METHODS AND COMPOSITIONS FOR VACCINATION OF ANIMALS WITH PRRSV ANTIGENS WITH IMPROVED IMMUNOGENICITY

Israrul H. Ansari
Lincoln, NE

Fernando A. Osorio
Lincoln, NE, fosorio1@unl.edu

Asit K. Pattnaik,
Lincoln, NE, apattnaik2@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/vetscipapers

Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and Pathobiology Commons

This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
METHODS AND COMPOSITIONS FOR VACCINATION OF ANIMALS WITH PRRSV ANTIGENS WITH IMPROVED IMMUNOGENICITY

Inventors: Israrul H. Ansari, Lincoln, NE (US); Fernando A. Osorio, Lincoln, NE (US); Asit K. Pattnaik, Lincoln, NE (US)

Assignee: Board of Regents of the University of Nebraska, Lincoln, NE (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

Appl. No.: 12/064,877
PCT Filed: Aug. 30, 2006
PCT No.: PCT/US2006/033990
§ 371(c)(1), (2), (4) Date: May 5, 2008
PCT Pub. No.: WO2007/040876
PCT Pub. Date: Apr. 12, 2007

Prior Publication Data

References Cited
U.S. PATENT DOCUMENTS
6,268,199 B1 7/2001 Meulenberg et al.
6,500,662 B1 12/2002 Calvert et al.

OTHER PUBLICATIONS

Pigs challenged with hypoglycosylated variants of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) major surface protein GP5 exhibited increased production of PRRSV-neutralizing antibodies relative to the levels of neutralizing antibodies produced by pigs immunized with wild type (wt) or glycosylated GP5. This invention provides for methods of obtaining improved immune responses in pigs to PRRSV, compositions useful for obtaining the improved immune responses as well as isolated polynucleotides that encode hypoglycosylated variants of PRRSV major surface protein GP5.

29 Claims, 6 Drawing Sheets
OTHER PUBLICATIONS

European Communication dated Apr. 8, 2009 attaching Supplementary European Search Report for European Regional Phase Application No. 06824866.5 dated Mar. 9, 2009.

* cited by examiner
FIG. 1A

Endo H: - - - + - - - - - - - - - PNgase F: - - - - + - - - - - - - - Tunicamycin: - - - - - + - - - - - - -

FIG. 1B
<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>M L G K C L T A G C S Q L P F L W C I V P F C F A A L V N</td>
<td>Majority</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1	M L G R C L T A G C S R L L S L W C I V P F C F A A L V N	SEQ ID NO: 1
1	M L G K C L T A G C S Q L P F L W C I V P F C F A A L V N	SEQ ID NO: 2
1	M L G K C L T A G C S Q L P F L W C I V P F C F A A L V N	SEQ ID NO: 3
1	M L G K C L T V G Y C S Q L P F L W C I V P F C F A A L V N	SEQ ID NO: 4
1	M L G K C L T A G C S Q L P F L W C I V P F C F A A L V N	SEQ ID NO: 5
1	M L G K C L T A G C S R L P F L W C I V P F C F A A L V N	SEQ ID NO: 6
1	M L G K C L T A G C S R L P F L W C I V P F C F A A L V N	SEQ ID NO: 7
1	M L G K C L T A G C S Q L P F L W C I V P F C F A A L V N	SEQ ID NO: 8
1	M L G K C L T A G C S Q L P F L W C I V P F C F A A L V N	SEQ ID NO: 9
1	M L G K C L T A G C S Q L L F L W C I V P S W F V A L V S	SEQ ID NO: 10
1	M L K E C L T A G C S R L S L W C I V P F C F A V L A N	SEQ ID NO: 11
1	M L G K C L T A G C S Q L L S L W C I V P F C F A V L A N	SEQ ID NO: 12
1	M L E K C L T A G C S Q L L S L W C I V P F C F A V L A N	SEQ ID NO: 13

<table>
<thead>
<tr>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>A S N M S S S H L Q L I Y N L T I C E B L N G T D W L N D K F</td>
<td>Majority</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

31	A S N M S S S H L Q L I Y N L T I C E B L N G T D W L K D K F	SEQ ID NO: 1
31	A S S S S S S Q L Q S I Y N L T I C E B L N G T D W L N K N F	SEQ ID NO: 2
31	A S N M S S S Q L Q S I Y N L T I C E B L N G T D W L N K N F	SEQ ID NO: 3
31	A S T S S S S H L Q L I Y N L T I C E B L N G T D W L N E K F	SEQ ID NO: 4
31	A S S S S S S H L Q L I Y N L T I C E B L N G T D W L D K K F	SEQ ID NO: 5
31	A S N M S S S S H L Q L I Y N L T I C E B L N G T D W L N A R F	SEQ ID NO: 6
31	A S S S S S S S Q L Q S I Y N L T I C E B L N G T D W L N D K F	SEQ ID NO: 7
31	A S N M S S S S S S Q L Q S I Y N L T I C E B L N G T D W L N K N F	SEQ ID NO: 8
31	A S S S S S S S Q L Q S I Y N L T I C E B L N G T D W L A D K F	SEQ ID NO: 9
31	A S N D S S S S S H L Q L I Y N L T I C E B L N G T D W L A N K F	SEQ ID NO: 10
31	A S N D S S S S S H L Q L I Y N L T I C E B L N G T D W L A N K F	SEQ ID NO: 11
31	A S N D S S S S S S S Q L Q S I Y N L T I C E B L N G T D W L A N K F	SEQ ID NO: 12
31	A S N D S S S S S S S S Q L Q S I Y N L T I C E B L N G T D W L A N K F	SEQ ID NO: 13

FIG. 5
FIG. 6
METHODS AND COMPOSITIONS FOR VACCINATION OF ANIMALS WITH PRRSV ANTIGENS WITH IMPROVED IMMUNOGENICITY

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 60/712,357, filed on Aug. 30, 2005.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under a National Research Initiative Competitive Grant #2004-01576 from the U.S. Department of Agriculture and under a National Institute of Health COBRE program of the National Center for Research Resources Project #I20RR15636. The government has certain rights to this invention.

APPENDIX

Not Applicable

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to compositions comprising Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) antigens with improved immunogenicity and methods for their use. The compositions and methods described herein result in improved immunogenic responses of pigs to PRRSV antigens, thus providing for improved protection of pigs to PRRSV infection.

2. Related Art

PRRSV is an economically important pathogen that affects pigs. Infection of sows and gilts with PRRSV can result in reproductive failure. PRRSV also causes respiratory disease in pigs of all ages. It is possible to vaccinate the pigs to protect them from infection with PRRSV. However, the current commercially available vaccines (most of which are live attenuated vaccines) are somewhat ineffective and therefore should be improved. The complete immunologic mechanisms of protection against PRRSV are not clear; however, it has been clearly shown that PRRSV-neutralizing antibodies are central to this protection. Unfortunately, the PRRSV itself (in its wild-type form) or the current live vaccines derived from it have poor ability to induce virus-specific neutralizing antibodies in a timely manner and at effective (i.e., protective) levels.

U.S. Pat. No. 6,500,662, “Infectious cDNA clone of North American porcine reproductive and respiratory syndrome (PRRS) virus and uses thereof” (by Calvert et al., Dec. 31, 2002) describes the development of an infectious North American PRRSV cDNA clone and its use as a vaccine. However, U.S. Pat. No. 6,500,662 does not disclose PRRSV vaccines that comprise hypoglycosylated PRRSV antigens.

In another study, sequences of the GP5 protein (or ORF5 protein) from various North American PRRSV strains were compared to one another and to the representative European PRRSV isolate known as the Lelystad strain, revealing that the N-linked glycosylation sites at Asparagine 44 (N44) and Asparagine 51 (N51) of the GP5 consensus sequence were conserved in all of the PRRSV isolates examined (Pirzadeh et al., Can. J. Vet Res., 1998, 62:170-177). However, the N-glycosylation site located at Asparagine 31 (N31) of the GP5 consensus sequence was absent in certain North American PRRSV isolates and absent in the European PRRSV Lelystad strain isolate. Recombinant GST-GP5 fusion proteins from four (4) North American PRRSV strains and the Lelystad strain were produced in E. coli as insoluble inclusion bodies, renatured, and used as immunogens in rabbits. Such recombinant proteins produced in E. coli retain but do not glycosylate their native N-glycosylation sites.

Inoculation of pigs with a DNA vaccine comprising a CMV promoter fusion to the GP5 gene of the IAF-Klop North American PRRSV isolate has also shown to provide protection in immunized animals against PRRSV challenge (Pirzadeh and Dea, 1998, J. General Virol, 79, 989-999). This particular GP5 gene isolate encodes a GP5 protein containing the N31, N44 and N51 Asparagine residues that are presumably glycosylated when expressed in pigs immunized with the DNA vaccine. Vaccination of pigs with E. coli produced GST-GP5, which retain but do not glycosylate the native N-glycosylation sites of the GP5 gene of the IAF-Klop strain, did not protect the lungs of virus-challenged pigs.

European PRRSV infectious clones containing mutations that result in expression of hypoglycosylated PRRSV proteins have also been described (Wisnick et al., 2004, J. Gen. Virol. 85:3715-23). This particular reference reports that PRRSV containing mutations in the Asparagine Residue 53 (N53) of the PRRSV Lelystad strain GP5 protein that prevent N-linked glycosylation of that site are infectious and can produce infectious PRRSV Lelystad strain virus particles. In contrast, PRRSV containing mutations in the N46 of the PRRSV Lelystad strain GP5 protein that prevent N-linked glycosylation of that site are not infectious and do not produce infectious PRRSV Lelystad strain virus particles. Wisnick et al. speculate that N-glycan sites in the European PRRSV GP5 protein, and, by analogy, the N53 site of the GP5 protein, could act at many different levels in the natural host, including receptor interactions or immune shielding.

In viruses other than PRRSV, glycan residues have been implicated in a variety of roles. The N-linked glycosylation, in general, is important for correct folding, targeting, and biological activity of proteins (Helenius, A. and M. Aebi., Annu. Rev. Biochem. 73:1019-1049, 2004; Williams, D. B. and Glycoconj J., 12:iii-iv, 1995; Zhang, et al., Glycobiology 14:1229-46, 2004). In many enveloped viruses, the envelope proteins are modified by addition of sugar moieties and the N-linked glycosylation of envelope protein plays diverse functions of viral glycoproteins such as receptor binding, membrane fusion, penetration into cells, and virus budding (Braakman, I. and E. van Anken, Traffic 1:553-9, 2000; Doms et al. Virology 193:545-62, 1993). Recent studies have demonstrated the role of N-linked glycosylation of Hantaan virus glycoprotein in protein folding and intracellular trafficking (Shi, X. and R. M. Elliott, J. Virol. 78:5414-22, 2004) as well as in biological activity and antigenicity of influenza virus hemagglutinin (HA) protein (Abe, Y., et al., J. Virol. 78:9605-11, 2004). Furthermore, it has become evident that glycosylation of viral envelope proteins is a major mechanism for viral immune evasion and persistence used by several different enveloped viruses to escape, block or minimize the virus-neutralizing antibody response. Examples of this effect have been reported for SVV (Reitter, J. N. et al., Nat. Med. 4:679-84, 1998) and HIV-1 (Wei, X. et al., Nature 422:307-12, 2003), HBV (Lee, J. et al. Biochem. Biophys. Res. Commun. 303:427-32, 2003), influenza (Skehel, J. J. et al., Proc. Natl.
It is in view of the above problems that the present invention was developed. It is demonstrated that hypoglycosylated variants of PRRSV major surface protein GP5 increased the level of PRRSV-neutralizing antibodies produced by immunized pigs relative to the levels of neutralizing antibodies produced by pigs immunized with wild type (wt) or glycosylated GP5.

This invention first provides for a method of eliciting an improved immune response in a pig to a Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) antigen, comprising the administration of a composition comprising a polynucleotide encoding a hypoglycosylated PRRSV GP5 polypeptide variant wherein at least one N-linked glycosylation site corresponding to asparagine 51 or asparagine 51 in a reference GP5 protein of SEQ ID NO:1 is inactivated. In certain embodiments of the method, at least one N-linked glycosylation site corresponding to asparagine 51 in SEQ ID NO:1 is inactivated. This polynucleotide can comprise an infectious PRRSV RNA molecule or a DNA molecule that encodes an infectious PRRSV RNA molecule. The infectious PRRSV RNA molecule is a North American PRRSV derivative or a European PRRSV derivative. Alternatively, this polynucleotide can comprise a DNA molecule wherein a promoter active in mammalian cells is operably linked to said polynucleotide encoding a hypoglycosylated GP5 protein. This promoter is a CMV promoter in certain preferred embodiments of the invention. Alternatively, the polynucleotide can be a viral vector. Representative viral vectors that can be used include vaccinia virus vectors, a herpes simplex viral vectors, adenovirus vectors, alphavirus vectors, and TGEV vectors.

A variety of types and sources of PRRSV sequences can be used to obtain the polynucleotide encoding a hypoglycosylated PRRSV GP5 polypeptide variant wherein at least one N-linked glycosylation site corresponding to asparagine 51 or asparagine 51 in a reference GP5 protein of SEQ ID NO:1 is inactivated. In certain embodiments of the invention, a polynucleotide encoding a hypoglycosylated PRRSV GP5 polypeptide variant is obtained by direct synthesis, mutagenesis of a North American PRRSV isolate GP5 nucleotide sequence or mutagenesis of a consensus North American PRRSV GP5 nucleotide sequence. The North American PRRSV isolate GP5 nucleotide sequence can be selected from the group of nucleotides that encode the GP5 proteins of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, and SEQ ID NO:13. The consensus North American PRRSV GP5 sequence encodes a consensus GP5 protein that is at least 85% identical to SEQ ID NO:14. In other embodiments of the invention, the polynucleotide encoding a hypoglycosylated PRRSV GP5 polypeptide variant is obtained by direct synthesis, mutagenesis of a European PRRSV isolate GP5 nucleotide sequence or mutagenesis of a consensus European PRRSV GP5 nucleotide sequence. The European PRRSV isolate GP5 nucleotide sequence encodes a GP5 protein that is at least 85% identical to SEQ ID NO:15.

A variety of methods of inactivating specified N-linked glycosylation sites can be used to effectively practice the method of this invention. One preferred method of inactivating an N-linked glycosylation site corresponding to asparagine 51 is to replace the asparagine codon with a codon encoding an amino acid other than asparagine. This replacement codon can encode an alanine or a glutamine residue. In more preferred embodiments, both of said N-linked glycosylation sites corresponding to asparagine 51 and asparagine 51 in a reference GP5 protein of SEQ ID NO:1 are inactivated. In other embodiments, the N-linked glycosylation site corresponding to asparagine 51 is inactivated. This asparagine 34 N-linked glycosylation site can be inactivated by replacing a codon encoding said asparagine 34 with a codon encoding an amino acid other than asparagine. The codon encoding another amino acid can encode an alanine or a glutamine residue. In other preferred embodiments, both of the N-linked glycosylation sites corresponding to asparagine 34 and asparagine 51 in a reference GP5 protein can be inactivated by replacing codons encoding the asparagine 34 and the asparagine 51 with codons encoding an amino acid other than asparagine. Both codons encoding the asparagine 34 and the asparagine 51 can be replaced with codons encoding either an alanine or a glutamine residue to inactivate those glycosylation sites. Alternatively, both codons can be replaced with codons that encode an alanine residue to inactivate both glycosylation sites. Alternatively, one of the N-linked glycosylation sites is inactivated by replacing one codon encoding said asparagine 34 or said asparagine 51 with a codon encoding an amino acid other than asparagine while the other N-linked glycosylation site is inactivated by other techniques.

In preferred embodiments, the method employs an infectious PRRSV RNA molecule that is a North American PRRSV derivative encoding a hypoglycosylated PRRSV GP5 polypeptide variant wherein at least one N-linked glycosylation site corresponding to asparagine 34 or asparagine 51 in a reference GP5 protein of SEQ ID NO:1 is inactivated. In more preferred embodiments, both of said N-linked glycosylation sites corresponding to asparagine 34 and asparagine 51 in a reference GP5 protein of SEQ ID NO:1 are inactivated. Both of the N-linked glycosylation sites corresponding to asparagine 34 and asparagine 51 in a reference GP5 protein can be inactivated by replacing codons encoding the asparagine 34 and the asparagine 51 with codons encoding an amino acid other than asparagine. Both codons encoding the asparagine 34 and the asparagine 51 can be replaced with codons encoding either an alanine or a glutamine residue to inactivate those glycosylation sites. Alternatively, both codons can be replaced with codons that encode an alanine residue to inactivate that glycosylation site.

To practice this method, the polynucleotide containing composition is administered by subcutaneous injection, intravenous injection, intradermal injection, parenteral injection, intramuscular injection, needle free injection, electroporation, oral delivery, intranasal delivery, oronasal delivery, or any combination thereof. The administered composition can further comprise a therapeutically acceptable carrier. This therapeutically acceptable carrier is selected from the group consisting of a protein, a buffer, a surfactant, and a polyethylene glycol polymer, or any combination thereof.

The administered composition can further comprise an adjuvant. This adjuvant can be aluminum hydroxide, Quil A, an alumina gel suspension, mineral oils, glycerides, fatty acids, fatty acid by-products, mycobacteria, or CpG oligodeoxynucleotides, or any combination thereof. The administered composition can also comprise a second adjuvant such as interleukin 1 (IL-1), IL-2, IL-4, IL-5, IL-6, IL-12, gamma interferon (γ-IFN), cell necrosis factor, MDP (muramyl dipeptide), immuno stimulant complex (ISCOM), and liposomes.

The improved immune response of a pig to a PRRSV antigen can comprise increased production of PRRSV neu-
nutralizing antibodies by said pig. Increased production of PRRSV neutralizing antibodies is typically observed upon immunization of the pig by the methods and compositions of this invention. The improved immune response can be obtained in a sow, a gilt, a boar, or a piglet.

The invention also provides a method of eliciting an improved immune response in a pig to a Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) antigen, comprising the administration of a composition comprising a hypoglycosylated PRRSV GP5 polypeptide variant wherein at least one N-linked glycosylation site corresponding to asparagine 51 in a reference GP5 protein of SEQ ID NO:1 is inactivated to said pig. Hypoglycosylated PRRSV GP5 polypeptide variant protein can be produced by the same polynucleotides used in the previously described methods in bacterial, yeast, or mammalian expression systems.

The instant invention also provides for compositions comprising a polynucleotide encoding a hypoglycosylated North American PRRSV GP5 polypeptide variant wherein at least one N-linked glycosylation site corresponding to asparagine 51 in a reference GP5 protein of SEQ ID NO:1 is inactivated, and a therapeutically acceptable carrier. In certain embodiments, the compositions comprise polynucleotides where both N-linked glycosylation sites corresponding to asparagine 34 and asparagine 51 in SEQ ID NO:1 are inactivated. In preferred embodiments, this composition can comprise either an infectious North American PRRSV RNA molecule or a DNA molecule that encodes an infectious North American PRRSV RNA molecule. In other embodiments, the polynucleotide comprises a DNA molecule wherein a promoter active in mammalian cells is operably linked to said polynucleotide encoding said hypoglycosylated North American PRRSV GP5 polypeptide variant. In certain preferred embodiments, this promoter is a CMV promoter. In still other embodiments, the polynucleotide in the composition comprises a viral vector. Viral vectors that can be used in the composition can be any one of a vaccinia virus vector, a herpes simplex viral vector, an adenovirus vector, an alphavirus vector, and a TGEV vector.

In the polynucleotides of the composition, an N-linked glycosylation site is inactivated by replacing a codon encoding said asparagine 51 with a codon encoding an amino acid other than asparagine. The codon encoding an amino acid other than asparagine encodes an alanine or a glutamine residue. In other embodiments of this composition, an additional N-linked glycosylation site is inactivated by replacing a codon encoding asparagine 34 with a codon encoding an amino acid other than asparagine. This codon encoding another amino acid can encode an alanine or a glutamine residue. Preferred compositions comprising polynucleotides encoding a hypoglycosylated North American PRRSV GP5 polypeptide variant protein wherein both of said N-linked glycosylation sites corresponding to asparagine 34 and asparagine 51 in a North American reference GP5 protein of SEQ ID NO:1 are inactivated are thus provided for by this application. Both of the said N-linked glycosylation sites can be inactivated by replacing codons encoding said asparagine 34 and said asparagine 51 with codons encoding an amino acid other than asparagine. These codons encoding an amino acid other than asparagine can encode either an alanine or a glutamine residue.

