crystalli-

zation experiments in hanging drop plates. Crystalli-

zation experiments were carried out at the UCLA

crystallization core facility (http://www.doe-mbi.

ucla.edu/facilities/crystallization) and stored at 20�C.
The crystallization conditions are provided in

Supporting Information Table 3.

Structure determination
All data were collected at 100 K at Advanced Photon

Source (Chicago, IL) beam lines 24-ID-C and 24-ID-

E, and in-house on a Rigaku Raxis-IVþþ imaging

plate detector using Cu Ka radiation from a Rigaku

FREþ rotating anode generator with confocal optics
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(Supporting Information Table 1). Single crystals

were cryoprotected with glycerol and mounted with

CrystalCap HT Cryoloops (Hampton Research, Aliso

Viejo, CA). Crystals were flash-cooled in liquid nitro-

gen prior to data collection. All data were processed

using DENZO/SCALEPACK62 or XDS/XSCALE.63

Initial phases of T4L and MBP mutants were calcu-

lated by molecular replacement using structures

with PDB codes 3LZM and 1ANF, respectively, as

search models using PHASER.64 Model building was

done using COOT.65 All model refinement was done

using REFMAC,66 PHENIX,67 and BUSTER.68
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