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Abstract: A point source interferometer (PSI) is a device where atoms are split and recombined
by applying a temporal sequence of Raman pulses during the expansion of a cloud of cold atoms
behaving approximately as a point source. The PSI can work as a sensitive multi-axes gyroscope that
can automatically filter out the signal from accelerations. The phase shift arising from the rotations
is proportional to the momentum transferred to each atom from the Raman pulses. Therefore, by
increasing the momentum transfer, it should be possible to enhance the sensitivity of the PSI. Here,
we investigate the degree of enhancement in sensitivity that could be achieved by augmenting the PSI
with large momentum transfer (LMT) employing a sequence of many Raman pulses with alternating
directions. We analyze how factors such as Doppler detuning, spontaneous emission, and the finite
initial size of the atomic cloud compromise the advantage of LMT and how to find the optimal
momentum transfer under these limitations, with both the semi-classical model and a model under
which the motion of the center of mass of each atom is described quantum mechanically. We identify
a set of realistic parameters for which LMT can improve the PSI by a factor of nearly 40.

Keywords: quantum gyroscope; atom interferometry; point source atom interferometer

1. Introduction

Atom interferometry offers the potential to deliver high-performance, compact, and
robust gyroscopes that are suitable for inertial navigation applications. Critical require-
ments for such an atomic gyroscope include a high sensitivity to rotations and the ability
to distinguish between signals arising from rotations and accelerations. Here, we describe
a multi-axes gyroscope based on the combination of point source interferometry (PSI) [1–3]
and large momentum transfer (LMT) beam splitters [4,5] which are well-suited to meet
these requirements. In a PSI, Raman pulses are applied during the expansion of a point
source of atoms. The pulses are a pair of counter-propagating laser beams that drive
two-photon Raman transitions [6], serving as the beam splitters and mirrors for a Mach–
Zehnder light-pulse atom interferometer [7–13], as shown in Figure 1. The interferometer
phase response to rotation scales linearly with the velocity difference of the atoms in the
two arms, while the response to acceleration is independent of the atomic velocity. Because
of this difference, the signal in a PSI allows rotation and acceleration to be distinguished.
The PSI can also determine both components of the rotation vector that are orthogonal
to the laser pulses, thus realizing a multi-axes gyroscope. It should be noted that there
are other techniques that can also distinguish between rotation and acceleration [9–13].
However, a key practical advantage of the PSI is that it only requires a single atom cloud
and Raman beams along a single axis, in contrast to other methods.
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ing a different light frequency. Yet the model has proven to be quite useful in predicting 
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features of the effect of large momentum transfer on the PSI are extracted from the con-
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Figure 1. Schematic illustration of the basic process underlying the conventional PSI. The blue
circle is the atom cloud and the red arrows are the Raman pulses. A temporal sequence of Raman
pulses is applied during the expansion of the atom cloud (top), and each Raman pulse is a pair of
counter-propagating light beams that drive a two-photon transition (bottom).

The LMT beam splitters we consider involve the use of tailored laser pulse sequences
to increase the momentum splitting, and therefore the velocity difference, between the two
arms of the interferometer. Via the Sagnac effect, the rotation sensitivity of a gyroscope is
proportional to the area enclosed by an interferometer. The enclosed area is proportional to
the velocity difference induced by the beam splitter; as such, the rotation sensitivity scales
linearly with the momentum transferred by the laser pulses during the beam splitting
process.

The conventional model of the light-pulse interferometer as well as the PSI makes the
approximation that each atom has a well-defined velocity as well as a well-defined position.
This model is apparently inadequate for describing the behavior of a PSI accurately for
several reasons. The first is that the wave packets of cold atoms cover large spatial extents
and thus do not have trajectories that enclose a well-defined area. The second is that atoms
are in superpositions of many momentum eigenstates, with each of them seeing a different
light frequency. Yet the model has proven to be quite useful in predicting the behavior
of a light-pulse interferometer as well as the PSI in most circumstances of experimental
relevance. As such, in the initial stage of our analysis, some of the salient features of the
effect of large momentum transfer on the PSI are extracted from the conventional model.
Later on, we augment the analysis with a more rigorous model wherein the center of mass
motion of each atom is treated quantum mechanically, represented as a superposition of
plane waves, since it is not a priori obvious, without experimental results, whether the
semiclassical model would be adequate when the PSI is augmented by large momentum
transfer.