The therapeutically acceptable carrier used in the composition can be a protein, a buffer, a surfactant, and a polyethylene glycol polymer, or any combination thereof. The composition further comprises at least one adjuvant.

This adjuvant can be aluminum hydroxide, Quil A, an alumina gel suspension, mineral oils, glycerides, fatty acids, fatty acid by-products, mycobacteria, and CpG oligodeoxynucleotides, or any combination thereof. The composition can further comprise a second adjuvant selected from the group consisting of interferon (IFN), IL-1, IL-2, IL-4, IL-5, IL-6, IL-12, gamma interferon (γ-IFN), cell necrosis factor, MDP (muramyl dipeptide), immuno stimulant complex (ISCOM), and liposomes.

A composition comprising a hypoglycosylated North American PRRSV GP5 polypeptide variant wherein at least one N-linked glycosylation site corresponding to asparagine 51 in a reference GP5 protein of SEQ ID NO:1 is inactivated and a therapeutically acceptable carrier is also provided by this invention. In preferred embodiments, N-linked glycosylation sites corresponding to both asparagine 34 or asparagine 51 in a reference GP5 protein of SEQ ID NO:1 are inactivated. Hypoglycosylated PRRSV GP5 polypeptide variant protein can be produced by the same polynucleotides used in the previously described methods in bacterial, yeast, or mammalian expression systems.

The instant invention also provides isolated polynucleotides encoding a hypoglycosylated North American PRRSV GP5 polypeptide variant wherein at least one N-linked glycosylation site corresponding to asparagine 51 in a reference GP5 protein of SEQ ID NO:1 is inactivated. In certain embodiments, polynucleotides where both N-linked glycosylation sites corresponding to asparagine 34 and asparagine 51 in SEQ ID NO:1 are inactivated are provided. In preferred embodiments, this isolated polynucleotide can comprise either an infectious North American PRRSV RNA molecule or a DNA molecule that encodes an infectious North American PRRSV RNA molecule. In other embodiments, the isolated polynucleotide comprises a DNA molecule wherein a promoter active in mammalian cells is operably linked to said polynucleotide encoding said hypoglycosylated North American PRRSV GP5 polypeptide variant. In certain preferred embodiments, this promoter is a CMV promoter. In still other embodiments, the isolated polynucleotide comprises a viral vector. Viral vectors that can be used in the composition can be any one of a vaccinia virus vector, a herpes simplex viral vector, an adenovirus vector, an alphavirus vector, and a TGEV vector.

In the isolated polynucleotides an N-linked glycosylation site is inactivated by replacing a codon encoding said asparagine 51 with a codon encoding an amino acid other than asparagine. The codon encoding an amino acid other than asparagine encodes an alanine or a glutamine residue. In other preferred embodiments, an additional N-linked glycosylation site is inactivated by replacing a codon encoding asparagine 34 with a codon encoding an amino acid other than asparagine. This codon encoding another amino acid can encode an alanine or a glutamine residue. Preferred polynucleotides encoding a hypoglycosylated North American PRRSV GP5 polypeptide variant protein wherein both of said N-linked glycosylation sites corresponding to asparagine 34 and asparagine 51 in a North American reference GP5 protein of SEQ ID NO:1 are inactivated are thus provided. Both of the said N-linked glycosylation sites can be inactivated by replacing codons encoding said asparagine 34 and said asparagine 51 with codons encoding an amino acid other than asparagine. These codons encoding an amino acid other than asparagine can encode either an alanine or a glutamine residue.

The invention also provides for an isolated polypeptide that is a hypoglycosylated North American PRRSV GP5 polypeptide variant wherein at least one N-linked glycosylation site corresponding to asparagine 51 in a reference GP5 protein of
SEQ ID NO:1 is inactivated. The isolated hypoglycosylated PRRSV GP5 polypeptide variant protein can be produced by the same polynucleotides used in the previously described methods in bacterial, yeast, or mammalian expression systems and purified by chromatography or other techniques.

Further features and advantages of the present invention, as well as the structure and operation of various embodiments of the present invention, are described in detail below with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and together with the description, serve to explain the principles of the invention. In the drawings: FIG. 1 illustrates the transient expression of PRRSV GP5 and M protein. A. Schematic of the bicistronic construct showing the GP5 and M coding regions flanking the IRES (IE) from encephalomyocarditis virus. The coding regions are under the control of T7 RNA polymerase promoter (black rectangle) present immediately upstream of the GP5 coding region. The bent arrow shows the position and direction of transcription by T7 RNA polymerase from the vector. B. Expression of GP5 and M proteins in cells transfected with the bicistronic vector. Mock-transfected (lane 1) or plasmid transfected cells (lanes 2-7) were radiolabeled as described in Materials and Methods, immunoprecipitated with anti-Gp5 antibody (lanes 1-5) or anti-M antibody (lanes 6-7). Immunoprecipitated proteins were left untreated (-) (lanes 1, 2, 6, and 7) or treated (+) with Endo H (lane 3), PNGase F (lane 4) and analyzed by electrophoresis. Lane 5 contains immunoprecipitated proteins from transfected cells treated (+) with tunicamycine. Mobility of proteins with relative molecular mass (Mr) in kilodaltons are shown.

FIG. 2 illustrates the glycosylation analysis of WT-GP5 and its mutants using a bicistronic plasmid. A. Schematic of the bicistronic vector and the PRRSV GP5 with the three putative glycosylation sites at amino acid positions 34, 44 and 51 shown. B. Various mutants used in the present study. C. Expression of wt and mutant GP5 and their sensitivity to Endo H. The experiment was performed as described in the legend to FIG. 1. Proteins were immunoprecipitated with anti-Gp5 antibody, digested with Endo H (+) or left undigested (-) and analyzed by electrophoresis. Mutant GP5 proteins are shown by arrowheads. Mobility of proteins with relative molecular mass (Mr) in kilodaltons are shown.

FIG. 3 illustrates the characterization of mutant viruses encoding mutant GP5. A. Single step growth kinetics of wt (FL-12) and various mutant PRRSVs in MARC-145 cells. Cells in six-well plated were infected with PRRSV at an MOI of 3, culture supernatants were collected at indicated times after infection and virus titers were determined. Average titers with standard deviation (error bars) from three independent experiments are shown. B. Plaque morphology of mutant viruses. Open arrows and arrowheads show plaques that are less clear. C. Trans-complementation to recover mutant PRRSVs. Quantitative analysis of mutant virus recovery from cells expressing wt GP5 protein. Average yield of viruses from three independent experiments with standard deviation (represented by error bars) is shown.

FIG. 4 illustrates an examination of GP5 incorporated into mutant virions and synthesized in mutant virus-infected cells. A. Radiolabeled virions from culture supernatants of infected cells were pelleted, GP5 protein was immunoprecipitated, treated with (+) or without (-) Endo H and analyzed by electrophoresis. GP5 with and without Endo H digestion in lanes 1 and 2 are shown by white brackets. B. Cells infected with various mutant viruses were radiolabeled, GP5 was immunoprecipitated, treated with (+) or without (-) Endo H and analyzed by electrophoresis. GP5 with and without Endo H digestion in lanes 2 and 3 are shown by white brackets. Mobility of proteins with relative molecular mass (Mr) in kilodaltons are shown on right side of each panel.

FIG. 5 illustrates an alignment of North American PRRSV GP5 n-terminal amino acid sequences with the North American PRRSV GP5 reference n-terminal sequence (SEQ ID NO:1; strain NVSL 97-7895). The first 60 N-terminal amino acids of an alignment of the 200 amino acid proteins are shown. The asparagine 34 “NSS” and asparagine 51 “NGT” N-linked glycosylation sites in the proteins are shown in bold. Other N-linked glycosylation sites located between residues 29 and 35 of the reference GP5 protein are underlined.

FIG. 6 illustrates an alignment of European PRRSV GP5 N-terminal amino acid sequence with the North American PRRSV GP5 reference n-terminal sequence (SEQ ID NO:1; strain NVSL 97-7895). An alignment of the entire GP5 protein of approximately 200 amino acid proteins is shown where the asparagine 51 “NGT” N-linked glycosylation site in the proteins is shown in bold (i.e., asparagine 53 in SEQ ID NO:15).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Definitions

“Acceptable carrier”, as used herein, refers to a carrier that is not deleterious to the other ingredients of the composition and is not deleterious to material to which it is to be applied.

“Therapeutically acceptable carrier” refers to a carrier that is not deleterious to the other ingredients of the composition and is not deleterious to the human or other animal recipient thereof. In the context of the other ingredients of the composition, “not deleterious” means that the carrier will not react with or degrade the other ingredients or otherwise interfere with their efficacy. Interference with the efficacy of an ingredient does not encompass mere dilution of the ingredient. In the context of the animal, “not deleterious” means that the carrier is not injurious or lethal to the plant or animal.

“Adjuvant”, as used herein, refers to any material used in conjunction with an antigen that enhances the ability of that antigen to induce an immune response.

“Administration”, as used herein, refers to any means of providing a polynucleotide, a polypeptide or composition thereof to a subject. Non-limiting examples of administration means include subcutaneous injection, intravenous injection, intradermal injection, parenteral injection, intramuscular injection, needle free injection, electroporation, oral delivery, intranasal delivery, oronasal delivery, or any combination thereof.

“Antigen”, as used herein, refers to any entity that induces an immune response in a host.

“Consensus sequence”, as used herein, refers to an amino acid, DNA or RNA sequence created by aligning two or more homologous sequences and deriving a new sequence that represents the common amino acid, DNA or RNA sequence.

“Hypoglycosylated PRRSV GP5 polypeptide variant”, as used herein, refers to PRRSV GP5 proteins wherein the original or non-variant amino acid sequence that comprises one or more N-linked glycosylation sites has been changed so as to reduce the number of N-linked glycosylation sites in the
resultant GP5 variant protein. Under this definition, expression of an original or non-variant GP5 protein in E. coli to produce a GP5 protein with the original GP5 sequence containing the same number of glycosylation sites would not result in production of a hypoglycosylated PRRSV GP5 polypeptide variant.

“Immune response”, as used herein, refers to the production of antibodies and/or cells (such as T lymphocytes) that bind, degrade or otherwise inhibit, a particular antigen. Related phrases such as “an improved immune response” refer to the use of the methods and compositions that result in any measurable improvement in the response of an immunized host to an antigen. For example, measurable improvements in an immune response include, but are not limited to, increased production of neutralizing antibodies (i.e., increased antibody titers) relative to the levels of production observed in control animals that have been immunized with antigens that lack the structural modifications that provide for an improved immune response.

“Infectious RNA molecule” refers to an RNA molecule that encodes all necessary elements for production of a functional virion when introduced into a permissive host cell.

“Infectious clone”, as used herein, refers to a DNA molecule that encodes an infectious RNA molecule.

“North American PRRSV”, as used herein, refers to any PRRSV comprising polynucleotide sequences associated with a North American PRRSV isolate, such as, but not limited to, the NVSRL strain (Truong et al, Virology, 325:308-319 and references contained therein) or IAF-Klop, MLV, ATCC VR-2332, ATCC VR-2385, IAF-BAJ, IAF-DESIR, IAF-CM, IAF 93-653, IAF 93-2616, IAF 94-3182, IAF 94-287 strains described in Pirzadeh et al. Can. J. Vet Res, 62: 170-177 and references contained therein). For this invention, PRRSV comprising polynucleotide sequences associated with a North American PRRSV isolate are PRRSV containing polynucleotide sequences wherein the GP5 encoding region encodes a polypeptide that has at least 85% protein sequence identity to SEQ ID NO:1.

“European PRRSV”, as used herein, refers to any PRRSV comprising polynucleotide sequences associated with a North American PRRSV isolate, such as, but not limited to, the Lelystad strain (Wissink et al., J. Gen. Virol. 85:3715, 2004 and references contained therein). For this invention, PRRSV comprising polynucleotide sequences associated with a European PRRSV isolate are PRRSV containing polynucleotide sequences wherein the GP5 encoding region encodes a polypeptide that has at least 85% protein sequence identity to SEQ ID NO:15.

“Percent identity”, as used herein, refers to the number of elements (i.e., amino acids or nucleotides) in a sequence that are identical within a defined length of two optimally aligned DNA, RNA or protein segments. To calculate the “percent identity”, the number of identical elements is divided by the total number of elements in the defined length of the aligned segments and multiplied by 100. When percentage of identity is used in reference to proteins it is understood that certain amino acid residues may not be identical but are nonetheless conservative amino acid substitutions that reflect substitutions of amino acid residues with similar chemical properties (e.g., acidic or basic, hydrophobic, hydrophilic, hydrogen bond donor or acceptor residues). Such substitutions may not change the functional properties of the molecule. Consequently, the percent identity of protein sequences can be increased to account for conservative substitutions.

Introduction

The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 5 (GP5) is the most abundant envelope glycoprotein and a major inducer of neutralizing antibodies in vivo. Three putative N-linked glycosylation sites (N34, N44, and N51) are located on the GP5 ectodomain, where a major neutralization epitope also exists. To determine which of these putative glycosylation sites are used in PRRSV life cycle and the role of the glycan moieties in induction of neutralizing antibodies, we generated a panel of GP5 mutants containing single and multiple amino acid substitutions at these sites. Transient expression of the wild-type (wt) as well as the mutant proteins and subsequent biochemical studies revealed that the mature GP5 contains high mannose type sugar moieties at all three sites. These mutations were subsequently incorporated into a full-length cDNA clone to recover infectious PRRSV. Our results demonstrate that mutations involving N44 residue did not result in infectious progeny production, indicating that N44 is the most critical amino acid residue for viral infectivity. Viruses carrying mutations at N34, N51, and N34/N51 grew to lower titers than the wtPRRSV and exhibited reduced cytopathic effect in MARC 145 cells. In serum neutralization assays, the mutant viruses exhibited enhanced sensitivity to neutralization by wt PRRSV-specific antibodies. Furthermore, inoculation of pigs with the mutant viruses induced significantly higher levels of neutralizing antibodies against the mutant as well as the wt PRRSV, thus suggesting that the loss of glycan residues in the ectodomain of GP5 enhances both the sensitivity of these viruses to in vitro neutralization as well as the immunogenicity of the nearby neutralization epitope. These results should have great significance for development of PRRSV vaccines of enhanced protective efficacy.

Neutralizing antibodies are known to be a major correlate of protection against PRRSV. We have found that elimination of glycosylation sites in PRRSV GP5 protein results in significant enhancement of: (1) the ability of the modified PRRSV strain to be neutralized by a PRRSV convalescent antiserum and (2) the ability of this modified PRRSV strain to produce unprecedented levels of PRRSV-neutralizing antibodies when used to inoculate pigs. The application of this concept to any live (wt or attenuated) virus used for immunizing against PRRSV infection would have significant impact in its usage to confer effective protection against PRRSV infection.

At the current time, there exists three main approaches to immunize against PRRSV infections: (1) live attenuated vaccines, (2) inactivated vaccines (which are based on wt PRRSV grown in vitro and chemically inactivated), and (3) use of purposeful infection with virulent wt PRRSV in a systematic manner to all animals of the herd. There is a lot of discussion and controversy about which of these 3 ways is the most effective. Our invention would be beneficial, regardless of the approach used for immunization. The genetic alteration of a live PRRSV to modify the glycosylation level of its proteins can be done in either the attenuated PRRSV vaccine strain, or the wt PRRSV strain used to produce an inactivated vaccine, or the wt PRRSV strain used for direct inoculation of the herd by mass infection.

The porcine reproductive and respiratory syndrome virus (PRRSV) belongs to the family Arteriviridae within the order Nidovirales that also includes equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV). The viral genome is a linear, positive stranded RNA molecule of approximately 15.0 kb in length and possesses a cap structure at the 5'-end and a poly(A) tail at the 3'-end. Eight open reading frames (ORF)
are encoded in the viral genome. The first two open reading frames (ORF1a and ORF1ab) encode viral non-structural (NS) polyproteins that are involved in polyprotein processing and genome transcription and replication. The viral structural proteins, encoded in ORF2-7, are expressed from six subgenomic capped and polyadenylated mRNAs that are synthesized as 3'-terminal nested set of mRNAs with a common leader sequence at the 5' end. The major viral envelope protein is the glycoprotein 5 (GP5), which is encoded in the ORF5 of the viral genome. GP5 is a glycosylated transmembrane protein of approximately 25 kDa in size. It has a putative N-terminal signal peptide and possesses three potential N-linked glycosylation sites which are located in a small ectodomain comprising the first 40 residues of the mature protein. In EAV and LDV, the major envelope glycoprotein forms a disulfide-linked heterodimer with the ORF6 gene product, the viral matrix (M) protein. Similar interaction between PRRSV GP5 and M protein has been observed but the mode of interaction has not been defined yet. It has been postulated that formation of heterodimers of GP5 and M proteins may play a critical role in assembly of infectious PRRSV. In addition to its role in virus assembly, GP5 appears to be involved in entry of the virus into susceptible host cells. GP5 is presumed to interact with the host cell receptors, siadhesin for entry into porcine alveolar macrophages (PAMs), the in vivo target cells for PRRSV. The role of GP5 in receptor recognition is supported by the presence of a major neutralization epitope in the N-terminal ectodomain, thus implying a central role for the GP5 ectodomain in the infection process.

The N-linked glycans of the GP5 ectodomain may be critical for proper functioning of the protein. The N-linked glycosylation, in general, is important for correct folding, targeting, and biological activity of proteins. In many enveloped viruses, the envelope proteins are modified by addition of sugar moieties and the N-linked glycosylation of envelope protein plays diverse functions of viral glycoproteins such as receptor binding, membrane fusion, penetration into cells, and virus budding. Recent studies have demonstrated the role of N-linked glycosylation of Hantaan virus glycoprotein in protein folding and intracellular trafficking as well as in biological activity and antigenicity of influenza virus hemagglutinin (HA) protein. Furthermore, it has become evident that glycosylation of viral envelope proteins is a major mechanism for viral immune evasion and persistence used by several different enveloped viruses to escape, block or minimize the virus-neutralizing antibody response. Examples of this effect have been reported for SIV and HIV-1, HBV, influenza and more importantly, in the case of PRRSV, the arterivirus LDV.

Recently the development of reverse genetic systems for PRRSV has been reported from several laboratories including ours. Evidently, mutational studies with infectious clones have led to a better understanding of the mechanisms of transcription and replication of the viral genome of arterviruses. Thus, in order to examine the importance of N-linked glycosylation in the biological activity of GP5 of PRRSV in generating infectious virus or eliciting neutralizing antibodies in vivo, we have constructed a series of mutant GP5 proteins in which each of the potential N-linked glycosylation sites has been mutated either individually or in various combinations. The resulting mutant proteins were examined for their glycosylation pattern, role in infectious virus recovery and in cross neutralization by antibodies raised, through experimental inoculations, against the wt PRRSV or against the mutant viruses. Our data show that all three putative glycosylation sites are used for glycosylation with high-manose type glycans and glycosylation of GP5 protein at residue 44 is critical for recovery of infectious PRRSV. Very importantly, our data from neutralization and antibody response studies indicate that natural infection with PRRSV may involve an immune evasion based on glycan shielding mechanisms as was previously described for other viruses, thus helping to explain the rather ineffective protective humoral immune response that is observed in PRRSV-infected animals.

N-linked Glycosylation Sites and Methods of Inactivation
N-linked glycosylation in glycoproteins typically occurs at Asn-Xaa-Ser/Thr (NXS/T) sequences, where Xaa (X) is any amino acid residue except Pro. A variety of mutations can be introduced at N-linked glycosylation sites to provide for their inactivation. A preferred method of inactivation comprises substitution of the asparagine residue with a residue encoding any amino acid other than asparagine. In more preferred embodiments of this invention, the asparagine residue is substituted with an alanine or a glutamine residue.

Other methods of inactivating N-linked glycosylation sites, and in particular the N-linked glycosylation sites corresponding to asparagines 34 and/or 51 of the GP5 reference protein of SEQ ID NO:1, are also contemplated herein. Substitutions of certain amino acids such as proline, tryptophan, aspartate, glutamate or Leucine at the Xaa position can also be used to inactivate N-linked glycosylation sites (Kasturi et al., Biochem J. 323 (2):415-9, 1997). Alternatively, substitutions of the final hydroxy amino acid position of the N-linked glycosylation site (i.e., the serine or threonine residue of the NXS/T sequence) with any non-hydroxy amino acid (i.e., any amino acid other than serine or threonine) can also be used to inactivate the N-linked glycosylation site. Examples of non-hydroxy amino acids that have been used to inactivate N-linked glycosylation sites include cysteine (Kasturi et al., J. Biol. Chemistry 270(24), 14756-14761, 1995).

In addition to amino acid substitutions, other types of mutations that inactivate N-linked glycosylation sites such as amino acid insertions or amino acid deletions are also contemplated by this invention. Those skilled in the art will appreciate that an N-linked glycosylation site can be readily inactivated by deletions that remove key amino acids in the NXS/T sequence (i.e., the asparagine residues) will result in the inactivation of that glycosylation site. Deletions of the X residue or serine/threonine residue can similarly inactivate certain N-linked glycosylation sites where the S or T residue is not followed by another S or T residue in the naturally occurring sequence. When X is a non-hydroxy amino acid (i.e., is not serine or threonine), insertions of any amino acid residue at the carboxy terminal end of the N residue can inactivate the N-linked glycosylation site. Insertions of any non-hydroxy amino acids at the carboxy terminal end of the X residue can also inactivate the N-linked glycosylation site.

In summary, it is understood that the key feature of the mutation used to practice the invention is that it inactivates N-linked glycosylation at the asparagine 34 and/or asparagine 51 sites in a GP5 protein. While not being limited by theory, it is believed that the key feature of these mutations are that they prevent glycosylation in a certain region of the protein (i.e., residues corresponding to the asparagine 34 and/or asparagine 51 sites in a GP5 reference protein of SEQ ID NO:1). By preventing glycosylation at these sites, sugar residues that ordinarily shield key epitopes of the wild type virus are removed, thus permitting elicitation of an improved immune response. Consequently, it is anticipated that a number of different types of mutations (i.e., amino acid substitution, insertion or deletion) can be used to inactivate the iden-
tified N-linked glycosylation sites and obtain an antigen that will elicit the improved immune response.

Description of PRRSV Polynucleotides and Polypeptides of the Invention

The methods of this invention can be practiced with a variety of different polynucleotides that can be derived from a variety of different sources. The common feature of all of the polynucleotides is that they encode a hypoglycosylated PRRSV GP5 polypeptide variant where N-linked glycosylation sites corresponding to either asparagine 34, asparagine 51, or both asparagine 34 and asparagine 54 in a reference GP5 protein of SEQ ID NO:1 are inactivated. To identify the N-linked glycosylation sites corresponding to asparagine 34 and asparagine 54 in the reference GP5 protein of SEQ ID NO:1, the non-variant and normally glycosylated PRRSV GP5 polypeptide sequence can be aligned with the reference GP5 protein of SEQ ID NO:1. Examples of such an alignment are displayed in FIGS. 5 and 6. The particular sequences used in this alignment are described in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Description</th>
<th>GenBank Accession (Reference)</th>
<th>Sequence ID NO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>North American PRRSV strain NVSL 97-7895</td>
<td>AACC41204.1</td>
<td>2</td>
</tr>
<tr>
<td>GP5 Protein</td>
<td>AACC41204.1</td>
<td>3</td>
</tr>
<tr>
<td>North American PRRSV strain 1.1-AF-Klop</td>
<td>AACC41212.1</td>
<td>4</td>
</tr>
<tr>
<td>GP5 Protein</td>
<td>AACC41215.1</td>
<td>5</td>
</tr>
<tr>
<td>North American PRRSV strain 1-AF-BAJ</td>
<td>AACC41218.1</td>
<td>6</td>
</tr>
<tr>
<td>GP5 Protein</td>
<td>AACC41221.1</td>
<td>7</td>
</tr>
<tr>
<td>North American PRRSV strain 1-AF-DESR</td>
<td>AACC41224.1</td>
<td>8</td>
</tr>
<tr>
<td>North American PRRSV strain 1-AF-CM</td>
<td>AACC41227.1</td>
<td>10</td>
</tr>
</tbody>
</table>

To identify N-linked glycosylation sites corresponding to asparagine 34 or asparagine 51 in a reference GP5 protein of SEQ ID NO:1 that can be inactivated and used in the methods of this invention, the GP5 proteins of either a desired North American PRRSV isolate (FIG. 5) or a European PRRSV isolate (FIG. 6) are aligned with reference GP5 protein of SEQ ID NO:1 (North American strain NVSL 97-7895). By using the GP5 protein of SEQ ID NO:1 as a reference protein, one skilled in the art can readily identify the N-linked glycosylation sites in any GP5 protein and then construct the hypoglycosylated GP5 protein variants of this invention. It is thus apparent that the term “corresponding to (asparagine 34 and/or asparagine 51) in a reference GP5 protein of SEQ ID NO:1” serves as a descriptor of the N-linked glycosylation site in any GP5 protein.

The hypoglycosylated GP5 protein can be obtained from a North American PRRSV isolate including, but not limited to, SEQ ID NO:1-13, a North American PRRSV isolate that is at least 85% identical at an amino sequence level to a North American PRRSV consensus sequence such as SEQ ID NO:14, or from a North American PRRSV consensus sequence. The hypoglycosylated GP5 protein can also be obtained from European PRRSV isolates including, but not limited to, SEQ ID NO:15, a European PRRSV isolate that is at least 85% identical at an amino sequence level to a European PRRSV consensus sequence such as SEQ ID NO:15, or from an European PRRSV consensus sequence. To obtain the hypoglycosylated GP5 variant encoding polynucleotides, polynucleotides from any of the sources listed above can be mutagenized by standard site-directed mutagenesis techniques such that they will encode a hypoglycosylated GP5 variant polypeptide. Alternatively, an entirely synthetic DNA sequence can be constructed that encodes the desired hypoglycosylated GP5 variant polypeptide. This is typically accomplished by using a sequence analysis program such as “back translate” which converts a polypeptide sequence into a corresponding polynucleotide sequence (GCG Wisconsin Package™, Accelrys, Inc., San Diego, Calif.). If desired, a suitable “codon bias” can be incorporated into the “back translate” program to provide for the design of a synthetic gene that incorporates codons appropriate for use in the desired expression host (i.e., mammalian or yeast).

The N-linked glycosylation site corresponding to asparagine 51 of the reference GP5 protein of SEQ ID NO:1 is present in all of the representative North American PRRSV isolates shown in FIG. 5 and in the representative European PRRSV Lelystad strain (FIG. 6). In these exemplary and non-limiting North American and European PRRSV strains,
the N-linked glycosylation site at this position comprises the sequence "NGT". However, it is also anticipated that other PRRSV variants may comprise other structurally interchangeable N-linked glycosylation sites at this position (i.e., NXS or T) that could also be inactivated via the methods taught herein. This N-linked glycosylation site can be inactivated by substituting codons encoding other amino acid residues such as glutamine or alanine for asparagine 51 in the corresponding nucleotide sequence. In these instances, the corresponding amino acid sequence in the hypoglycosylated North American PRRSV GP5 protein variant would comprise the sequences such as "QGT", "AGT", or "XGT", where X is any amino acid other than asparagine. These or other hypoglycosylated variants of the North American PRRSV GP5 protein isolates where the N-linked glycosylation site corresponding to asparagine 51 is inactivated can also be combined with other hypoglycosylated GP5 variants where other N-linked glycosylation sites are inactivated. Other methods of inactivating N-linked glycosylation sites include amino acid substitutions of the "X" or "S" residues of the NXSST sequence, amino acid deletions or amino acid insertions and are described above.

The N-linked glycosylation site corresponding exactly to asparagine 34 of the reference GP5 protein of SEQ ID NO:1 is present in only certain representative North American PRRSV isolates shown here (Fig. 5). More specifically, the GP5 proteins of North representative American PRRSV isolates IAF-BAJ (SEQ ID NO:3), 94-3182 (SEQ ID NO:7), and 94-287 (SEQ ID NO:8) contain the N-linked glycosylation site corresponding exactly to asparagine 34 of the reference GP5 protein of SEQ ID NO:1 and comprises the N-linked glycosylation site “NSS”. It is of course anticipated that other PRRSV GP5 isolates not shown here will also contain N-linked glycosylation sites corresponding to asparagine 34 of the reference GP5 protein of SEQ ID NO:1 and that hypoglycosylated variants of these other GP5 proteins can also be obtained using the methods described herein. This N-linked glycosylation site of SEQ ID NO:3, 7, and 8 or other PRRSV isolates containing the asparagine 34 N-linked glycosylation site can be inactivated by substituting codons encoding other amino acid residues such as glutamine or alanine for asparagine 34 in the corresponding polynucleotide sequence. In these instances where the N-linked glycosylation site at asparagine 34 is "NSS", the corresponding amino acid sequence in the hypoglycosylated North American PRRSV GP5 protein variant would comprise the sequences such as "QSS", "ASS", or "XSS", where X is any amino acid other than asparagine. Alternatively, the serine residue of the "NSS" sequence can be substituted with a non-hydroxy amino acid (i.e., non-serine of non-threonine). In these instances, the corresponding amino acid sequence in the hypoglycosylated North American PRRSV GP5 protein variant would comprise the sequence "NSX", where X is any amino acid other than asparagine. An insertion of a non-hydroxy amino acid between the two serine residues of the "NSS" sequence (i.e., between serines 35 and 36) can also be used to inactivate this particular glycosylation site.

In other North American PRRSV isolates that lack the N-linked glycosylation site corresponding exactly to asparagine 34 of the reference GP5 protein of SEQ ID NO:1, other N-linked glycosylation sites located at residue 30 (Fig. 5 "NAS" in SEQ ID NO:2, 3, 4, 6, 7, 8, 9, 11, 13), and residue 33 (Fig. 5 "NNS" in SEQ ID NO:3, 8; "NSS" in SEQ ID NO:6, 10, "NDS" in SEQ ID NO:11: 13) can also be inactivated. In other words, N-linked glycosylation sites in other North American isolates located at amino acid positions corresponding to residues 30 and 33 of the reference GP5 protein of SEQ ID NO:1 can also be inactivated and used in the methods of this invention. Without being limited by theory, the particular region of the PRRSV GP5 protein located between residues 29 and 35 of the GP5 reference protein of SEQ ID NO:1 appears to be a hypervariable region (Fig. 5) that can tolerate a variety of distinct amino sequences (Fig. 5; also see Pirzadeh et al., Can. J. Vet Res., 1998, 62: 170-177). Although certain naturally occurring PRRSV isolates contain no N-linked glycosylation sites in this region (i.e., North American isolates of SEQ ID NO:5, 12; European isolate of SEQ ID NO:15), other isolates can contain between 1 to 3 glycosylation sites in this region. Consequently, inactivation of any one of the glycosylation sites of a given GP5 protein in the region located between residues 29 and 35 of the GP5 reference protein of SEQ ID NO:1 is contemplated herein as a composition or method for eliciting an improved immune response to the PRRSV GP5 protein. Furthermore, inactivation of more than one or all of the glycosylation sites a given GP5 protein in the region located between residues 29 and 35 of the GP5 reference protein of SEQ ID NO:1 is also contemplated herein as a composition or method for eliciting an improved immune response to the PRRSV GP5 protein.

Alignment of the North American and the European PRRSV sequence shows that the N-linked glycosylation site corresponding to asparagine 51 of the reference GP5 protein of SEQ ID NO:1 is also present in a representative European PRRSV isolate. In this particular instance, the N-linked glycosylation site comprises the sequence "NGT" and the asparagine 51 of the SEQ ID NO:1 reference sequence corresponds to asparagine 53 of SEQ ID NO:15. This N-linked glycosylation site can be inactivated by substituting codons encoding other amino acid residues such as glutamine or alanine for asparagine 53 in the corresponding European PRRSV polynucleotide sequence. In these instances, the corresponding amino acid sequence in the hypoglycosylated European PRRSV GP5 protein variant would comprise the sequences such as "QGT", "AGT", or "XGT", where X is any amino acid other than asparagine. These or other hypoglycosylated variants of the European PRRSV isolates where the N-linked glycosylation site corresponding to asparagine 51 is inactivated can also be combined with other hypoglycosylated GP5 variants where other N-linked glycosylation sites are inactivated.

The hypoglycosylated GP5 variant proteins can be encoded by PRRSV viruses that can be used to prepare live, killed, or attenuated vaccines for protecting pigs from PRRSV infections. In preferred embodiments of the invention, the hypoglycosylated GP5 variant proteins of this invention are engineered into infectious PRRSV clones that are capable of producing infectious PRRSV RNA. Descriptions of infectious North American PRRSV clones that could be engineered to encode hypoglycosylated GP5 variant proteins are found in U.S. Pat. No. 6,500,662, Nielsen et al., J. Virol. 77:3702-11, 2003, and Truong et al., Virology 325:308-19, 2004. North American PRRSV infectious clone sequences that can be mutagenized to obtain PRRSV viruses for use in vaccines include but are not limited to the North American strains NVSL 97-7895 (SEQ ID NO:16) and strain VR-2332 (SEQ ID NO:17). Descriptions of infectious European PRRSV clones that could be engineered to encode hypoglycosylated GP5 variant proteins are found in U.S. Pat. No. 6,268,199. In embodiments where the vaccine comprises a live or attenuated PRRSV, the N-linked glycosylation site corresponding to N44 in the reference GP5 protein of SEQ ID NO:1 (i.e., the "NLT" sequence in Figs. 5 and 6) is not inactivated as glycosylation of this site is required for infectivity of the PRRSV. In the case of the European PRRSV
isolates, the N-linked glycosylation site corresponding to N44 in the reference GP5 protein of SEQ ID NO:1 is the NLT sequence that begins at asparagine of the representative European PRRSV strain Lelystad (SEQ ID NO:15; FIG. 6). The N46 N-linked glycosylation site of the European PRRSV strains is also required for infectivity and is not inactivated in as hard grown avian isolates. The N46 N-linked glycosylation site of the European PRRSV strains is also required for infectivity and is not inactivated in embryos of the infection where a live or attenuated PRRSV vaccine is used.

Alternatively, the hypoglycosylated GP5 variant proteins can be introduced into pigs with DNA vaccines. Such DNA vaccines typically comprise a DNA molecule wherein a promoter active in mammalian cells is operably linked to said polynucleotide encoding said hypoglycosylated PRRSV GP5 polypeptide variant. Promoters that can be used to drive expression of the hypoglycosylated GP5 variant proteins include, but are not limited to, the CMV (cytomegalovirus) immediate early promoter, RSV (Rous sarcoma virus) long terminal repeat promoter, and SV40 (Simian Virus 40) T-antigen promoter. In certain preferred embodiments, this promoter is a CMV promoter.

In still other embodiments, the isolated polynucleotide expressing the hypoglycosylated GP5 variant protein comprises a viral vector other than PRRSV. Viral vectors other than PRRSV include, but are not limited to, vaccinia virus vectors, a herpes simplex viral vectors, adenovirus vectors, alphavirus vectors, and TGEV vectors. Such vectors are described in various publications such as U.S. Pat. No. 7,041,300 (for TGEV vectors) and U.S. Pat. No. 6,692,750 (for alphavirus vectors).

Therapeutically Acceptable Carriers and Adjuvants

In practicing the invention, the hypoglycosylated GP5 variant polypeptides or polynucleotides that encode hypoglycosylated GP5 variant polypeptides can be combined with therapeutically acceptable carriers or excipients. Non limiting examples of such carriers include physiological saline or other similar saline solutions, proteins such as serum albumin proteins, buffers such as carbonate, phosphate, phosphonate, or Tris based buffers, surfactants such as NP40 or Triton X100, and a polyethylene glycol polymers. Any combination of such carriers can be used in the compositions and methods of this invention. A preferred carrier for compositions comprising live or attenuated PRRSV viruses is d-tocopherol acetate at a concentration of between 50 to 100 mg/ml.

The use of adjuvants in compositions containing either the hypoglycosylated GP5 variant polypeptides or polynucleotides that encode hypoglycosylated GP5 variant polypeptides is also contemplated. Such adjuvants are typically either aqueous or oily in nature. Adjuvants that can be used include, but are not limited to, aluminum hydroxide, Quil A, an alumina gel suspension, mineral oils, glycerides, fatty acids, fatty acid by-products, mycobacteria, and CpG oligodeoxynucleotides, or any combination thereof. Various types of CpG adjuvants that can be used are described U.S. Pat. Nos. 6,977,245 and 6,406,705.

The use of other adjuvants that potentiate cellular immune responses (i.e., T helper cell (Th.sub.1 and Th.sub.2) subpopulation potentiators) is also contemplated. Such adjuvants include but are not limited to interleukin 1 (IL-1), IL-2, IL-4, IL-5, IL-6, IL-12, gamma interferon (g-IFN), cell necrosis factor, MDP (muramyl dipeptide), immuno stimulant complex (ISCOM), and liposomes.

Administration of the composition can be accomplished by subcutaneous injection, intravenous injection, intradermal injection, parentral injection, intramuscular injection, needle free injection, electroporation, oral delivery, intranasal delivery, or any combination thereof.

Needle free injection is typically effected with a device such as an Agro-JetR) injector (Medical International Technologies, Montreal, Canada).

EXAMPLES

Example 1

The following example illustrates the construction of various PRRSV polynucleotides that encode various hypoglycosylated North American PRRSV GP5 polypeptide variants, compositions including such polynucleotides that are used to elicit improved immune responses to a PRRSV antigen, and methods of using the polynucleotides and compositions to elicit an improved immune response in a pig to a PRRSV antigen.

Materials and Methods

Cells, media, and antibodies. The MARC-145 cells were propagated in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% fetal bovine serum (FBS) and 100 units of penicillin, 20 units of streptomycin and 20 units of kanamycin per ml of growth medium. These cells were used for DNA electroporation, virus infection, viral growth, and plaque assays. The baby hamster kidney (BHK-21) cells were maintained in Minimal Essential Medium (MEM) with Earl’s salt containing 5% FBS and the above mentioned antibiotics. BHK-21 cells were used for transient expression of GP5 followed by either immunofluorescence assays (IFA) or radiolabeling and immunoprecipitation experiments. All cells were maintained at 37° C. and 5% CO2 environment. Rabbit polyclonal antibodies to PRRSV GP5 and M proteins were kindly provided by Carl A. Gagnon (University of Quebec, Montreal, Canada). The monoclonal antibody (SDOW17) against nucleocapsid protein (N) was purchased from National Veterinary Services Laboratories (NVSL, Ames, Iowa, USA). Anti-mouse Alexa-488 was obtained from Molecular Probes, Inc. (Eugene, Oreg., USA).

Genetic Manipulation of Plasmids Encoding GP5 and PRRSV Infectious Clone

The full-length PRRSV infectious cDNA clone (FL12; SEQ ID NO:16) in pBR322 was digested with EcoRV and BstZ17 I restriction enzyme and the ~4.9 kbp fragment encompassing majority of ORF2, complete ORF3-7, and the entire 3’UTR of PRRSV was cloned in pBR322 using the same enzyme sites. This intermediate plasmid served as the template for mutagenesis to introduce mutations at the potential N-linked glycosylation sites (N34, N44, and N51) within GP5 (FIG. 2). Mutagenesis was carried out using overlap extension PCR with synthetic primers (Table 2) using standard techniques.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Primers and their sequences used in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers</td>
<td>Nucleotide sequences</td>
</tr>
<tr>
<td>GP5-N44A-For</td>
<td>5' GCCAACAGGCGCAGACGCTC 3' (SEQ ID NO:10)</td>
</tr>
<tr>
<td>GP5-N44A-For</td>
<td>5' TGGTTAATGCGCTTGACCTAG 3' (SEQ ID NO:19)</td>
</tr>
<tr>
<td>GP5-N51A-For</td>
<td>5' GTGACCTGCTGCGCACGATTG 3' (SEQ ID NO:20)</td>
</tr>
</tbody>
</table>
TABLE 2—continued

<table>
<thead>
<tr>
<th>Primers and their sequences used in this study.</th>
<th>Nucleotide sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer</td>
<td>Sequence</td>
</tr>
<tr>
<td>GPS-N3/4/44A—Pox</td>
<td>5′ GCAACAGCAGCCAGCGCTGATATGAAGCAGCAATCCAG 3′</td>
</tr>
<tr>
<td>GPS-N44/51A—Pox</td>
<td>5′ GTGTTATGGGCCTGAAGTTGCGAAGGCGACCAATCCAG 3′</td>
</tr>
<tr>
<td>GPS-N3/51A—Pox</td>
<td>5′ GCAACAGCGCGCGAGCGCTGATATGAAGCAGCAATCCAG 3′</td>
</tr>
<tr>
<td>GPS-N3/51A—Pox</td>
<td>5′ GCAACAGCGCGCGAGCGCTGATATGAAGCAGCAATCCAG 3′</td>
</tr>
<tr>
<td>PRRSV-13177—Pox</td>
<td>5′ CTACAGCGCGCGAGCTGATATGAAGGCGACCAATCCAG 3′</td>
</tr>
<tr>
<td>PRRSV-14073—Rev</td>
<td>5′ GTGCGCGCGCGCGAGCTGATATGAAGGCGACCAATCCAG 3′</td>
</tr>
</tbody>
</table>

Underlined codon sequences indicate the site of mutation.