The rest of the paper is organized as follows. In Section 2, we use the conventional
model to summarize first the basic properties of a PSI without large momentum transfer
(LMT). We then use the same model to determine how the signal for a PSI would be
modified in the presence of LMT, without taking into account non-idealities such as Doppler
detuning and spontaneous emission. We also describe how the signal for an LMT–PSI is
modified when the point source is replaced by a source with a finite extent and determine
how the enhancement in sensitivity varies as function of the degree of momentum transfer
under the LMT process, as well as the initial size of the source. In Section 3, we present the
augmented quantum model where the center mass motion of the atom is treated quantum
mechanically. We consider first the ideal case where an atom is in a pure state. This is
followed by a consideration of a situation where the atoms are thermalized in a harmonic
oscillator potential before being released for the LMT–PSI process, taking into account
quantum statistics. We conclude this section with a discussion of how the results of this
augmented quantum model compare with those of the conventional semi-classical model
under various conditions. Specifically, we find that for thermal atoms, the predictions of
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these two models do not differ significantly. In Section 4, we analyze the combined effect
of all non-idealities, including Doppler detuning, spontaneous emission, and the finite size
of the source, using the augmented quantum model. However, in order to be able to carry
out an analytical estimation of the enhancement in sensitivity expected for a significant
degree of LMT, we make some simplifying assumptions that render the model essentially
equivalent to that of the conventional semi-classical model. We expect that a full-blown
version of the augmented quantum model would produce results that agree closely with
the conclusions reached in this section. But such a full-blown analysis requires enormous
computational resources; given that the difference between the results produced by the
semi-classical analysis and the augmented quantum model is very small, undertaking such
an analysis was not deemed critically important at this point. Instead, it is expected, subject
to experimental verification, that the predictions of the effectively semi-classical model
would be adequate. Finally, we summarize the results in Section 5.

2. Conventional Model

As noted above, the conventional model of a PSI makes the approximation that
each atom has a well-defined velocity as well as a well-defined position. Therefore, the
atoms follow definitive trajectories that enclose an area. Specifically, the enclosed area
is A = (r/2) × (}ktT/m), where }kt is the differential momentum transferred to an
atom from the initial light pulse, r is the displacement of the atoms, T is half of the
total time elapsed, from splitting to recombination, and m is the mass of each atom [14].
The Sagnac phase shift is proportional to the enclosed area according to the expression
φ = 2ωCΩ ·A/c2, where ωC = mc2/} is the Compton frequency of each atom [15], and Ω
is the angular velocity of the rotation. It then follows that the phase shift can be expressed
as φ = (kt ×ΩT) · r ≡ kΩ · r. The measured signal is the spatial distribution of the
ground state population, given by the expectation value of the projection operator Pg(r) ≡
|g, r〉〈g, r|. As such, the signal can be expressed [8] as

〈
Pg(r)

〉
= f (r)(1 + cos kΩ · r)/2,

which is a pattern of spatial fringes dictated by the wave number kΩ, multiplied by f (r),
the final profile of the atomic cloud. With this model, it seems obvious that by increasing kt,
we can increase kΩ, thus reducing the fringe spacing, and thereby increasing the sensitivity
of the PSI.

To determine quantitatively the density of fringes, we have to compute the Fourier
transform of the pattern. Experimentally, this Fourier transform can be observed in real
time using a lens in the system for imaging the atom cloud. Thus, our signal is expressed

as P̃g

(
~
k
)

=
∫

dr e−i
~
k·r〈Pg(r)

〉
, where Pg(r) is the position space projection operator for

atoms in the ground state, as defined earlier. It should be noted that P̃g

(
~
k
)

is different

from Pg(k) ≡ |g, k〉〈g, k|, the momentum space projection operator for atoms in the ground
state. The semi-classical model gives a signal that can be expressed as:

P̃g

(
~
k
)
= F

[
1
2

f (r)(1 + cos kΩ · r)
]
=

1
2

f̃
(

~
k
)
+

1
4

f̃
(

~
k− kΩ

)
+

1
4

f̃
(

~
k + kΩ

)
(1)

where f̃
(

~
k
)
≡ F [ f (r)] is the Fourier transform of the profile of the atomic cloud. The

spatial fringes representing
〈

Pg(r)
〉

and the corresponding Fourier transforms given by

P̃g

(
~
k
)

derived from the semi-classical model are depicted in Figure 2. Panel A shows

plots for kt = keff and panel B shows plots for kt = 3keff. In each panel, (a) is the plot of〈
Pg(r)

〉
= f (r)(1 + cos kΩ · r)/2, with f (r) = exp

(
−r2/2σ2

f
)
, in the plane perpendicular

to kt, (b) is the cross section at the dashed line in (a), (c) is the plot of P̃g

(
~
k
)

in the

plane perpendicular to kt, and (d) is the cross section at the dashed line of (c). In the
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Fourier domain, the distance from a signal peak, for example, f̃
(

~
k− kΩ

)
/4, to the central

peak f̃
(

~
k
)

/2, is kΩ, which is proportional to the angular velocity we want to measure.