The PCR product was digested with BglI and BstE II restriction enzymes and replaced back in the intermediate plasmid. Clones containing the desired mutations were identified and confirmed by sequencing. The entire coding region of GP5 was sequenced to make sure that additional mutations were not present in the clones. The EcoRV-Pac I fragment from the intermediate plasmid containing mutations in the GP5 coding region was moved back into the full-length cDNA clone using the same restriction enzyme sites. The GP5 coding region in the full length clones was again sequenced with PRRSV specific internal primers to confirm the presence of the mutations.

The wt GP5 and individual mutants were cloned in a baculovirus vector where the GP5 is the first cistron followed by eukaryotic cytosolic virus (EMCV) internal ribosome entry site (IRES) and M coding sequences (FIG. 1A). The full length GP5 was also cloned in a CMV promoter driven vector (pcDNA 3.0™, Clonetics Laboratories, Inc., Mountain View, Calif., USA) for complementation studies. To this end, the GP5 coding region was PCR amplified, cloned and sequenced.

In Vitro Transcription and Electroporation

The full-length plasmids were digested with Aell and linearized DNA was used as the template to generate capped RNA transcripts using the mMESSAGE mMACHINE Ultra T7™ kit as per manufacturer’s (Ambion, Inc., Austin, Tex., USA) recommendations and as described earlier. The reaction mixture was treated with DNase1 to digest the DNA template and extracted with phenol and chloroform and finally precipitated with isopropanol. The integrity of the in vitro transcrisits was analyzed by glyoxal agarose gel electrophoresis followed by ethidium bromide staining.

MARC-145 cells were electroporated with approximately 5.0 µg of in vitro transcripts along with 5.0 µg of total RNA isolated from MARC-145 cells. About 2×106 cells in 400 µl of DMEM containing 1.25% DMSO were pulsed once using Bio-Rad Gene Pulser Xcell™ (Bio-Rad, Inc., Hercules, Calif., USA) at 250V, 950 µF in a 4.0 mm cuvette. The cells were diluted in normal growth media, plated in a 60-mm cell culture plate. A small portion of the electroporated cells was plated in a 24-well plate to examine expression of N protein at 48 hrs post-electroporation, which would indicate genome replication and transcription. Once expression of N protein is confirmed using indirect immunofluorescence assay (IFA), the supernatant from bulk of the electroporated cells in 60-mm plate was collected at 48 hrs post-electroporation, clarified and passed onto naïve MARC-145 cells. The infected cells were observed for cytopathic effect (CPE) along with the expression of N protein using IFA. The supernatants from infected cells showing both CPE and positive fluorescence were assigned to contain infectious virus. After confirmation, the virus stock was grown and frozen at −80°C in small aliquots for further studies. In all the experiments, FL12 containing wt PRRSV genotype and FL12pol-containing polymerase-defective PRRSV genome were used as controls.

Metabolic Radiolabeling and Analyses of Proteins

BHK-21 cells in six-well plates were infected with recombinant vaccinia virus (VT/7-3) at an MOI of 3.0 and subsequently transfected with bicistronic plasmid DNA encoding wt or various mutant GP5 under T7 RNA polymerase promoter. DNA transfection was carried out using Lipofectamine2000™ as per manufacturer’s protocol (Life Technologies, USA). At 16 hrs post-transfection, cells were washed twice with PBS and starved in methionine/cysteine-free DMEM for one hr and radiolabeled with 0.6 µl of methionine/cysteine-free DMEM containing 100 µCi of Expro™255S Protein Labeling Mix (NEB Life Sciences, Boston, Mass.) per ml of medium for three hrs. Following radiolabeling, the cells were washed in cold PBS three times and cell extracts were prepared in 300 µl of radioimmunoprecipitation assay (RIPA) buffer (10 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, and 1x protease inhibitor). The clarified cell extracts were incubated overnight at 40 C with rabbit anti-GP5 or anti-M protein antibody. A slurry of approximately 4.0 mg of protein A sepharose (Pharmacia, Uppsala, Sweden) in 100 µl RIPA buffer was added and further incubated for 2 hrs. The immunoprecipitated complexes were washed 3 times with 500 µl of RIPA buffer and used for further analysis.

For endoglycosidase H (Endo H) treatment, the immunoprecipitated complexes were resuspended in 20 µl of 1x denaturing buffer (0.5% SDS, 1.0% β-mercaptoethanol) and boiled for 10 min. The supernatant was collected, adjusted to 1x G5 buffer (0.05 M sodium citrate pH 5.5) and incubated for 16 hrs at 37°C with 100 units of Endo H (New England Biolabs, Beverly, Mass., USA). The undigested control samples were processed similarly but no Endo H was added. Following Endo H digestion, the samples were mixed with equal volume of 2xSDS-PAGE sample buffer, boiled for 5 min and resolved by SDS-12% PAGE under denaturing conditions along with protein marker (Protein Plus Precision Standard, Bio-Rad, Inc). The gel was fixed with 10% acetic acid for 15 min, washed three times with water, treated with 0.5 M sodium salicylate for 30 min, dried and finally exposed to X-ray film at −70°C. For peptide N-Glycosidase F (PNGase F) (New England Biolabs, Inc) digestion, immunoprecipitated complexes were resuspended in 1x G7 buffer (0.05 M sodium phosphate pH 7.5, 1% NP-40) and digestion was performed by incubating for 16 hrs at 37°C with 2 units of the enzyme. To examine synthesis of GP5 in the presence of tunicamycin (Sigma, St. Louis, Mo.), transfected cells were...
treated with 2.0 μg of tunicamycin per ml of medium for one hr and radiolabeled was performed in the presence of the drug for 3 hrs as above.

For obtaining radiolabeled extracellular virions or intracellular virus expressed GP5, MARC-145 cells were infected with wt or mutant PRRSVs. At 48 hrs post-infection, the cells were starved for one hr and radiolabeled with 100 μCi of Expro²²⁵SnS Protein Labeling Mix per ml of medium containing 90% methionine/cysteine free DMEM and 10% regular DMEM for 24 hrs. Following labeling, the culture supernatant was harvested, cleared of cell debris and the extracellular virions were pelleted at 100,000xg for 3 hrs at 4°C. The viral pellets were resuspended in 200 μl of RIPA buffer, immunoprecipitated with anti-GP5 antibody and the proteins were examined with or without Endo H treatment.

For immunoprecipitation of intracellular virus expressed GP5, infection was carried as above and at 24 hrs post-infection, the cells were starved for one hr, radiolabeled as above for 2 hrs prior to preparing cell extracts.

Viral Growth Kinetics and Plaque Assay

MARC-145 cells were infected with mutant or wt PRRSV at an MOI of 3.0 PFU per cell and incubated at 37°C in an incubator. At various time points post-infection, aliquots of culture supernatants from infected cells were collected and virus titer in the supernatants was determined and expressed by tissue culture infectious dose 50 per ml (TCID50/ml). The viral growth kinetics was performed three times. To examine the plaque morphology of mutant viruses, plaque assay was performed using MARC-145 cells. Cells were infected with 10-fold serial dilutions of individual viruses for one hr at 37°C. The infected cell monolayer was washed with PBS and overlaid with DMEM-5% FBS containing 0.08% Seaplaque agarose (FMC Bioproducts, Rockland, ME, USA). After 96 hrs, the agarose plugs were removed and cell monolayer was incubated with staining solution (20% Formaldehyde 9.0% Ethanol, and 0.1% Crystal violet) for 30 min at room temperature. The cells were gently washed with water to remove excess dye and air dried to examine and count the plaques.

Complementation of Virus Recovery by Expressing Wt GP5 in Trans

BEK-21 cells were transfected with pcDNA-GP5. At 40 hrs post-transfection, the cells were harvested and electroporated with capped in vitro transcripts derived from full-length PRRSV cDNA encoding mutant GP5. The electroporated cells were diluted with fresh medium and plated in 6-well plate. The supernatant from electroporated cells was collected at 48 hrs post-electroporation, centrifuged to remove cell debris and used to infect naïve MARC-145 cells. The infected MARC-145 cells were examined at 48 hrs post-infection for expression of N protein by IFA as described above. The number of positive cells was counted to assign the number of pseudo-particles produced in the supernatant. The average number of positive cells was calculated from three independent experiments and was presented as the number of pseudo-particles produced per microgram of in vitro transcribed RNA transfected into the cells.

Serum-Neutralization (SN) Assays

The titer of PRRSV-neutralizing antibodies in a serum sample was determined using the fluorescence serum neutralization assay described previously. Serial dilutions of test sera were incubated for 60 min at 37°C, in the presence of 200 TCID50 of the challenge virus, which consisted of either FL.12 (wt PRRSV) or any of the GP5 mutant encoding viruses, FL-N34A, FL-N51A, and FL-N34/51A in Dulbecco's modified Eagle's medium containing 5% fetal calf serum. The mixtures were added to 96-well microtiter plates containing confluent MARC-145 cells which had been seeded 48 hrs earlier. After incubation for 24 hrs at 37°C in a humidified atmosphere containing 5% CO2, the cells were fixed for 10 min with a solution of 50% methanol and 50% acetone. After extensive washing with PBS, the expression of N protein of PRRSV was detected with monoclonal antibody SOW17 using a 1:500 dilution, followed by incubation with FITC-conjugated goat anti-mouse IgG (Sigma, St. Louis, Mo., USA) at a 1:100 dilution. Neutralization titers were expressed as the reciprocal of the highest dilution that inhibited 90% of the foci present in the control wells.

Experimental Inoculation of Pigs with GP5 Mutants and Wt PRRSV

High titer stocks (obtained through 3 passages in MARC-145 cells) of the GP5 mutant viruses (FL-N34A, FL-N51A, and FL-N34/51A) and the FL.12 (wt PRRSV) were used to infect young pigs. Twenty-one-day-old, recently weaned pigs were purchased from a specific-pathogen-free herd with a certified record of absence of PRRSV infection. All animals were negative for anti-PRRSV antibodies as tested by ELISA (Idexx Labs, Portland, Me.). Three pigs per group were infected with either FL.12 wt PRRSV or mutants FL-N34A, FL-N51A, and FL-N34/51A. In all cases, the inoculum consisted of 105 TCID50 diluted in 2 ml and administrated intramuscularly in the neck. The rectal temperatures of the inoculated animals were monitored for 15 days post-inoculation (PI). Viremia was measured by regular isolation on MARC-145 cells at days 4, 7, and 14 PI. Serum samples were drawn weekly for a total period of 49 days PI. The serum samples were used to detect homologous and heterologous cross-neutralization titers for each of the mutants and wt PRRSV.

Results

Expression and Characterization of PRRSV GP5

The GP5 of PRRSV strain 97-7895 has three putative glycosylation sites (N34, N44, and N51). To examine the glycosylation pattern of GP5, we first generated a bicistronic vector in which the coding regions of GP5 and M proteins flanking the IRES from EMCV were placed under the control of T7 RNA polymerase promoter (FIG. 1A). The rationale for constructing the bicistronic vector is that the GP5 and M proteins are known (for LDV and EAV) or postulated (for PRRSV) to interact with each other and that such interactions may be important for protein folding, glycosylation, intracellular transport, and/or other biological activity of GP5.

Transient expression of GP5 and M by transfection of the bicistronic plasmid followed by radiolabeling and immunoprecipitation with anti-GP5 antibody revealed two major protein species. The protein species migrating with a mass of ~25.5 kDa is the fully glycosylated form of GP5 (FIG. 1B, lane 2). Since each N-linked glycosylation adds ~2.5 kDa of molecular mass to a protein, this indicates that all three potential glycosylation sites are possibly used for glycosylation of GP5. The 19.0 kDa protein species is the viral M protein since it was also seen in immunoprecipitated with anti-M antibody (lane 7). The results indicate that GP5 and M proteins interact with each other in cells expressing both proteins. Upon treatment with Endo H, an enzyme that removes high-mannose type oligosaccharide chains, the size of the GP5 was reduced to ~18 kDa, whereas the size of the M protein remained unchanged (lane 3). Treatment of GP5 with PNGase F (lane 4), an enzyme that removes all type sugars from protein backbone or synthesis of GP5 in the presence of tunicamycin (lane 5) resulted in a protein that migrated with slightly faster electrophoretic mobility than the protein with Endo-H treat-
ment. This is expected, since tunicamycin treatment or digestion with PNGase F would generate unglycosylated proteins whereas Endo-H treatment would result in proteins that retain N-acetylgalactosamine residues at each of the N-linked glyco-
sylation sites. It is of note that a prominent protein species of
approximately 30 kDa molecular mass was immunoprecipitated with
anti-M antibody. The identity of this protein is not known but it
could be a cellular protein that interacts with the M protein.

The results from the above studies suggest that the unglyco-
sylated and fully glycosylated forms of GP5 possess appar-
ent molecular sizes of 18.0 kDa and 25.5 kDa, respectively. It
appears that all three potential glycosylation sites are used to
generate the fully glycosylated form of GP5. The glycan moieties
added to these sites are of high-mannose type since they are
sensitive to digestion by Endo H. In addition, the results indicate
that both unglycosylated and fully glycosylated forms of GP5 appear to interact with the M protein.

Analysis of N-Linked Glycosylation Sites Used for Glyco-
sylation of GP5

To more precisely determine whether all or some of the
potential N-linked glycosylation sites in GP5 are used for
addition of sugar moieties, a series of mutants were generated
in the bicistronic plasmid where all three potential glyco-
sylation sites N34, N44, and N51 (FIG. 2A) were altered to
alanine either individually or in various combinations (FIG. 21B). In plasmid-transfected cells, the proteins were radiola-
beled and immunoprecipitated with anti-GP5 antibody. The
immunoprecipitates were either left untreated or treated with
Endo H and examined by SDS-PAGE. As can be seen from
the data presented in FIG. 2C, mutant GP5 proteins carrying
single mutations (N34A, N44A or N51A) migrated as
approximately 23.0 kDa protein species (lanes 4, 6 and 8,
arrowhead). Upon Endo H treatment, these proteins migrated
as ~18.0 kDa protein species (lanes 5, 7, and 9, respectively)
similar to the wt GP5 after Endo H treatment (lane 3). The
minor differences in electrophoretic mobility of the proteins
are most likely reflective of the fact that the wt protein
would retain all three N-acetylgalactosamine residues following
Endo H treatment as compared to the single mutants that would
contain two such residues. The double mutants (N34/44A,
N44/51A and N34/51A) produced protein species that
migrated close to ~20.5 kDa protein (lanes 10, 12 and 14) and
upon Endo H treatment, the size of the proteins was reduced
to 18.0 kDa (lanes 11, 13, and 15). The triple mutant (N34/
44/51A) generated a protein that migrated as 18.0 kDa protein
(lane 16) and was resistant to Endo H digestion (lane 17).

Thus, from the above mutational studies, it is clear that all
the three potential glycosylation sites are used for glycosyla-
tion to generate fully mature PRRSV GP5. It appears that all
three glycosylation sites are modified by high-mannose type
glycan moieties.

Recovery of Infectious PRRSV Virus with GP5 Mutants

To assess the importance of N-linked glycosylation in
generation of infectious PRRSV, the coding regions of the mutant
GP5 proteins were inserted into the full-length cDNA clone.
Capped in vitro transcripts produced from the clones were
electrotransfected into MARC-145 cells and generation of infec-
tious PRRSV was examined. Our results showed that infectious
GP5 virus was readily recovered from the cells electropo-
trated with full-length transcripts containing mutations at N34, N51, and N34/51. However, under similar conditions of
virus recovery, repeated attempts to recover other mutant viruses
were unsuccessful. Although the growth kinetics of the
recovered viruses were similar to that of the wt virus, the
overall yield of FL-N34A and FL-N51A viruses containing
mutations at N34 and N51 was approximately one log less in
MARC-145 cells while that of FL-N34/51A with double
mutations (N34/51A) was almost 1.5 log less than the wt
PRRSV (FIG. 3A). The RT-PCR amplification of RNA from
infectved cells following nucleotide sequencing indicated
that these viruses are stable, contained the desired mutations
and no other mutations were detected in the entire GP5 region
(data not shown).

Viral plaque assay was performed on MARC-145 cells to
monitor the plaque phenotype of mutant viruses. The plaques
generated by wt PRRSV were clear and distinct while the
mutant viruses produced plaques that have different pheno-
types. FL-N34A, FL-N51A and FL-N34/51A viruses gener-
ated plaques that were less distinct and many of the cells
in the plaques appeared normal (FIG. 3B, open arrow). In
addition, FL-N51A, FL-N34/51A produced some plaques in
which the viruses failed to clear the cell monolayer (FIG. 3B,
solid arrow). This data indicate that the recovered mutant
viruses are indeed less cytopathic as compared to wt PRRSV.

Since we were unable to recover infectious PRRSV with
mutant templates FL-N44A, FL-N31/44A, FL-N44/51A, and
FL-N31/44/51A, it is possible that mutations in GP5 coding
region may have affected some other functions of the RNA
templates, such as packaging of the genomic RNA into parti-
ticles. To address this, we examined whether cells expressing
wt GP5 in trans could support packaging of mutant RNA
templates that are otherwise defective in generating infecting
PRRSV. BHK-21 cells transfected with pcDNA-GP5
were electroporated with in vitro transcripts and at 48 hrs
post-electroporation, the culture supernatants were collected
and used to infect naïve MARC-145 cells to determine the
production of PRRSV pseudo-particles. If the pseudo-
particles are generated, one would then expect to observe expres-
sion of the N protein in these infected MARC-145 cells. The
expression of N is only possible when naïve MARC-145 cells
receive full-length encapsidated mutant RNA genome that
sets up replication following entry of the pseudo-particles
into cells. Of all the mutants that could not be recovered
previously, we were able to recover pseudo-particles containing
two mutant full-length genomes (FL-N44A and FL-N34/
44A) (FIG. 3C). Each green fluorescent cell in the mutant
uninfected culture represents one infectious pseudo-particle.
Since these particles contain only the functional wt GP5
on the envelope but contain the coding sequences for non-
functional mutant GP5 in the genome, they cannot produce
infectious particles to spread to surrounding cells. Multiple
Attempts to recover pseudo-infectious particles with the other
mutant templates (FL-N44/51A, and FL-N31/44/51A) were
unsuccessful.

A quantitative estimation of the number of infectious
pseudo-particles produced from these experiments suggests
that approximately 1000 particles are produced per micro-
gram of mutant RNA electroporated into the cells (FIG. 3D).
This is approximately 100 fold less than that obtained with
RNA encoding wt GP5. Production of such low levels of
infectious pseudo-particles could be due to the fact that only
about 5-10% of cells that expressed the wt GP5 received the
full-length transcripts as seen by the expression of the N
protein in these cells. It is also possible that low levels of
expression of wt GP5 in the transfected cells may have con-
tributed to the low levels of production of these pseudo-
virions.

Examination of GP5 Incorporated into Mutant Viruses and
Those Expressed in Infected Cells

To determine the nature of GP5 protein incorporated into
infectious virions produced from transfected cells, we
generated radiolabeled PRRSV from cells infected with wt and
mutant viruses. The extracellular virions present in the culture supernatant were pelleted by ultracentrifugation and GP5 present in these virions was examined by immunoprecipitation using anti-GP5 antibody and subsequent electrophoretic analysis. Results show the wt GP5 incorporated into virions migrated as a broadly diffuse band of ~25-27 kDa protein species (Fig. 4A, lane 1), which is partially resistant to Endo H digestion (lane 2). Mutant GP5 (N34A and N51A) incorporated into virions were sensitive to Endo H. Based on the size of the products generated following Endo H digestion, it appears that only one glycan moiety in these single site mutants is sensitive while the other is resistant. In contrast, the double mutant GP5 (N43/52A) was resistant to Endo H. Furthermore, Endo H digestion of GP5 from mutant viruses also produced very small amounts of GP5 protein backbone, indicating that these viruses incorporate GP5 proteins that contain Endo H-resistant as well as Endo H-sensitive glycan moieties.

Since in cells transfected with the bicistronic vector, the wt as well as the mutant GP proteins were completely Endo H sensitive (Figs. 1 and 2), we were surprised by the observation that GP5 on PRRSV virions contained largely Endo H resistant forms. To examine if the Endo H resistant forms of the protein are also synthesized in infected cells, MARC-145 cells infected with wt or mutant PRRSV were radiolabeled. GP proteins were immunoprecipitated with anti-GP5 antibody and analyzed by electrophoresis with or without Endo H digestion. Results of such an experiment are shown in Fig. 4B. Majority of wt GP5 contained Endo H-resistant glycans at all three sites (lanes 2 and 3), whereas the two single mutants contained Endo H-resistant glycans only at one site (lanes 4-7). Some of the glycan moieties in the double mutant are resistant while others are sensitive to Endo H (lanes 8 and 9). Although the pattern of Endo H-resistance is similar to what is observed for virion-associated GP5, it is different from that observed in cells expressing both GP5 and M proteins (Figs. 1 and 2). These results indicate that other viral proteins may play a role in further modification of glycans on GP5. Influence of hypoglycosylation of GP5 on PRRSV’s ability to be neutralized by specific antibodies.

The level of glycosylation of viral glycoproteins that are involved in the interaction with viral receptors is known to affect the ability of virions to react with virus-neutralizing antibodies. To test whether this phenomenon occurs in the case of PRRSV, the PRRSV GP5 mutants with altered glycosylation patterns (FL-N34A, FL-N51A and FL-N34/51A) were compared with PRRSV wt (FL12) in their ability to be neutralized by convalescent antisera. For this, we used convalescent antiserum (47 days p.i.) from 4 animals that had been infected with wt PRRSV. Similar doses (2,000 TCID50) of infectious PRRSV GP5 mutants (FL-N34A, FL-N51A and FL-N34/51A) as well as of the infectious clone-derived wt PRRSV (FL12) were used as challenge virus in serum-neutralization assays following our standard assay protocol and the set of 4 anti-wt PRRSV (FL12) sera used as reference. Table 3 shows the different end-point serum neutralizing titers obtained. Normally, a PRRSV wt-convalescent serum sample collected at 47-54 days p.i. contains moderate levels of wt PRRSV neutralizing activity (1:8 to 1:32, Tables 3 and 4), reflecting the relatively weak and tardy character of the neutralizing antibody response that is typical of infections with wt PRRSV. However, the use of hypoglycosylated PRRSV mutants (which lack one or two glycan moieties on the GP5 ectodomain) as challenge virus in the SN assays seem to have significantly enhanced the end-point of the reference sera, with end-point titer enhancement ranging from six to twenty-two fold (Table 3). This observation clearly suggests that the removal of one, and particularly two, of the glycan moieties increases the accessibility of the neutralizing epitope to specific antibodies. These results appear to indicate the presence of significant amount of PRRSV-neutralizing antibodies in the wt PRRSV-infected convalescent sera that would otherwise be undetectable because of the typical use of wt PRRSV containing fully glycosylated GP5 in SN assays.

Table 3

<table>
<thead>
<tr>
<th>Serum from animals</th>
<th>PRRSV strain used as challenge</th>
<th>SN endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>infected with 10^5</td>
<td>TCIID_{50} of wt PRRSV</td>
<td>Wt</td>
</tr>
<tr>
<td>Animal No. 11404 (47 days p.i.)</td>
<td>1:32</td>
<td>1:256</td>
</tr>
<tr>
<td>Animal No. 11346 (47 days p.i)</td>
<td>1:8</td>
<td>1:64</td>
</tr>
<tr>
<td>Animal No. 11457 (47 days p.i)</td>
<td>1:16</td>
<td>ND</td>
</tr>
<tr>
<td>Animal No. 11407 (47 days p.i)</td>
<td>1:8</td>
<td>ND</td>
</tr>
</tbody>
</table>

Influence of Hypoglycosylation of GP5 on PRRSV’s Ability to Induce Neutralizing Antibodies In Vivo

One remarkable effect that has been reported where carbohydrate removal from a viral envelope glycoprotein leads to production of high titers of neutralizing antibodies against the mutant virus when this mutant is used for in vivo inoculation of the host; in some cases also inducing higher titers of antibody to the wt virus than the wt virus itself. We infected groups of pigs with identical doses of either the wt PRRSV FL12 or of each of the mutants with altered glycosylation patterns. Interestingly, clinical/virological assessment of the infection by evaluation of rectal temperature and evaluation of viremia at days 4, 7 and 10 p.i. indicated a similar pattern of infection in all groups as previously described for FL12 without evidence of virulence attenuation or exacerbation for either of the mutants (data not shown). However, the sequential sampling of serum from these animals throughout a period of 48 days indicated pronounced differences between the wt PRRSV and the mutants in their kinetics of induction of a PRRSV-neutralizing antibody response (Tables 4A and 4B). The mutants developed an early and more robust homologous neutralizing antibody response than that developed by wt PRRSV, to the point where, in the case of the mutants, the characteristically sluggish and meager nature of PRRSV-neutralizing antibody response appears to have been corrected (Table 4B). The kinetics of appearance of mutant-homologous neutralizing antibodies (Table 4B) indicate a more regular neutralizing antibody seroconversion consistent with that described for other viral infections such as influenza or Pseudorabies virus but not for PRRSV. Of utmost importance is the fact that the infection with GP5 glycosylation mutants induced a wt PRRSV-specific neutralizing antibody response that is significantly higher than the response with the wt PRRSV itself. The mutant viruses FL-N34 and FL-N51A induced five-fold higher (p<0.05) levels of neutralizing antibody titer against wt PRRSV than the wt PRRSV itself while the mutant FL-N34/51 induced six-fold higher (p<0.01) titer of wt PRRSV-neutralizing antibodies than wt PRRSV itself (Table 4B).
TABLE 4A

<table>
<thead>
<tr>
<th>Group</th>
<th>Neutralizing antibody activity against FL12 at different times PI (days PI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Wt PRRSV FL-12</td>
<td>1.0</td>
</tr>
<tr>
<td>FL-N34A</td>
<td>1.0</td>
</tr>
<tr>
<td>FL-N51A</td>
<td>1.0</td>
</tr>
<tr>
<td>FL-N34/51A</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 4A. Effect of alteration of glycosylation pattern of PRRSV GP5 on the ability of the PRRSV strains to induce neutralizing antibodies to the wt PRRSV (4A) or to the infecting, homologous strain (4B) (*). Numbers in Table 4A and B correspond to geometric mean of the SN end-point for the group (n = 3).

TABLE 4B

<table>
<thead>
<tr>
<th>Group</th>
<th>End-point titer against the homologous infecting strain at different PI periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Wt PRRSV FL-12</td>
<td>1.0</td>
</tr>
<tr>
<td>FL-N34A</td>
<td>1.0</td>
</tr>
<tr>
<td>FL-N51A</td>
<td>1.0</td>
</tr>
<tr>
<td>FL-N34/51A</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Discussion

In the present study, we examined the influence of glycosylation of GP5 of PRRSV in recovery of infectious virus, its role in the ability of the mutant viruses to be neutralized by antibodies, and in inducing neutralizing antibodies in vivo. We have found that all three potential glycosylation sites (N34, N44, and N51) in GP5 are used for addition of glycan moieties. Our results reveal that glycan addition at N44 site is most critical for recovery of infectious virus. Furthermore, our results show that PRRSV containing hypoglycosylated forms of GP5 are exquisitely sensitive to neutralization by antibodies and that the mutant viruses induce significantly higher levels of neutralizing antibodies not only to the homologous mutant viruses but also to wt PRRSV.

Confirmation that all three potential N-linked glycosylation sites are used for glycan addition in GP5 was provided by using mutants with alterations at single or multiple sites (Fig. 2). Biochemical studies showed that the PRRSV GP5 protein when coexpressed with M protein in transfected cells, contains Endo H sensitive high-mannose type glycans. The observation that majority of GP5 incorporated into virions is resistant to Endo H (Fig. 4A) whereas GP5 expressed in the presence of M protein in transfected cells, accumulates mostly in the ER or in the cis-Golgi region and therefore remains Endo H sensitive. However, in PRRSV-infected cells, GP5 may interact with additional viral proteins and the transport of GP5 beyond ER or cis-Golgi is facilitated through formation of complexes with the other viral proteins.

Consistent with this interpretation, we have observed that in wt or mutant PRRSV-infected cells, GP5 protein is also resistant to Endo H. We suggest that GP5, which is synthesized in the ER in infected cells, is transported to the medial- and/or trans-Golgi regions where majority of GP5 molecules acquire Endo H resistance prior to being incorporated into PRRSV virions. Several studies with arteriviruses including PRV suggest that GP5 and M protein form heterodimer, which may play a key role in viral infectivity. In EAV and LDV, direct interaction of GP5 and M protein through formation of disulfide bridges have been demonstrated. Such interactions may occur prior to further processing of N-linked oligosaccharide side chains, presumably before GP5 is transported out of the ER or the cis-Golgi compartment.

It is interesting to note that the pattern of Endo H resistance of GP5 incorporated into wt and mutant virions is different. While the majority of GP5 molecules in wt PRRSV were Endo H resistant, most of GP5 molecules in the single site mutant virions (FL-N34A and FL-N51A) were Endo H sensitive (FIG. 4A). Furthermore, of the two glycans moieties in these mutants, only one was sensitive while the other was resistant. The double mutant (FL-N34/51A) virion also incorporated GP5 that contained glycans, some of which were also sensitive to Endo H. These data are consistent with the interpretation that wt as well as mutant PRRSV virions incorporate a mixed population of GP5 molecules that contain different glycans moieties at different sites. Previous studies demonstrating incorporation of differentially glycosylated forms of GP5 into wt PRRSV virions further strengthens our interpretation. From the pattern of Endo H sensitivity of GP5 incorporated into the virions, it is tempting to speculate that N44 site may contain the Endo H resistant glycans, although some GP5 molecules with Endo H sensitive glycans at this site were incorporated into the virions. Whether this unusual pattern of glycans at various sites in GP5 and incorporation of various forms of GP5 into virions has any relevance to the pattern of immune response seen in PRRSV infected animals remains to be investigated.

In a recent study, it was shown that of the two N-linked glycosylation sites (N46 and N53) in GP5 of Lelystad PRRSV, glycosylation of N46 residue was strongly required for virus particle production. Infectious virus yield was reduced by approximately 100-fold with mutation at N46. Our results suggest that glycan addition at N44 (for North American PRRSV) is absolutely essential for recovery of infectious PRRSV. It is possible then that the European and North American isolates of PRRSV may somewhat differ in their requirements for N-linked glycosylation for production of infectious viruses. In this regard, it is of note that the Lelystad virus contains only two N-linked glycosylation sites whereas the North American isolate we have used in this study contain three such sites.

The GP5 is the most important glycoprotein of PRRSV involved in the generation of PRRSV-neutralizing antibodies and protective immunity. Our results reveal that the absence of glycans at residues 34 and 51 in the GP5 ectodomain, while generating viable PRRSV mutants, enhance both the sensitivity of these mutants to neutralization by antibodies as well as the immunogenicity of the nearby neutralization epitope. The immediate effect of the absence of glycans in GP5 of mutant PRRSVs has been the increased sensitivity of the viruses to neutralization by convalescent sera from pigs infected with wt PRRSV (Table 3). Studies with HIV-1 and SIV have shown that acquisition or removal of glycans in the variable loops of gp160 modify their sensitivity to neutralization. Therefore, it has been postulated that glycans play at least two types of essential roles during viral envelope glycoprotein biosynthesis. In one case, lack of glycans entails defects in the glycoprotein and thus, in the overall viability of the viral strain. We postulate that glycans at N44 of PRRSV GP5 serve a similar role. In the second case, the glycans potentially serve to shield viral proteins against neutralization by antibodies. For PRRSV GP5, glycans at N34 and N51 may have a similar role. In the case of HIV, "glycan shielding" is postulated to be a primary mechanism to explain evasion from neutralizing immune response, thus ensuring in vivo persistence of HIV. This invites to draw some parallel comparisons.
with the PRRSV. Infection with PRRSV, which is known to persist for several months in individual animals, presents an unusual behavior in terms of induction of virus-specific neutralizing immune response. It is well established that animals infected with PRRSV usually take longer than normal time to establish a detectable PRRSV-neutralizing antibody response. Once established, this PRRSV-neutralizing response is weak, and varies significantly from animal to animal. The delay in neutralizing antibody response has been postulated to be due to the presence of a nearby immunodominant decay epitope (amino acid positions 27 to 30), which evokes a robust, early, non-protective immune response that masks and/or slows the response to the neutralizing epitope (amino acid position 37 to 45) (26, 38). While this being a plausible explanation for the atypical character of the PRRSV-neutralizing antibody response, it remains to be tested. In our laboratory, deletion of the decay epitope has consistently proven lethal to the recovery of infectious PRRSV (Ansari et al., unpublished data), thus making it difficult to test this hypothesis.

It is possible that an alternative or complementary mechanism to explain the peculiar nature of the PRRSV-neutralizing response could be envisioned by the “glycan shielding” phenomenon proposed for HIV and SIV. The use of mutant PRRSVs lacking one or two glycan moieties in our studies provides evidence for the first time the presence of large amounts of PRRSV neutralizing antibodies in sera of wt PRRSV-infected animals that were otherwise undetectable because of the use of wt PRRSV in the SN assays. The PRRSV-neutralizing antibodies, while present in the host’s response, are unable to react with the infecting wt PRRSV virions due to the blocking or shielding of the neutralizing epitope by the glycan moieties on GP5.

One important precedent for neutralization escape by glycosylation of glycoproteins in arteriviruses has been described for lactate dehydrogenase-elevating virus (LDV). LDV is highly resistant to antibody neutralization due to the heavy glycan shielding of its major glycoprotein, VP-3, however, certain naturally occurring strains of LDV are highly susceptible to neutralization, due to loss of two glycosylation sites on the ectodomain of the VP-3. Interestingly, this neutralization-sensitive phenotype correlates with a high degree of neurotropism in the host acquired by these easily neutralizable LDV strains. Such neuropathogenicity enhancement probably reflects the facilitation of interaction of the viral glycoproteins with receptors in neural cells, possibly due to the absence of glycan shielding. In the young pig model that we used for inoculation with PRRSV, we were not able to detect pathogenic differences between any of the mutant PRRSVs and the wt PRRSV, although we limited our observations to temperature and viremia measurements. It is possible that under different experimental conditions (i.e., in a pregnant sow model), some alterations in pathogenicity of these mutant PRRSVs might be observed. It is not known whether the finding of naturally occurring hypoglycosylated PRRSV strains is a common occurrence, although previous reports have suggested their presence.

A remarkable observation in our experiments has been that the GP5 mutants, when infecting pigs in vivo, can outperform the wt PRRSV in their ability to mount a sizable wt PRRSV-neutralizing response at late phases of infection (Table 4A). In a parallel scenario, we have observed not only higher neutralizing titers against homologous PRRSV mutants but also sizable titers against wt PRRSV (Table 4A). In addition, the response occurred earlier, with neutralizing titers detectable at 14 days p.i., an observation not typically noted with wt PRRSV infection (Table 4B). The increased neutralization of wt PRRSV by sera from pigs infected with the PRRSV mutants suggests that glycans were masking neutralizing epitope(s) that do not induce neutralizing antibodies when glycans are present. This observation has great significance on the design of better, more efficacious PRRSV vaccines, suggesting that new, rationally-designed vaccines should carry modifications in the glycosylation pattern of GP5 in order to enhance the production of neutralizing antibodies. In addition, it will be important to study the effects that this removal of carbohydrates from immunologically prominent glycoproteins of PRRSV may have on increasing SN titers not only to the homologous immunizing strain but also to diverse unrelated PRRSV strains.

Example 2

Identification of N-Linked Glycosylation Sites in North American and European PRRSV Isolates

To identify N-linked glycosylation sites corresponding to asparagine 34 or asparagine 51 in a reference GP5 protein of SEQ ID NO:1 that can be inactivated and used in the methods of this invention, the GP5 proteins of either a desired North American PRRSV isolate (FIG. 5) or a European PRRSV isolate (FIG. 6) are aligned with reference GP5 protein of SEQ ID NO:1 (North American strain NVSL 97-7895). In this example, the alignments were created with the MegAlign™ program from DNASTAR, Inc. (Madison, Wis., USA) using the Jotun-Hein method of alignment (Hein, J. J. In Methods in Enzymology, Vol. 183: pp. 626-645, 1990). Multiple sequence alignment parameters were a gap penalty of 11 and a gap length penalty of 3. For pairwise comparisons, a Kupfer value of 2 was used.

In FIG. 5, it is clear that the N-linked glycosylation site corresponding to asparagine 51 of the reference GP5 protein of SEQ ID NO:1 present in all of the North American PRRSV isolates shown and comprises the N-linked glycosylation site “NGT”. This N-linked glycosylation site can be inactivated by substituting codons encoding other amino acid residues such as glutamine or alanine for asparagine 51 in the corresponding polynucleotide sequence. In these instances, the corresponding amino acid sequence in the hypoglycosylated North American PRRSV GP5 protein variant would comprise the sequences such as “QGT”, “AGT”, or “XGT”, where X is any amino acid other than asparagine. These or other hypoglycosylated variants of the North American PRRSV isolates where N-linked glycosylation site corresponding to asparagine 51 is inactivated can also be combined with other hypoglycosylated GP5 variants where other N-linked glycosylation sites are inactivated.

It is also clear from FIG. 5, that the N-linked glycosylation site corresponding exactly to asparagine 34 of the reference GP5 protein of SEQ ID NO:1 is present in only certain North American PRRSV isolates. More specifically, the GP5 proteins of North American PRRSV isolates IAF-BAJ (SEQ ID NO:3), 94-3182 (SEQ ID NO:7), and 94-287 (SEQ ID NO:8) contain the N-linked glycosylation site corresponding exactly to asparagine 34 of the reference GP5 protein of SEQ ID NO:1 and comprises the N-linked glycosylation site “NSS”. This N-linked glycosylation site of SEQ ID NO:3, 7, and 8 can be inactivated by substituting codons encoding other amino acid residues such as glutamine or alanine for asparagine 34 in the corresponding polynucleotide sequence. In these instances, the corresponding amino acid sequence in the hypoglycosylated North American PRRSV GP5 protein variant would comprise the sequences such as “QSS”, “ASS”, or “XSS”, where X is any amino acid other than asparagine.
In other North American PRRSV isolates that lack the N-linked glycosylation site corresponding exactly to asparagine 34 of the reference GP5 protein of SEQ ID NO:1, other N-linked glycosylation sites located at residue 30 (FIG. 5 “NAS” in SEQ ID NO:2, 3, 4, 6, 7, 8, 9, 11, 13), and residue 33 (FIG. 5 “NNS” in SEQ ID NO:3, 8; “NNS” in SEQ ID NO:6, 10, “NDS” in SEQ ID NO:11, 13) can also be inactivated. In other words, N-linked glycosylation sites in other North American isolates located at amino acid positions corresponding to residues 30 and 33 of the reference GP5 protein of SEQ ID NO:1 can also be inactivated and used in the methods of this invention.

In FIG. 6, it is clear that the N-linked glycosylation site corresponding to asparagine 51 of the reference GP5 protein of SEQ ID NO:1 is also present in a representative European PRRSV isolate and comprises the N-linked glycosylation site “NGT”. This N-linked glycosylation site can be inactivated by substituting codons encoding other amino acid residues such as glutamine or alanine for asparagine 51 in the corresponding nucleotide sequence. In these instances, the corresponding amino acid sequence in the hypoglycosylated European PRRSV GP5 protein variant would comprise the sequences such as “QGT”, “AGT”, or “XGT”, where X is any amino acid other than asparagine. These or other hypoglycosylated variants of the European PRRSV isolates where N-linked glycosylation site corresponding to asparagine 51 is inactivated can also be combined with other hypoglycosylated GP5 variants where other N-linked glycosylation sites are inactivated.