The height of the signal peak h corresponds to the contrast of the fringes, and ideally
hideal = 1/4.
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Panel A corresponds to kt = keff and Panel B corresponds to kt = 3keff. In each panel, (a) is the plot
of
〈

Pg(r)
〉
= f (r)(1 + cos kΩ · r)/2, with f (r) = exp

(
−r2/2σ2

f
)
, in the plane perpendicular to kt, (b)

is the cross section at the dashed line in (a), (c) is the plot of P̃g

(
~
k
)

in the plane perpendicular to

kt, and (d) is the cross section at the dashed line of (c). The orientation of the signal indicates the
direction of the angular velocity.
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In this model, for an ideal point source, the final position of an atom is determined by
its initial velocity. The velocity spread of the atoms is given by the Boltzmann distribution
characterized by the temperature of the atomic cloud. Therefore, the final population
distribution of the atoms has a three-dimensional Gaussian profile, exp

(
−r2/2σ2

f
)
, where

σf describes the final size of the atomic cloud, determined by the initial velocity spread and
the expansion time. Thus, the final spatial distribution of the ground state atoms can be
expressed as nps(r) ≡

〈
Pg(r)

〉
= exp

(
−r2/2σ2

f
)
(1 + cos kΩ · r)/2. In the plots shown in

Figure 2, we assumed such a Gaussian envelope for the ground state populations, with
an arbitrarily chosen value of σf. Here, Figure 2a in each panel is simply a plot of this
expression for nps(r).

This model can also be used to analyze the effect of the finite size of the initial
atomic cloud. For this analysis, we assumed that the Raman pulses were along the z-
direction, while the angular velocity vector was in the y-direction. Then the interference
fringes were oriented in the x-direction. For simplicity, we looked at a slice of the atomic
cloud in the x-direction, for y = z = 0. The population in this slice can be expressed as
nps(x) = exp

(
−x2/2σ2

f
)
(1 + cos kΩx)/2. The initial cloud of a finite size is a collection of

the many ideal point sources. We assumed the initial distribution of the atomic cloud to
be of the form n0(x) = exp

(
−x2/2σ2

0
)
. The final spatial distribution of the ground state

atoms is then the convolution of n0 and nps:

nf =
∫

n0(x0)nps(x− x0)dx = n0 ∗ nps (2)

It is easy to see that nf has the form of (1 + 4h cos k′Ωx)/2 where [2]

k′Ω = kΩ

[
1− (σ0/σf)

2
]

(3)

h = hideal exp

(
−1

2
k2

Ωσ2
0

[
1−

(
σ0

σf

)2
])

(4)

Equation (3) implies that the signal peak is at a distance k′Ω away from the central
peak in the Fourier transform domain. Thus, if the point source has a finite size, the signal
peak moves closer to the central peak and the height of the signal peak is reduced. The
uncertainty in the position of the signal peak δk′Ω in turn determines the uncertainty in the
determination of Ω. Specifically, from the expression of kΩ stated earlier, and assuming
that kt is orthogonal to Ω, it follows from Equation (3) that δΩ = δk′Ω/ktT

[
1− (σ0/σf)

2
]
.

In general, the uncertainty of a signal is the linewidth divided by the signal-to-noise ratio.
Using this rule, we can write that δk′Ω = βγ/

√
h, where γ is the width of the signal peak

and β is a constant coefficient. It then follows that (δΩ)−1 = ktT
√

h
[
1− (σ0/σf)

2
]
/βγ.

Since the signal is in the Fourier transform domain, γ is approximately the inverse of the
final size of the atomic cloud. Therefore, γ is determined primarily by the free expansion
and is not affected significantly by the LMT process. Thus, we see that the larger the final
atomic cloud size is, the smaller γ is, and the smaller δΩ is. This reduction in δΩ can
be understood physically by noting first that the width (i.e., γ) of each of the peaks in
the Fourier Transform domain becomes smaller for larger final atomic clouds. Since the
uncertainty in the measured value of the rotation rate is proportional to this width, it then
follows that a larger final atomic cloud yields a smaller value of δΩ.