In view of the foregoing, it will be seen that the several advantages of the invention are achieved and attained.

The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.

As various modifications could be made in the constructions and methods herein described and illustrated without departing from the scope of the invention, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.

A variety of patent and non-patent references are disclosed herein, each of which is expressly incorporated herein by reference in their entirety.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 26
<210> SEQ ID NO: 1
<211> LENGTH: 200
<212> TYPE: PRT
<213> ORGANISM: Porcine reproductive and respiratory syndrome virus

<400> SEQUENCE: 1

Met Leu Gly Arg Cys Leu Thr Ala Gly Cys Ser Arg Leu Leu Ser
1     5      10
Leu Trp Cys Ile Val Pro Phe Cys Phe Ala Ala Leu Val Asn Ala Asn
15     20     25
Ser Asn Ser Ser His Leu Gln Leu Ile Tyr Asn Leu Thr Leu Cys
30     35     40
Glu Leu Asn Gly Thr Asp Trp Leu Asn Asp Lys Lys Phe Asp Trp Ala Val
45     50     55
Glu Thr Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly
60     65
Ala Leu Thr Thr Ser His Phe Leu Asp Thr Val Gly Leu Val Thr Val
70     75
80
Ser Thr Ala Gly Phe Tyr His Gly Arg Tyr Val Leu Ser Ser Ile Tyr
85     90
100
Ala Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Val Ile Arg Leu Ala
105
110
Lys Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe
115
120
125
Leu Leu Asp Thr Lys Gly Arg Leu Tyr Arg Trp Arg Ser Pro Val Ile
130
135
140
Ile Glu Lys Gly Gly Lys Val Glu Val Glu Gly His Leu Ile Asp Leu
145
150
155
160
Lys Arg Val Val Leu Asp Gly Ser Val Ala Thr Pro Leu Thr Arg Val
165
170
175
180
185
190
```
Ser Ala Glu Gln Trp Gly Arg Leu
195 200

<210> SEQ ID NO 2
<211> LENGTH: 200
<212> TYPE: PRT
<213> ORGANISM: Porcine reproductive and respiratory syndrome virus

<400> SEQUENCE: 2
Met Leu Gly Lys Cys Leu Thr Ala Gly Cys Cys Ser Gln Leu Pro Phe
1 5 10 15
Leu Trp Cys Ile Val Pro Phe Cys Phe Ala Ala Leu Val Asn Ala Ser
20 25 30
Ser Ser Ser Ser Gln Leu Gln Ser Ile Tyr Asn Leu Thr Ile Cys
35 40 45
Glu Leu Asn Gly Thr Asp Trp Leu Asn Lys Asn Phe Asp Trp Ala Val
50 55 60
Glu Thr Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly
65 70 75 80
Ala Leu Thr Thr Ser His Phe Leu Asp Ala Val Gly Leu Ile Thr Val
85 90 95
Ser Thr Ala Gly Tyr Tyr His Gly Arg Tyr Val Leu Ser Ser Val Tyr
100 105 110
Ala Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Val Ile Arg Leu Thr
115 120 125
Lys Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe
130 135 140
Leu Leu Asp Ser Lys Gly Leu Tyr Arg Trp Arg Ser Pro Val Ile
145 150 155 160
Ile Glu Lys Gly Gly Lys Val Glu Val Asp Gly His Leu Ile Asp Leu
165 170 175
Lys Arg Val Val Leu Asp Gly Ser Ala Ala Thr Pro Val Thr Lys Val
180 185 190
Ser Ala Glu Gln Trp Cys Arg Pro
195 200

<210> SEQ ID NO 3
<211> LENGTH: 200
<212> TYPE: PRT
<213> ORGANISM: Porcine reproductive and respiratory syndrome virus

<400> SEQUENCE: 3
Met Leu Gly Lys Cys Leu Thr Ala Gly Cys Cys Ser Gln Leu Pro Phe
1 5 10 15
Leu Trp Cys Ile Val Pro Phe Cys Phe Ala Ala Leu Val Asn Ala Ser
20 25 30
Asn Asn Ser Ser Ser Gln Leu Gln Ser Ile Tyr Asn Leu Thr Ile Cys
35 40 45
Glu Leu Asn Gly Thr Asp Trp Leu Asn Lys Asn Phe Asp Trp Ala Val
50 55 60
Glu Thr Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly
65 70 75 80
Ala Leu Thr Thr Ser His Phe Leu Asp Thr Val Gly Leu Ile Thr Val
85 90 95
Ser Thr Ala Gly Tyr Tyr His Gly Arg Tyr Val Leu Ser Ser Val Tyr
100 105 110
Ala Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Val Ile Arg Leu Thr
115 120 125
Lys Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe
130 135 140
Leu Leu Asp Ser Lys Gly Leu Tyr Arg Trp Arg Ser Pro Val Ile
145 150 155 160
Ile Glu Lys Gly Gly Lys Val Glu Val Asp Gly His Leu Ile Asp Leu
165 170 175
Lys Arg Val Val Leu Asp Gly Ser Ala Ala Thr Pro Val Thr Lys Val
180 185 190
Ser Ala Glu Gln Trp Cys Arg Pro
195 200
Thr Asp Ser Ser Ser His Leu Glu Leu Ile Tyr Asn Leu Thr Ile Cys
35 40 45
Glu Leu Asn Gly Thr Asp Trp Leu Asn Asp Lys Phe Asp Trp Ala Val
50 55 60
Glu Thr Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly
65 70 75 80
Ala Leu Thr Thr Ser His Phe Leu Asp Thr Val Gly Leu Ile Thr Val
85 90 95
Ser Thr Ala Gly Tyr Tyr His Gly Arg Tyr Val Leu Ser Ser Ile Tyr
100 105 110
Ala Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Ala Ile Arg Leu Thr
115 120 125
Lys Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe
130 135 140
Leu Leu Asp Thr Lys Gly Leu Tyr Arg Trp Arg Ser Pro Val Ile
145 150 155 160
Ile Glu Arg Glu Gly Lys Val Glu Val Glu Gly His Leu Ile Asp Leu
165 170 175
Lys Arg Val Val Leu Asp Gly Ser Ala Ala Thr Pro Val Thr Arg Val
180 185 190
Ser Ala Glu Arg Trp Gly Arg Pro
195 200

SEQ ID NO 6
LENGTH: 200
ORGANISM: Porcine reproductive and respiratory syndrome virus
SEQUENCE: 6
Met Leu Gly Lys Cys Leu Thr Ala Gly Cys Cys Ser Arg Leu Pro Phe
1 5 10 15
Leu Trp Cys Ile Val Pro Phe Cys Phe Ala Ala Leu Val Asn Ala Ser
20 25 30
Asn Ser Ser Ser Ser His Leu Glu Leu Ile Tyr Asn Leu Thr Ile Cys
35 40 45
Glu Leu Asn Gly Thr Asp Trp Leu Asp Lys Lys Phe Asp Trp Ala Val
50 55 60
Glu Thr Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly
65 70 75 80
Ala Leu Thr Thr Ser His Phe Leu Asp Thr Val Gly Leu Ile Thr Val
85 90 95
Ser Thr Ala Gly Tyr Tyr His Gly Arg Tyr Val Leu Ser Ser Ile Tyr
100 105 110
Ala Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Val Ile Arg Leu Thr
115 120 125
Lys Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe
130 135 140
Leu Leu Asp Thr Lys Gly Leu Tyr Arg Trp Arg Ser Pro Val Ile
145 150 155 160
Ile Glu Arg Glu Gly Lys Val Glu Val Glu Gly His Leu Ile Asp Leu
165 170 175
Lys Arg Val Val Leu Asp Gly Ser Ala Ala Thr Pro Val Thr Arg Val
180 185 190
Ser Ala Glu Arg Trp Gly Arg Pro
<210> SEQ ID NO: 7
<211> LENGTH: 200
<212> TYPE: PRT
<213> ORGANISM: Porcine reproductive and respiratory syndrome virus

<400> SEQUENCE: 7

Met Leu Gly Lys Cys Leu Thr Ala Gly Cys Cys Ser Arg Leu Pro Phe
1 5 10 15
Leu Trp Cys Ile Val Pro Phe Cys Phe Ala Val Leu Val Asn Ala Ser
20 25 30
Pro Asn Ser Ser Ser His Leu Gln Leu Ile Tyr Asn Leu Thr Ile Cys
35 40 45
Glu Leu Asn Gly Thr Asp Trp Leu Asn Ala Arg Phe Asp Trp Ala Val
50 55 60
Glu Thr Phe Val Ile Phe Pro Val Val Thr His Ile Val Ser Tyr Gly
65 70 75 80
Ala Leu Thr Thr Ser His Phe Leu Asp Thr Val Gly Leu Val Thr Val
85 90 95
Ser Thr Ala Gly Tyr Tyr His Gly Arg Tyr Val Leu Ser Ser Ile Tyr
100 105 110
Ala Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Val Ile Arg Leu Ala
115 120 125
Lys Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe
130 135 140
Leu Leu Asp Thr Lys Gly Lys Leu Tyr Arg Trp Arg Ser Pro Val Ile
145 150 155 160
Ile Glu Lys Arg Gly Lys Val Glu Val Glu Gly His Leu Ile Asp Leu
165 170 175
Lys Arg Val Val Leu Asp Gly Ser Ala Ala Thr Pro Val Thr Arg Val
180 185 190
Ser Ala Glu Gln Trp Cys Arg Pro
195 200

<210> SEQ ID NO: 8
<211> LENGTH: 200
<212> TYPE: PRT
<213> ORGANISM: Porcine reproductive and respiratory syndrome virus

<400> SEQUENCE: 8

Met Leu Gly Lys Cys Leu Thr Ala Gly Cys Cys Ser Gln Leu Leu Pro Phe
1 5 10 15
Leu Trp Cys Ile Val Pro Phe Cys Phe Ala Ala Leu Val Asn Ala Ser
20 25 30
Asn Asn Ser Ser Ser His Leu Gln Leu Ile Tyr Asn Leu Thr Ile Cys
35 40 45
Glu Leu Asn Gly Thr Asp Trp Leu Asn Asp Lys Phe Asp Trp Ala Val
50 55 60
Glu Thr Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly
65 70 75 80
Ala Leu Thr Thr Ser His Phe Leu Asp Thr Val Gly Leu Ile Thr Val
85 90 95
Ser Thr Ala Gly Tyr Tyr His Gly Arg Tyr Val Leu Ser Ser Ile Tyr
100 105 110
Ala Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Val Ile Arg Leu Ala
Continued

<table>
<thead>
<tr>
<th>115</th>
<th>120</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Thr Asn Phe</td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>Leu Leu Asp Thr Lys Gly Arg Leu Tyr Arg Trp Arg Ser Pro Val Ile</td>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td>Ile Glu Lys Lys Gly Lys Val Glu Val Glu Gly Gin Leu Ile Asp Leu</td>
<td>165</td>
<td>170</td>
</tr>
<tr>
<td>Lys Arg Val Val Leu Asp Gly Ser Ala Ala Thr Pro Ile Thr Arg Val</td>
<td>180</td>
<td>185</td>
</tr>
<tr>
<td>Ser Ala Glu Gin Trp Gly Arg Pro</td>
<td>195</td>
<td>200</td>
</tr>
</tbody>
</table>

SEQ ID NO 9
LENGTH: 200
TYPE: PRT
ORGANISM: Porcine reproductive and respiratory syndrome virus

SEQUENCE: 9

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Leu Gly Lys Cys Leu Thr Ala Gly Cys Cys Ser Gin Leu Pro Phe</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Leu Trp Cys Ile Val Pro Phe Cys Phe Ala Ala Leu Val Asn Ala Ser</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Ser Ser Ser Ser Gin Leu Gin Ser Ile Tyr Asn Leu Thr Ile Cys</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Glu Leu Asn Gly Thr Asp Trp Leu Asn Lys Asn Phe Asp Trp Ala Val</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>Glu Thr Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly</td>
<td>85</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Ala Leu Thr Thr Ser His Phe Leu Asp Ala Val Gly Leu Ile Thr Val</td>
<td>100</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>Ser Thr Ala Gly Tyr Tyr His Gin Arg Ser Val Leu Ser Ser Val Tyr</td>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Ala Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Val Ile Arg Leu Thr</td>
<td>130</td>
<td>135</td>
<td>140</td>
</tr>
<tr>
<td>Lys Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe</td>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>Leu Leu Asp Ser Lys Gly Lys Tyr Arg Trp Arg Ser Pro Val Ile</td>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Ile Glu Lys Gly Lys Val Glu Val Asp Gly His Leu Ile Asp Leu</td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Lys Arg Val Val Leu Asp Gly Ser Ala Ala Thr Pro Val Thr Tyr Val</td>
<td>195</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

SEQ ID NO 10
LENGTH: 200
TYPE: PRT
ORGANISM: Porcine reproductive and respiratory syndrome virus

SEQUENCE: 10

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Leu Gly Lys Cys Leu Thr Ala Gly Cys Cys Ser Gin Leu Leu Phe</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Leu Trp Cys Ile Val Pro Ser Trp Phe Val Ala Leu Val Ser Ala Ser</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Asn Ser Ser Ser Ser His Leu Gin Leu Ile Tyr Asn Leu Thr Leu Cys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Leu</td>
<td>Asn</td>
<td>Gly</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Thr</td>
<td>Phe</td>
<td>Val</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>95</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Thr</td>
<td>Ala</td>
<td>Gly</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Cys</td>
<td>Ala</td>
</tr>
<tr>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Asn</td>
<td>Cys</td>
<td>Met</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Asp</td>
<td>Thr</td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
</tr>
<tr>
<td>Ile</td>
<td>Glu</td>
<td>Lys</td>
<td>Gly</td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Arg</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Glu</td>
<td>Gln</td>
</tr>
<tr>
<td>195</td>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-continued

<210> SEQ ID NO 11
<211> LENGTH: 200
<212> TYPE: PRT
<213> ORGANISM: Porcine reproductive and respiratory syndrome virus

<400> SEQUENCE: 11

Met | Leu | Glu | Lys | Cys | Leu | Thr | Ala | Gly | Cys | Ser | Arg | Leu | Ser |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Trp</td>
<td>Cys</td>
<td>Ile</td>
<td>Val</td>
<td>Pro</td>
<td>Phe</td>
<td>Cys</td>
<td>Phe</td>
<td>Ala</td>
<td>Val</td>
<td>Leu</td>
<td>Ala</td>
<td>Asn</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Asp</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>His</td>
<td>Leu</td>
<td>Gln</td>
<td>Leu</td>
<td>Ile</td>
<td>Tyr</td>
<td>Asn</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Leu</td>
<td>Asn</td>
<td>Gly</td>
<td>Thr</td>
<td>Asp</td>
<td>Trp</td>
<td>Leu</td>
<td>Ala</td>
<td>Asn</td>
<td>Lys</td>
<td>Phe</td>
<td>Asp</td>
<td>Trp</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ser</td>
<td>Phe</td>
<td>Val</td>
<td>Ile</td>
<td>Phe</td>
<td>Pro</td>
<td>Val</td>
<td>Leu</td>
<td>Thr</td>
<td>His</td>
<td>Ile</td>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Thr</td>
<td>Thr</td>
<td>Ser</td>
<td>His</td>
<td>Phe</td>
<td>Leu</td>
<td>Asp</td>
<td>Thr</td>
<td>Val</td>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Thr</td>
<td>Ala</td>
<td>Gly</td>
<td>Phe</td>
<td>Val</td>
<td>His</td>
<td>Gly</td>
<td>Arg</td>
<td>Tyr</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Cys</td>
<td>Ala</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Thr</td>
<td>Cys</td>
<td>Phe</td>
<td>Val</td>
<td>Ile</td>
<td>Arg</td>
<td>Phe</td>
</tr>
<tr>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Asn</td>
<td>Cys</td>
<td>Met</td>
<td>Ser</td>
<td>Trp</td>
<td>Arg</td>
<td>Tyr</td>
<td>Ala</td>
<td>Cys</td>
<td>Thr</td>
<td>Arg</td>
<td>Tyr</td>
<td>Thr</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td>Asp</td>
<td>Thr</td>
<td>Lys</td>
<td>Gly</td>
<td>Arg</td>
<td>Leu</td>
<td>Tyr</td>
<td>Arg</td>
<td>Trp</td>
<td>Arg</td>
<td>Ser</td>
<td>Pro</td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Glu</td>
<td>Lys</td>
<td>Arg</td>
<td>Gly</td>
<td>Lys</td>
<td>Val</td>
<td>Glu</td>
<td>Val</td>
<td>Glu</td>
<td>Gly</td>
<td>His</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Arg</td>
<td>Val</td>
<td>Val</td>
<td>Leu</td>
<td>Asp</td>
<td>Gly</td>
<td>Ser</td>
<td>Val</td>
<td>Ala</td>
<td>Thr</td>
<td>Pro</td>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Glu</td>
<td>Gln</td>
<td>Trp</td>
<td>Gly</td>
<td>Arg</td>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td>Description</td>
<td>Length</td>
<td>Type</td>
<td>Organism</td>
<td>Sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO 12</td>
<td></td>
<td>200</td>
<td>PRT</td>
<td>Porcine reproductive and respiratory syndrome virus</td>
<td>Met Leu Gly Lys Cys Leu Thr Ala Gly Cys Cys Ser Gln Leu Leu Ser 1 5 10 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leu Trp Cys Ile Val Pro Ser Cys Phe Val Ala Leu Val Ser Ala Asn 20 25 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gly Asn Ser Gly Ser Asn Leu Gln Leu Ile Tyr Asn Leu Thr Leu Cys 35 40 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glu Leu Asn Gly Thr Asp Trp Leu Ala Asn Lys Phe Asp Trp Ala Val 50 55 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glu Cys Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly 65 70 75 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ala Leu Thr Thr Ser His Phe Leu Asp Thr Val Gly Leu Val Thr Val 95 100 105 110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ser Thr Ala Gly Phe Val His Gly Arg Tyr Val Leu Ser Ser Met Tyr 120 125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ala Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Val Ala Arg Leu Ala 135 140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lys Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe 160 165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leu Leu Asp Thr Lys Gly Arg Leu Tyr Arg Trp Arg Ser Pro Val Ile 180 185 190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ser Ala Glu Gln Trp Ser Arg Pro 200 205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO 13</td>
<td></td>
<td>200</td>
<td>PRT</td>
<td>Porcine reproductive and respiratory syndrome virus</td>
<td>Met Leu Glu Lys Cys Leu Thr Ala Gly Cys Cys Ser Gln Leu Leu Ser 1 5 10 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leu Trp Cys Ile Val Pro Phe Cys Phe Ala Val Leu Ala Asn Ala Ser 20 25 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Asn Asp Ser Ser Ser His Leu Gln Leu Ile Tyr Asn Leu Thr Leu Cys 35 40 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glu Leu Asn Gly Thr Asp Trp Leu Ala Asn Lys Phe Asp Trp Ala Val 50 55 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glu Ser Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly 65 70 75 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ala Leu Thr Thr Ser His Phe Leu Asp Thr Val Ala Leu Val Thr Val 95 100 105 110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ser Thr Ala Gly Phe Val His Gly Arg Tyr Val Leu Ser Ser Ile Tyr 135 140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ala Val Cys Ala Leu Ala Ala Leu Thr Cys Phe Val Ile Arg Phe Ala 170 175 180 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lys 13 Asn Cys
Leu 145 Ile 1.65 Lys 18 O Ser 195
Glu 20 Arg 21 Ala 22 Lys
Wall 23 Glu 24 Met Ser Thr Lys Arg Gly
Gln Trp 25 Xaa
Lys Asn Cys Thr Arg Tyr Ala Cys Thr Arg Tyr Thr Asn Phe
130 135 140
Leu Leu Asp Thr Lys Gly Gly Leu Tyr Arg Trp Arg Ser Pro Val Ile
145 150 155 160
Ile Glu Lys Arg Gly Lys Val Glu Val Glu Gly His Leu Ile Asp Leu
165 170 175
Lys Arg Val Val Leu Asp Gly Ser Val Ala Thr Pro Ile Thr Arg Val
180 185 190
Ser Ala Glu Gln Trp Gly Arg Pro
195 200

SEQ ID NO: 14
LENGTH: 200
TYPE: PRT
ORGANISM: Porcine reproductive and respiratory syndrome virus
Consensus
FEATURE:
NAME/KEY: misc.feature
LOCATION: (34) (34)
OTHER INFORMATION: Xaa can be any naturally occurring amino acid
FEATURE:
NAME/KEY: misc.feature
LOCATION: (58) (58)
OTHER INFORMATION: Xaa can be any naturally occurring amino acid
FEATURE:
NAME/KEY: misc.feature
LOCATION: (94) (94)
OTHER INFORMATION: Xaa can be any naturally occurring amino acid
FEATURE:
NAME/KEY: misc.feature
LOCATION: (164) (164)
OTHER INFORMATION: Xaa can be any naturally occurring amino acid
SEQUENCE: 14
Met Leu Gly Lys Cys Leu Thr Ala Gly Cys Ser Gln Leu Pro Phe
1 5 10 15
Leu Trp Cys Ile Val Pro Phe Cys Phe Ala Ala Leu Val Asn Ala Ser
20 25 30
Asn Xaa Ser Ser Ser His Leu Gln Leu Ile Tyr Asn Leu Thr Ile Cys
35 40 45
Glu Leu Asn Gly Thr Asp Trp Leu Asn Xaa Lys Phe Asp Trp Ala Val
50 55 60
Glu Thr Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly
65 70 75 80
Ala Leu Thr Thr Ser His Phe Leu Asp Thr Val Gly Leu Xaa Thr Val
85 90 95
Ser Thr Ala Gly Tyr Tyr His Gly Arg Tyr Val Leu Ser Ser Ile Tyr
100 105 110
Ala Val Cys Ala Leu Ala Ala Leu Ile Cys Phe Val Ile Arg Leu Ala
115 120 125
Lys Asn Cys Met Ser Trp Arg Tyr Ser Cys Thr Arg Tyr Thr Asn Phe
130 135 140
Leu Leu Asp Thr Lys Gly Lys Leu Tyr Arg Trp Arg Ser Pro Val Ile
145 150 155 160
Ile Glu Lys Xaa Gly Lys Val Glu Val Glu Gly His Leu Ile Asp Leu
165 170 175
Lys Arg Val Val Leu Asp Gly Ser Ala Ala Thr Pro Val Thr Arg Val
180 185 190
Ser Ala Glu Gln Trp Gly Arg Pro
195 200
<210> SEQ ID NO 15
<211> LENGTH: 201
<212> TYPE: PRT
<213> ORGANISM: Porcine reproductive and respiratory syndrome virus

<400> SEQUENCE: 15

Met Arg Cys Ser His Lys Leu Gly Arg Phe Leu Thr Pro His Ser Cys
1 5 10 15

Phe Trp Trp Leu Phe Leu Leu Cys Thr Gly Leu Ser Trp Ser Phe Ala
20 25 30

Asp Gly Asn Gly Asp Ser Ser Thr Tyr Gin Tyr Ile Tyr Asn Leu Thr
35 40 45

Ile Cys Glu Leu Asn Gly Thr Asp Trp Leu Ser Ser His Phe Gly Trp
50 55 60

Ala Val Glu Thr Phe Val Leu Tyr Pro Val Ala Thr His Ile Leu Ser
65 70 75 80

Leu Gly Phe Leu Thr Thr Ser His Phe Phe Asp Ala Leu Gly Leu Gly
85 90 95

Ala Val Ser Thr Ala Gly Phe Val Gly Gly Arg Tyr Val Leu Cys Ser
100 105 110

Val Tyr Gly Ala Cys Ala Phe Ala Ala Phe Val Cys Phe Val Ile Arg
115 120 125

Ala Ala Lys Asn Cys Met Ala Cys Arg Tyr Ala Arg Thr Arg Phe Thr
130 135 140

Asp Phe Ile Val Asp Arg Arg Gly Arg Val His Arg Trp Lys Ser Pro
145 150 155 160

Ile Val Val Glu Lys Leu Gly Lys Ala Glu Val Asp Gly Asn Leu Val
165 170 175

Thr Ile Lys His Val Val Leu Gly Val Lys Ala Gln Pro Leu Thr
180 185 190

Arg Thr Ser Ala Glu Gln Trp Glu Ala
195 200

<210> SEQ ID NO 16
<211> LENGTH: 15414
<212> TYPE: DNA
<213> ORGANISM: Porcine reproductive and respiratory syndrome virus

<400> SEQUENCE: 16

atgacgtata ggtgttgct ctatgcctag acatagtgat tgcaggagc tgtgacctt 60

gtacagcccc aaacagctg gcacagaaaa ogcctcttg tgtgcagcct tttagggga 120

gtttaggggt ctgtccctag cacatggtct ctgaggttg cactgtcttc cgtctttc 180

accttttaacctgtctgggt atacttgata gttgcagctg cactcccact gcaggggtt 240

tttatggcggag ggcgcagact taagtgcacac gatgtcctag tgcaggtct cttcttccc 300

tgaatctccaggctgtctgag cttgcagctgg tttacgcttt attacgctgg ccagacgcag 360

ctcgggtgac gtctgcagct gcataccca cgttgagtcg cttcctgctgc cgggcctctg 420

ggcttggcg ctgttcccac atgtgcagaa tgcagctgg gcacagctg aaactcgtgca ttttcccacaa 480

gatgtgctgg ctttcgctgag cagattacag gcagccggca gtcttcctgc gcagccttg 540

aggtcttactgttctgac gcgggtgctg gcgtgcctcag tattacgcga cctgtcttg 600

aggtgcagcgg ctttgcgcca ttccctcagct gatgtgatc aaccttcccgt ggagcacc 660

atgtgctac caacggtgcc cttccgctag cgccataagc tgaagacttt tgccttttg 720

-continued
agtgtgctat ggctgaacgc tcattatatg gtcaggggag cgtctagttat tgtggcaaga 780
ggaaaagtcct ctgggccctc ggctggcggg atgaggcgaat attgaaact gtcocctagg 840
agtggaaagt gatcgccagaa caaaccacca tcctctcccc cccocccaccc gcagtggaaca 900
tgtctaaagt tgtgctcaata ggctgccggga gttgggtctc tattgcgggtc agtgccaccc 960
aagggctgtct ccacgaaata actgctccctg aaggttaactg cttggtggcgc ttggttgact 1020
cgctccacact ggctgctcgac aacaaaggaattacggctg ccaccatattc gcacctaaaca 1080
ccaaagcttg tgtgtgtgcc aagtaactac aacggaggtct gcaagcttaat ggttctcagag 1140
cagtgactga taagacgtga ccctactcgc tcacgatttt ctctgtttag cagagactga 1200
tccgcaactt ccaagctgcgg gaaagctccta gcccctccctt gttggaacagt ccccctcagaa 1260
taaggttggcata gtcacttcccc gccccgctcga acacagttgt gatctctgcaat cttcataacta 1320
gccgtcacaat atgctgatgt gttggaagag gctagacggtc aagctgtcctt ggttctacca 1380
ccagcagctcg ctccccgcgtc ttcaccttgtc gtaaactca gccaagcggta aagctcaggg 1440
atgccgggg gtaccaagtgt gcgtactctca ggcacatttc tcctggcagct gaggagaagct 1500
gtgggttgccgct gccatccctgc cgccttc accttggctcag ctgggctggtc ggtgtgctga 1560
ctctccgcgc ggaggcctgag ccctctgactgg gccggctgctg aagctgctgac cttggtcagac 1620
ccatcgaata accatggtgct cctgggctcgt ggcacgggaa cggctcctgc tggtggtcagac 1680
aatactgcctgt gggcgcagcatt gccagctgctc tggcagccctt gggatgtcccc 1740
cttctcctgt gccctcggga tgtgctcaggt gcgtcttgga gcaattggcgc cgcgccctggc 1800
ccccagctgcgt tgtggagctgcc tttggaatttg accctgctgct cttgccctgct gcggctggttc 1860
aatgcaactct ggtacgactg gtcctccctgc atgctgtggc ogaatgtcct ggcggcctgca 1920
acgtctggcc tcctccccgttc actaatttgtg ggcagcttgcct gccattttctttt gccccgctcggc 1980
gaggagggag ccgcctcggat cagggggtct tagaaactaat ctacgcggct tggtoaatgtg 2040
tggagggatc cggctgccct gagaattaaa cccacggcgtc ccccgccgag gagggtgcgg 2100
caaggtgtgtc atagtccgct agttgcgcta aagatgctgg aagatgtgct cggcgctgctc 2160
agaggtttgg gcccgcgaca gtcggccgaca cttctttttg tgtgagcttg gcggcctttcg 2220
ggtgtggggt tccactgca acaaccaaac agtctctggcg cccactgtcg cgccgcttgct 2280
ccccctgctgc gactacgagccccctcgacac cccattctgtt gcccttcgcac 2340
tccctgctgc gactacgagccccctcgacac cccattctgtt gcccttcgcac 2400
cctatttcct atgggggtgc cccgggggttc tgggcaataattatgggctg tggctcagcg ccagagcagc 2460
cctggggcgg ggggtgttgcct agttggatgt gcggctcaga cccaattttgt ctgcctgggg 2520
attgctggaag ccacagcgcttc ccggtgcgctc ccctccacgat cccttgctggatgttgagggcctcctggg 2580
aggttagctgccga gtaggctggtg atccaaactgc cccgggtctgggctgctg tggctcagcg ccagagcagc 2640
cagagtctgcca gctcggaaac aacaagttgc ctacagctattc gccagggcag cacccgtctggg 2700
cctggggcgg ggggtgttgcct agttggatgt gcggctcaga cccaattttgt ctgcctgggg 2760
ccccctgctgc gactacgagccccctcgacac cccattctgtt gcccttcgcac 2820
agccagctgc ccctccacgat cccttgctggatgttgagggcctcctggg 2880
cctggggcgg ggggtgttgcct agttggatgt gcggctcaga cccaattttgt ctgcctgggg 2940
agcaagtggct ccctccacgat cccttgctggatgttgagggcctcctggg 3000
tgggaagac gccgctgctg tggctcagcg ccagagcagc ccctccacgat cccttgctggatgttgagggcctcctggg 3060
ccttgccaggt cagggggctc cccgggtctgggctgctg tggctcagcg ccagagcagc ccctccacgat cccttgctggatgttgagggcctcctggg 3120
ttaccccta tgatatctct cattaccca atgcgccccc cgggtgtgctc gctcttgcta 5520
cggccacag ggggtcatac ttggtgccct tccgggacct tgcgttgcac ggcgcgtaccg 5580
tgcgtttact cacgtgcttg cttgtttcctc ctcacgtggtt cgtcttttgc ctcacatcctg 5640
tctcactgaa ccagcgcatac tctgggctgct cctcatacct ctcgggctgg ctgctactc 5700
tcgatgggaa aatattcacg tgcagctgcc caccagctct atcctggtaa tcagctgggc 5760
tttcgccggt cggctcaaga cacttacctctt actttggtcg actgcgggag ccgccctctg 5820
cgtgacgcc gatgggcaag gggagttgctc tcaatcactcc attctgcccc gatgctgctg 5880
cgtgcgctgc ccattccgtc ccttcctttcg ctggtgacct cgggccatct ggatgtgat 5940
tgcctttctt ctgagccgcg ccggctgcat cgggctcccc aggagtacctg ctaggtataa 6000
gctgctgtg cgctgggtgtg cctgagcctc aacacccccg cagccggtcct cggggctctg 6060
tgcgtgctgtgcc attcagttgt cacccctgctg gctgtgcgctc tctgtgtgctg 6120
gacccctgta cccgctctgg gactggaag cgggtgaccc cccataaaga gacatttggt 6180
gagttcttt ccggctgggtg cgcggcattt gctgtgctgc cggggccctct 6240
cgctctgctcg cccttgcttg ctttctttct ctcagctggc tctctgctcc ctcacgtgggg 6300
cgctctaacg ggctgtaattg ccgctgtggc gctgcggtgc cgggctgtcgt 6360
ggagtttttt cctccctgctg cttggtgacct ctgctgttgcttg cccacctgcc gctgctggggg 6420
ttcgctgtat cagcgcctct aacaggtcct ttaacaggtg gatagggtctg ctcgctccct 6480
acagcgcttg tgggtggtgct cagctggtcg ggcagcactac ggcagccctct 6540
tggagcggcgtt gctctgctct cgggctggtt gctgagctgc cgggctgacctg 6600
caggcttcgg caggtcgtcc ctcctgctct ctcctgctct gctctgctct 6660
ttaatgcacg gcgcacgctg ccctgctctc tgcggtggtct gctgctgctct 6720
tctggctagc cttggtgattc cgggaagctg gggaggtttt ggtccacggac tggcgtgctt 6780
atcgagtcgt gccacgcttc gcagtttgctc cctctgctct cgggctggtcct 6840
ttagcaatcg gtaatgttgg aagtgtgttt ttcctgcttc cccagctggg aatccgcttt 6900
gcggccgctc gcaagttgcc tggagttgctc gagttgcagc tggagttgcct 6960
aggtgataaa gggtgataag actttgctc ctttgctct cggcagcttg aatggtgatc 7020
ccaccatctc ggcgctgctc attcgtgtgg ctttgcgctc tgcggtggtct 7080
tcgagactg ggtgggctg gggagttgctc ctttgctcct ctttgctcct 7140
cgggacctac aatctgcttg ggctgctgctc cgctctgctc ccagccccct ccgccgcttg 7200
cggctgcctt ccggctgctcc cgggaaggctt cgggctgcttc ctttgctgcct 7260
aggtgatgtg cattgtcggc tggagttgctc cgggctgctgc atcctgctcc 7320
gtgagaaaa aatactggaa tggagttgctc ctttgctcct cgggctgctgc 7380
tccatatagc ctcgacctg cgggctgctgc gggagggattg cgtctgctcc 7440
cctgagaactg gggagaagtt gggagggattg ctttgctgcct cgggctgctgc 7500
tccaccttgg ctcgctgctgc ctcgctgctgc gggagggattg cgtctgctcc 7560
gggaggtgct gcggccccct gcgggctgcc ggaaggtgctc gcgggctgcc gggagggattg 7620
tgacaagaa caaagtgctc gggagggattg ctttgctgcct cgggctgctgc 7680
gggaggtgct gcggccccct gcgggctgcc ggaaggtgctc gcgggctgcc gggagggattg 7740
gggaggtgct gcggccccct gcgggctgcc ggaaggtgctc gcgggctgcc gggagggattg 7800
agctgtgact ctttgttggc tggagttgctc ctttgctgcct cgggctgctgc 7860
acacccgctt gcagacgctg tgtagtgctg tgtgtgtgtc tctgctcgc cagttccttc
7920
gcttttagcc gctttatact cccgctctgt ctcctacctg cccgctcagc cgcggacgag
7960
gccggaaac aactgctgct cttgggtattt gaggcggctg cacgttaaca aagcagcagc
8040
ggaaaagcaca ctaggtggcc aatataatag gcattgtgac attagcggcg ccgacgcaacc
8100
ttagaattt ccctcataa actgtgctc ctcagtctac gggtctcagc gggttaaacc
8160
agttttacag aatcacaaggt tgtgagagat actctataaaa aaccccaaggt acactggaaag
8220
ccccgccgac ggctggccct gccgcaaccc caatctggat cccggtgacg tggggtcct
8280
cgtccggtgc acgactatgc cctccggttt tgagtgtgtat gtacgacca ttccaggttc
8340
tgtctcattg ctcctggttag ctcgcccccct caattgagac agcaacggtctg
8400
tgaggaacgcc gcttttagcc actctttctaa gatgtctctt gccacaaag ctctttttttt
8460
actctgttgt ctcctgctcg ttcgtaagta ccttgggttct cagtgcttatta agtcggccgcc
8520
cgtccccctgg cttctccaat acctcgcacaa gaattctatat cggcagttca aaggggacag
8580
gttccaaacc cagggcactcc aggagctccc tctaatgacag gttcgtctcc cccagggggt
8640
gccggaaata gctgcaagtgt taccctctct tagctctagc aaaccctggttt gggagagac
8700
gaagacattg acaatgcattt gcaccaaaat cttcattgcc gtggggtccc gggccggtctg
8760
gtgggtgttc aaccaggggt tctgagaaaa gggtgtaaaaa cgctctttctt cctctggctta
8820
aaacaattt aagaagccttg agatccggct cttaggccag tgctcttgaag tgcattgctg
8880
actctgttgt ctcctgctcg ttcgtaagta ccttgggttct cagtgcttatta agtcggccgcc
8940
actctgttgt ctcctgctcg ttcgtaagta ccttgggttct cagtgcttatta agtcggccgcc
9000
ggctcaagcg tcggctcagc taatataagag agttggccttg ctgtcttgggcg accgataaca
9060
ctctgtgttc aacaccattt acagctttgt gatatacgca caaccatatg tgcagctgta
9120
cttttaggct gcacccctgg atggccctct ctttcttgacacc gcacggtgta agttggtgag
9180
catcggtaag gcaccccttt gcagctcctct tgggcagcag ctagctgtcgt atggccagtc
9240
tccacactgg ccaaaccactc actgttggtgt tgaacatctg aaccgtgtcgg tgggttttca
9300
gcagccacca aagaaagcccg cctaaccactc ctctcagttggt gcgggagaat aaatgtatgt
9360
aaatgggacgc cagttgcgttc ctaaccctga gcaggtcttcc gcggccctcg ctctacatat
9420
gagggagaag aaagcctcttg aatatacttg acagctctgt gcggctcggg gcagcataca gccagctgtg
9480
tggtctttta gatagttacgc ccaattggga tgaagacagtg tgtgctgggta tagccagctg
9540
tgcgtccggt gcagcgtgacca ttcttccgct cccggcctgtt ttccttggca tggagaaaaa
9600
acctggacttc aatcagctgg gcagagatgtg cagaaatgtag gggttagcgc gggccggccg
9660
tgccgaagcg ctccttggtg gcctcagctcct ttgcatatgc cgggtgcctgc gggtgggttttc
9720
ttgccgcgctgc atcatttggt ggcggggcctc gccgggtgtc gccgttctgtga gtgggtgcac
9780
accacccact cggagacgaca caacccctct agataggttg ttaagaccaag ctctttataa
9840
gctccgctgg cctgtgtggt ccttggtgcgg caggtctttc acccctcttt gcggagccagc
9900
atacccccac ccggcggccttg ctcaggtctgg ggattggaag aatgggtattg
9960
tacccgacac ggggtatttg tgaagccattg ctaggggttg tttaaatttt ttgattttcag
10200
gggcggctgcc gcttttagac gttggtccga cggctctcgt atgggccgcg cttgggtcttg
10080
gaaacacatt cggtccctgcc aaacggtgct cgcgtggtgt gtaatttaca cggccacactc
10140
ccagacactgc aagcaatgtga ttaggctctc gggccggctg cgggtccagc tccccgaggg
10200
-continued

tacgacgtcg caattccttg cccctctccg tacggcgcct tgggttcgca tccctagcgg 10260
cgggtgggtt cctggcgaaga attcctccct ggtgaagcga gctattttgta atcacccttg 10320
tgcctctggag cttctccagca aaactccttt caccctctct ggagatcttca aacaactcct 10380
cccctgggtt tttggacttc attcgaact ttcttgacact atgcctctga ctcaactgaa 10440
gaccattcttg agatttgacg acaataattg ttagctccatt cagcccagatt aacggagcaac 10500
actttacttg atgcctccaa caacccggct gacctccgttg gaaacacttg tcaagttcgtg 10560
goactttcgc aacccatgcc acagggagcg agggaaagcc gocatcaaaa tggatctccag 10620
tcaaggcgcg cacatttgatg ttgctcatct gcatctggcc actaaagacc aacttcacag 10680