To compare LMT–PSI’s with different values of kt = Nkeff, we assumed that the
atomic clouds ended up with the same final size, and therefore the same γ, indepen-
dent of the value of N. We defined an improvement parameter ε ≡ δΩNkeff

/δΩkeff
=

N
[
1− (σ0/σf)

2
]√

hNkeff
/hkeff

. In experiments, the final size of the atomic cloud is deter-
mined by the size of the apparatus, and thus can be considered a rigid constraint. For
concreteness, we assumed the value of σf to be 1 cm. We also assumed the initial tem-
perature to be 6 µK, a value that can be achieved typically with optical molasses [2]. The
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Here, σ0

(
σf

)
is the initial (final) size of the atomic cloud, as defined earlier in Section 2.

The optimal detuning will not be affected by the initial size of the atomic cloud because the
term contributed by the finite initial size does not depend on the detuning ∆0. Therefore,
with the optimal detuning, we have:

ln ε = ln N − N5/3

(
3πΓ}k2

eff
4mΩ2

0

)2/3

− 1
4
(NkeffΩTσ0)

2

[
1−

(
σ0

σf

)2
]

(31)

Figure 12 shows the relationship between ε and N given by Equation (31), with
σf = 1 cm, TK = 6 µK, Ω0 = 2π× (200 MHz). The black dotted curve shows the case
where σ0 = 0, which is identical to the red curve in Figure 12. The red curves are the
plots for σ0 = 0.1 mm, while the blue curves are for σ0 = 0.5 mm. The solid (dashed)
curves correspond to an angular velocity of 1 (2) µHz. We can see that if σ0 = 0.1 mm, the
correction to the signal due to the finite initial size is very small. In this case the conclusion
derived above that εmax = 39 for Nopt = 69 is still valid. We can also see that the correction
to the signal due to the finite initial size decreases as the angular velocity we want to
measure decreases. Therefore, LMT is more advantageous for measuring smaller rotations.
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2π× (200 MHz). The black dotted curve shows the case where σ0 = 0, which is identical to the red
curve in Figure 11 because in this case there is no effect of the finite initial size of the atomic cloud.
The red curves are the plots for σ0 = 0.1 mm, while the blue curves are for σ0 = 0.5 mm. The solid
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To recap, both Figures 11 and 12 are plots of the improvement factor ε versus N ≡ kt/keff.
Figure 11 shows the cases where we only considered the effect of Doppler shift detuning
and spontaneous decay. Figure 12 shows the cases where we additionally took into account
the effect of the finite initial size of the atomic cloud. In Figure 11, the blue curve shows the
case where the one-photon Rabi frequency was 100 MHz and the red curve was 200 MHz.
We can see that a higher one-photon Rabi frequency will enable us to improve the PSI more
with LMT. We used a one-photon Rabi frequency of 200 MHz for all curves in Figure 12. In
this figure, the red curves (both solid and dashed) are plots for the initial size of the atomic
cloud σ0 = 0.1 mm, and the blue curves for σ0 = 0.5 mm. The solid curves (both red and
blue) are for the angular velocity of 1 µHz, and the dashed curves are for 2 µHz. We can



Atoms 2021, 9, 51 22 of 25

see that both a smaller initial size and a smaller angular velocity will enable us to improve
the PSI more with LMT. With Ω0 = 2π× 200 MHz, σ0 = 0.1 mm, and an angular velocity
of 1 µHz, the effect of the finite initial size of the atomic cloud is not obvious and thus the
result becomes very similar to the red curve in Figure 11 (reproduced as the black dotted
curve in Figure 12).

It can be seen from the discussion above that the value of Ω0 is very important for
the performance of the LMT-PSI. Therefore, we discuss here the relationship between
the experimental parameters and Ω0. For 87Rb, we assumed the ground state |g〉 to be{2S1/2, F = 1, mF = 0

}
, and the excited state |e〉 to be

{2S1/2, F = 2, mF = 0
}

. In most
implementations of Raman-pulse-based atom interferometers, the beams are circularly
(σ) polarized [36]. If the beams are σ+ polarized, the intermediate state |i〉 consists of
two states: |F = 1, mF = 1〉 and |F = 2, mF = 1〉 of the 2P3/2 manifold. The corresponding
transition matrix elements [37] are shown in Figure 13. For the cycling transition from
|F = 2, mF = 2〉 to |F = 3, mF = 3〉, an intensity of 3.34 mW/cm2 yields Ω0 = Γ. For
a given intensity on each leg of the Raman transition, we can use this information to
determine the effective Rabi frequency for each of the two Raman transitions, treated
separately, and the net effective Rabi frequency would be the sum of these two effective
Rabi frequencies. If we assume that each leg has the same laser intensity and consider
the fact that the energy separation between the two upper levels (~157 MHz) is negligible
compared to the detuning, then it is easy to see that the effective Rabi frequency for the
lower Raman transition is weaker than that for the upper Raman transition by a factor of(√

1/8×
√

1/8
)
/
(√

5/24×
√

1/120
)
= 3. If we consider the upper Raman transition only,

the intensity needed for the condition of Ω0 = 2π× (100 MHz) ≈ 16.7Γ is ~3.7 W/cm2.
When both Raman transitions are taken into account, an intensity lower by a factor of
3/4 (i.e., ~2.8 W/cm2) would produce the effective Rabi frequency corresponding to
Ω0 = 16.7Γ in our model presented above [38]. Such an intensity can be achieved, for
example, by using a tapered amplifier on each leg of the Raman transition.
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There is another technique that can potentially decrease the effect of the detuning. At
the beginning, when the momentum difference between the two arms is small, both arms
are addressed with the same Raman beams. When the momentum difference between the
two arms become large enough, we can address them with different Raman beams so that
both arms are resonant to its own Raman beams and far detuned from the Raman beams
for the other arm. This technique works well for very cold atoms. However, for an atom at
a temperature of 6 µK, the thermal momentum is about 2}keff. It is not obvious whether
this thermal momentum is sufficiently small in comparison to the total momentum transfer
for this technique to improve the performance of the PSI–LMT significantly. This issue will
be investigated in the future.
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5. Conclusions

In a point source interferometer (PSI), atoms are split and recombined by applying a
temporal sequence of Raman pulses during the expansion of a cloud of cold atoms behaving
approximately as a point source. The PSI can work as a sensitive multi-axes gyroscope that
automatically filters out the signal from accelerations, thus making it an attractive system
for practical rotation sensing. The phase shift arising from rotations is proportional to the
momentum transferred to each atom from the Raman pulses. Here, we investigated the
degree of enhancement in sensitivity that could in principle be achieved by augmenting the
PSI with large momentum transfer (LMT) employing a sequence of many Raman pulses
with alternating directions. We considered a semi-classical model as well as an augmented
quantum model under which the center-of-mass motion of atoms is treated quantum
mechanically and showed that the results from these models are in close agreement with
one another in the thermal limit, which applies to the situations we consider. After
establishing this fact, we adopted the use of the semi-classical model for further analysis,
since this allowed the derivation of analytical results regarding how the enhancement
in sensitivity depends on the degree of large momentum transfer and the intensities of
the Raman pulses, taking into account the effects of Doppler detuning and spontaneous
emission. We have shown how increasing Doppler shifts leads to imperfections, thereby
limiting the visibility of the signal fringes. We have also shown that this effect can be
suppressed by increasing the effective Rabi frequencies of the Raman pulses. For a given
value of the effective Rabi frequency, we showed that there is an optimum value for the
number of pulses employed, beyond which the net enhancement in sensitivity begins
to decrease. With LMT, the total duration of the pulses can be much longer than the
conventional case, making the effect of spontaneous emission highly relevant. For a given
one-photon Rabi frequency, a larger detuning decreases the effective Rabi frequency, but
reduces spontaneous emission. Therefore, there exists an optimal detuning dependent
on the number of pulses applied. For a given value of the one-photon Rabi frequency,
employing the optimal detuning, we showed that there is an optimum value for the number
of pulses used, beyond which the net enhancement in sensitivity begins to decrease. For
a one-photon Rabi frequency of 200 MHz, for example, the peak value of the factor of
enhancement in sensitivity is ~40, for a momentum transfer that is ~70 times as large as
that for a conventional PSI. In addition to what we have studied here, other effects such as
Rabi frequency inhomogeneities, AC Stark shifts, or laser wavefront imperfections may
limit the sensitivity gained from implementing LMT. The impact of these effects on PSI
will be modeled in future work. It is anticipated that composite pulses [17] or pulses
employing adiabatic rapid passage [16], or optimal quantum control [39], which makes
the transfer efficiency less sensitive to Doppler and AC-Stark-shift induced detunings
and Rabi frequency inhomogeneities, would further increase the peak enhancement in
sensitivity. Moreover, the implementation of PSI in combination with spatially resolved
phase detection offers the potential to characterize and mitigate laser-wavefront-induced
phase errors [1,40]. These and other mitigation strategies will be explored in future work.
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