gcaagagccg cttggtgctga ttaacgagggg aagagacttg atctttgtgt atgaccccaaa 10740
cagggcacttg acaggatcgg tttgactccc tggcagaccc aacccgctca aacgcgtgct 10800
gcacgctggga gacgacgctga ttgctgtaga taggaatatcc aaagaatgca cgggtgctoa 10860
ggtctagcg aatgggggata aatccgagcg cagacgacag cgggtgttaga attctctccg 10920
cggtcttttg agctgctttg gacgagcccg ctcctccgct gaaacgctcc acacaaacct 10990
ngggtttttat tttcctgtcg aatgtagaca gttcgtgtaa cttccggtag aacctcgacc 11040
ccctctggcc cttggtgcctaa cccagaaacc ctaaagttcc cagagccggt tgttctctctg 11100
cctcggcccc gtctcactaga atacgcgcgc gtcgtctcggt gcggctacca tggcggcc 11160
tctctagtct ctggcgaacc cttgggtgttg gctcaaatct ctcaaaactt gttccaggaa 11220
caggtcctaa atgttccctgg gcacagcttt cgcacggggc ggaattggag tagattgcccc 11280
ttgatcact gactcgtgctt gcagagcaat gctctctctt ctcctccctag cttcacttgg 11340
cagctttaaa gcacactacc ttggaggagt ttacatgtcg acotcacaat aecotcogg 11400
cctctcccccc aaggaatcag tcgctggtag ctgggttctca aacgcgggga aacggcgcaaa 11460
agctatttgg acatataaag atgtgtaatc cccagatctc gagcttccat tccacccaaga 11520
gcacaccgcc aattgctgca aatgattgtt gcacacggac gcaagctgag tggggtcttg 11580
gaagcgcac aaggtcattt ttcaccctga aagggcccct ttcacctggt acacgcctgc 11640
aagctatgcc cgctacaccg cggctggtag tttcctctctc tgggttttgg aacacgctgct 11700
nggctctggcc cttggcgaaca gaagagggtg cggtctcact cttgggggag tcagctccgc 11760
agtccacccc tattagctcg tgcocaaatat cttcctctct agtcatactc atgtgaata 11820
gccccctggc tccaaccctt cgggtgtgcgc gggtctctcg tttgggagct cagtggaaga 11880
cacggacgcc tggccggtgt aatgggacac agtgcattct cagagactca cggggagga 11940
taggagctgg gaggttccac atgtagcctt tctggtgcgc cagacgctgg aaattcttattaa 12000
gggccacgc accgcgtgta gttctcattt ttcccgggga cttctcattc agaaccattttt 12060
agcttggctg tgaacagtga aaggggctaa ttgggtctca gaacagctct ttggacaaat tgggccaaact 12120
atatatatgt gcggctgccg aatatttttg atggcttgggt gatacatcag aatatttttg 12180
catttttgtt ggtattacca cgcggcgtcttg gcggctcctct gccggtttcttg 12240
tctgggggt cttgctgcgc gaccccacc taccccttag aatgctgtagc ctgggtcttg 12300
aggccccctt ttcacctgct ccagtggctaga tttcccctcttg gggaactctg catcccctgg 12360
ggaggtcttg gcaccctagac gttctcaaacg ttagctgtaga aatggggtctg ctgggtcttg 12420
acccacaccgc ggaaaaagca gagcaccgcttg cttgaaacgc gcgggttgagc gagggccacgc 12480
tgctatcgtg tagtggttgg gatgtgtcttgt tcaactttttt gccacttttg gccctttagg 12540
cgccagcctg aaataatttg gcctctccgg gccttacgtgc aacaacgtcg cgcatgacag 12600
ggtcaaatgt aacactagtg tataatagta ctttgaatca ggtgttggct atttttccaa 12660
cccctgggatc coggccaaag cttctagatt ccacgcaatt gcctaaatgt gcgtcaacctct 12720
caatatctto ctgctgttga gttttttgtt tgtgtgtgtg tggggtattc 12780
cacactctcg tctgccgccgcc gttacatgtt ggttggcccac agttggcaggg ggttgggcggg 12840
ggtgatatcc aaggtgggttc gctgttggcc cccggccgag gccagggcct gcgtttttca 12900
acacgagcag ctcacaccttt gcaagatagg gcatagagc gttgagagc agacactagta 12960
cgtgcttggg ttctttacgcc ctctggctgcct cccgacgcag gcgtttttgtca 13020
cggctgctgg ggttccttggt ctcctcagca cccggcccaag ttccatcctgg agatattttg 13080
gatggtagaatttagttgaa ctagctaccct tctgggattc gcttttaacc 13140
gcgggggagg aacgcaacct ctcctgagct tgcacatatt ctcgccctat ttcacgcaactct 13200
cctacacat caaggaaggt cggctttgtg cttccactct gattgctggc gccctttttc 13260
ttttttttttg ttgggattttg gtttctcagg gtttctcagg caacgctgctgt 13320
tcagctgcac gtctttttgga cttataaacc acacgcaagt cgcctcagag cttggttgc 13380
cctagaggag ttcgctgcttt aggctgctgct tctacagatt tgcagaaacc 13440
ttcagcgccg ggcggttcag aggcccccg gcccaatcct cttgacagag ctttacaacgc 13500
gatgagataa atttatcaacct tttttgttgaa ctttcttcttt tttttgttgac 13560
tcttgagttttg cttccgttgaatt ctagagcacg ccacgtagtt ccagcgtggtttgt 13620
gtttttttgc acattctagttgtatgtaaacc acctcagcctt ggtgttttttgg 13680
gtttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 13740
gtttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 13800
gtttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 13860
gtttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 13920
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 13980
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14040
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14100
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14160
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14220
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14280
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14340
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14400
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14460
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14520
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14580
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14640
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14700
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14760
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14820
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14880
ttttttttttt gcgctgctttg gtttcacagtt gtttttttttt gcgctgctttg gtttcacagtt 14940
gccagtcaat cagctgtgcc agatgtggg taagatcact gccacgaca aaccagcccag 15000
tagcacaagga cggggaga ga aataaagaa taaaaaacc cggagccgcc attttccttt 15060
agcgaacctta gatgaagctca ggcatacatt cacccttact gggctaatg tggcagcagc 15120
gctgatccgc agtcttctta accgggccc tggacacctg acctatcag attcagggatg 15180
gattgatcact atgtgctgact ttagttgac gccgacatc actgtgctgac tgcacgccgt 15240
cacacgagcc tcatcagctg aatgctgctg cattcttcat ccatctcatc attatgatattg 15300
gagaagttctt gtaggagct gg cacgctgctc ctatcctccact ttagaatattcatt 15360
gggccaagccct tgtggggttac acttttatg ggcgggacca tgcgggcaag atta 15414

<210> SEQ ID NO 17
<211> LENGTH: 15451
<212> TYPE: DNA
<213> ORGANISM: Porcine reproductive and respiratory syndrome virus
<400> SEQUENCE: 17

tatgacgctat agtggtgtgcc tcattgctctt gccacattgta tgtcgaggac ctggtgacat 60
tggcacagcc caaaactcctgt gcacagaca ca ccccttcatg tgtacgctc tcaaaacagg 120
gctatggtgt tgtctgcttacctgtccttttg ctggcttgcac gcttcctcacc 180
ccctttacca attgctggga tacttgatacg tgtgcagctgt aaccccaatg cacaggtgtt 240
tatgggca tgtctgctcag aacgctgtgtg cgcacgtctg gaggccggtgt gatcatccat 300
gaacctcacc ggcttctgctg cgctggctggt aggctatcctg caagggagac cagagcaact 360
ccggtgtgcag ttgctcagct gcctttccac cggggtgctg gctcctgctgcc 420
lcgcttctgca acctttccac tgcgcagact gacagggaggt gacgcaccac ccctcctcccctcag 480
aagtctgactg tgtcttggac gcttctctcactgc actgggacag cggcaactcact 540
gggctttaca tttatgac ccggggttgctg tgtgtacctt acattgtgc gcgtcccttg 600
agggggtcgcct gcggccgacca gctccgacat cctatttattac cattttcttc ggacgactc 660
cgggtgtgcac aacggtgcttt tcgctgtcagag cccctcccttt ccccctccctt 720
gttgctatgt gcgtacattc atgtcagctgctgccg atctgtgtgct gctggcgaag 780
saaagctgctt ggggcaagaga ggtgggctctt tgacagcc ca tggagctttg gcttctg 840
gtgagcatgt atccgacacc gtcaggagct ggctgagccac ccccctccctt ccatgcac 900
gttacgctc gctcggccgc ccccctccct 960
cgggtgtgcct cccgacctgct ca acccttggag tgggttgttg cctgaggagt caacca 1020

cggcgccctg caggagctg cagagccttc cagcactt ggcgtgtgcag cacccttt 1080
cggcgccctg caccagccttc cagcactt ggcgtgtgcag cacccttt 1140
aggaagctgtt ctcaaggtgg cgtgctctgt atgctccgct ggcaggagct 1200
cgggagagt cctctgaggt ggctccttt cggggtgctg tgtcttgcag 1260
aaggggtcgcct gcggccgacca gctccgacat cctatttattac cattttcttc ggacgactc 1320

cgggtgtgcac aacggtgcttt tcgctgtcagag cccctcccttt ccccctccctt 1380
tatgcctgctt ggggcaagaga ggtgggctctt tgacagcc ca tggagctttg gcttctg 1440

tgggctgctg ctggagctgg cctgacagagact ctggagcactgctggagctg aaggggaattt 1500
tgggctgctg ctggagctgg cctgacagagact ctggagcactgctggagctg aaggggaattt 1560
cggcgccctg caccagccttc cagcactt ggcgtgtgcag cacccttt 1620
ctcgaaatctt cacgacactgtt aacgcagcactgctggagctg aaggggaattt 1680
gtacgtacctt aagctggaag tgtagcatttg gctggtcactt gtaggctcttg ggagttccccc
1740
ttccttgcgc cctcttggaat gtgtccaggg ctgttggcgg caaaggggct gcttggttgc
1800
cacagatgca gtcgtaaccttc caggttgattg cctgactctgc tggacccgctc ccagaggtgc
1860
gatgcaacctg cccctgatgt ctatccacag cgcctctggcc gaaattgtcgc ggcattcgcag
1920
tgctgtgcgt tcctgcgctg ttcacggctg ccaactccgt gacggtttctg cggtttcttgc cccggcacaag
1990
cggagggac catcctgacc aagtcgctctt aggagaaat ttcacgctctt gtcaggtgat
2040
tgagacgtgc tgctgacgctt agaagcaacc cccggggtctg cgccgagagc aggcggcagc
2100
aaagatgtaac ctgtaacctcc gtagtgcacaac aaatctggaa gatgtcctgg ccaggtctga
2160
gaagacgccc cgccagacgc taatcgaacac cttccttgat tgggtatttg tgtcctcttg
2220
ggttagggc gccacccagaa cggatcaagtc gcccagctgc aaccaagtctc gctgtgtttg
2280
ccccttttgg acctaaagagt ccctgagcagta ccctggcagct ccttcttttcact
2340
ggtaactcctc taactcctgct tccagaagtgca cgaagttgctg caagcggtaaa gactaaacgc
2400
cygtgcttcacctt aaggtgaaaag agtttctctgc agagaaataa ggcgctctgc ccacccggcagc
2460
tgctccaggg cccacgctg ccaggcggtgc cgcgcagcct caaagccctg tgaagggagga
2520
tctgtgcgaa cctctagact cccgacggcc ttcgcagcag agtgctctgg cagcggcagc
2580
ggtgcaacctta aaaactgggc ttaagaaacttc cccccggtgg acacccaccc ccctcctccgc
2640
aaagagtccg cccagaaaaa cggagcctgt caagcggtagt ccggagggaga agccgttcgcc
2700
cgcggcgccgaaggagcttg cggcggtggc ccgcctctgg atggcctgagc ccagcgcacc
2760
cctcaacagt ggggatggtgt ctgggtattc tgcgcttttc gatccggctgg gcccagcttg
2820
gccgggcaac ctctccagtt gactgtgctat tgtgctctaca cggcgactgca ttcgctgggc
2880
ggagcacccttgctgtcaag cggcctcgctc cgcgctgaagt ccggcgagttg tgtcgtggcc
2940
ggtggacaacctgagccctgc gggccctcgtg ccggcgagttg ttcgctggga gacaaccagc
3000
gaaagattc agtcggcggg cgccatcccc gccatcggc gcagcggccc tggatgtgtgc
3060
tgctctccata gactgtgtgaa atgggcctctc tccccagcgc gcggcgcacc gcggggtggt
3120
tctggaggtc cggcgccccag aaggtgtgaga aaccctgtgt gaaatcctcg aactgtgagg
3180	taacctaaagggctggtgca gtcgacacat ccgcgtcttcc acgcgtcttg gaactcgcacg
3240
cccaaaataoctcgctacag ctagctacag ctgaggccgg ccgtcagcgt gcgtcagcagc
3300
agaggttaactgactgtgtcg ccggcgcgac ttgagtgtgct gtcgagggcgc ctaagttccat
3360
tgacccggtatc ggtctcctgg ctgtggccttt gcggagctgc tgcgctggtg ctagaagaag
3420
ggcacacgg cggatggattc ccacgctgtt accaatgctcg cgcgcttgatg gtcctcgcacg
3480
aaaattgata ctcgcgacag cgcgccccca ctcggtgctg ttcgtgattg cttgtcttcacg
3540
ggcgcgtcctgtcgtgtggcg ccggagcgcgt ggcgcgtctttt gcgctttgtaa ctagaagaag
3600
tgcttcacgc ttcgctgagga aatataaaaa ttcgcggcgc tgggtgcgtag ggggacccctg
3660
gcggccctcc ccggtgatgac ccaactctgtc cagcggcccc ggtgtatctgc
3720
ggcgagccgt cgcggcgcgag ttcgctgagcc ttgcgcggtc acagggctgc ccgggtttcttt
3780	taaactgattc cgcgcgctcttc ttcgctgagtc ttcgtgattg cttgtcttcacg
3840
aaaagaaaag ctgaggtgcgc ttcgggactt acctgtgaccc gcagtctttgtc acctgtgcacg
3900
tccggctttgc ttttttttgc ttcgctgagtc ggtgtatattc ttcgctgagtc
3960
tgctggtttct gcggcgcttca cttcgcttttc ttcgctgagtc cccgacaacttc
tgattattgt ceccctctgg gtgtggcttc ggctgccggtt cagatggggt 4080
ttttgcgctg tttggtgtcc tttgtgcagag cccgctgctc accggctgg 4140
cgctggtgtg gattggcagc cctaccaacctt cttctttct tgggtttct 4200
cactccctgg acgtttgttc ccctgtggtg ccctggtgctc gctggtgcc 4260
ttttcggagg gttcttggc ctgtgaggctt cattctggccct ctttctggtta 4320
tgtgtgggtgt gttcttctgg cttctttctt caagttggttct caaaaaggtg 4380
cgacccggttct cttctttctt ctggttctct tttttaagct 4440
gatgcgggacc aggtcgttac tttagcact gctcggtgct gtttttgctg ccacaaaggtg 4500
ggacccgggatt ttttcttgccct atttgggtcct cgggtctggtg gacggtcgcss cbrasccattg 4560
gcaccacctt cacatggctc gccttgggctttt ccttggcgta cagttttggtg 4620
gtcaccgggtg gttgcagcctt cattcctctg cttcctttctt cttcctttct 4680
ggctggtgtgg ggatgttggct cttcctttctt cttcctttctt cttcctttctt 4740
gatcggccac ccccttggct ggacatgttg cagccgcttc ggccaggttt cctcggggtc 4800
tgacggcccgc ccccttggct ggacatgttg cagccgcttc ggccaggttt cctcggggtc 4860
tgtgtgaggg gacatttttggt cagtttttggt cagtttttggt cagtttttggt 4920
ggacccgggacc accacttccgt tttggtacct cagtttttggt cagtttttggt 4980
gcctggtctc attcctcattc cttcctttctt cttcctttctt cttcctttctt 5040
gtcggtatatc cttcctttctt cttcctttctt cttcctttctt cttcctttctt 5100
gtcggtatatc cttcctttctt cttcctttctt cttcctttctt cttcctttctt 5160	caggaaatt cggccgcttt cttcctttctt cttcctttctt cttcctttctt 5220
ggtggtaccacc cttcctttctt cttcctttctt cttcctttctt cttcctttctt 5280
ttcattcgtg cttcctttctt cttcctttctt cttcctttctt cttcctttctt 5340
cacttcctgttg cttcctttctt cttcctttctt cttcctttctt cttcctttctt 5400
cattttgttg gtccttgggtc cttcctttctt cttcctttctt cttcctttctt 5460
caccttccgtt cttcctttctt cttcctttctt cttcctttctt cttcctttctt 5520
cgccccccactgt cctcctttctt cttcctttctt cttcctttctt cttcctttctt 5580
gggcgcgtgtg ttctcctttctt cttcctttctt cttcctttctt cttcctttctt 5640
tccatacctg cattccctttctt cttcctttctt cttcctttctt cttcctttctt 5700
cgggtcgtttgt cattccctttctt cttcctttctt cttcctttctt cttcctttctt 5760
ttcaggggtgct cattccctttctt cttcctttctt cttcctttctt cttcctttctt 5820
ttttcgggtgct cattccctttctt cttcctttctt cttcctttctt cttcctttctt 5880
tcattgtgctc cattccctttctt cttcctttctt cttcctttctt cttcctttctt 5940
cgctggtgtgct cattccctttctt cttcctttctt cttcctttctt cttcctttctt 6000
ggtggtctcttc ctctctctct cttcctttctt cttcctttctt cttcctttctt 6060
gggcgcgtttgct cattccctttctt cttcctttctt cttcctttctt cttcctttctt 6120
ttcaggggtgct cattccctttctt cttcctttctt cttcctttctt cttcctttctt 6180
ttcaggggtgct cattccctttctt cttcctttctt cttcctttctt cttcctttctt 6240
ttcaggggtgct cattccctttctt cttcctttctt cttcctttctt cttcctttctt 6300
ttcaggggtgct cattccctttctt cttcctttctt cttcctttctt cttcctttctt 6360
ttcaggggtgct cattccctttctt cttcctttctt cttcctttctt cttcctttctt 6420
agtgggttta cccaggggtt catgaaaaaag gtgttttaact cgccctatgc ccctggaaag 9820
accaagttta aggagcatac gacctcgggc tctggccagt gctttgaagc tgtgtccgca 9880
tctggcata gcccgtaggc tgacgggtgc ctgggttgtg gcggcgaacct tcttttatgc 9890
cctggcgttg gctgagcagc tctaccgtgc tcagtgctga acctgtgcga cgcctacactg 9900
gtcaacgacgt cgggagggttc gactagcagag gttgaccgct tgtcctggaga ccacgatcacc 9906
tcttgcttca accectattac tagttttggt gcctttgcta acctgtagt cgtcttttaga 9912
ttcctctctgt ctggtcctggt ttctttcagag acacgtctaa atggctggac gttcttcttg 9916
atgtcaacagt ttcacacccct gatcgtctat tgtgacgacc tgtgctgatga tgtgagttct 9920
cacaacgcgc caacactata ca gatgggggtt ggagactgtaa atggagattg ggggtttcag 9930
acggagcgcaagasagcagac aataacagac gctgctcttc tctggtgggt tagataataa 9936
atgaaagcagc agcgctgccg ccaacgcttc gacgcgccttg ccagcagcttg 9942
aagggagatg atggctcttg ttcggagata acetagctgc gatcgaggttg caaaaacttcg gagcagaagtg 9948
getgggttgg gaagatagct gctaggtttttt gaaactccttg tagttggaat agcgcagttg 9950
gcccacgagg acggctcaac gtttcccgcc gcctgcttct tcctgtgctat gttggaaaaa 9960
tcctgctcacc ataccgaggt gcagagtcg gttttgctgg cggccgggcc gcggtggttgg 9966
cgctgctgta cgcacgccg cgcctgcgct cgggtggtgg cctccggctgc cgcaggcttc 9968
tgctgctgtg ttggctgctg acgctgctgc gctggagttgc ctggcagcttg 9972
tgctgctgtg ctaaactcct gcctgctgctg gacgctgctg gtttttagtt tagctgcaaga 9978
tccctctgtag gaaacgagaa cagcccttttt gacgaggtgc gacgtacctag ggcctgtaaa 9980
ccccccagg gcgtagatat ccagctgagc cgggtttcctt cccccccctga tccaggttaga 9984
taccacactcc ggctgatggt agctggcttgg gcgggctttg ttaggggaaa taaggatgtaa 9990
tgccacagc gttgattattgc taggctggccc tttgctcctca cttgcaagga gagtatccactg 10020
gttgggtct ctggccatgt attggcgcaag cggatccata tctggccaccc gttgggtttttg 10000
aaaaaataatc ggtcctctcaca acgctcgatt gtagtggtat ttatatcacc accaactcacc 10140
cagacacagc tgtgacgatg tagggttttg ggagctggcc gttgcaacgt cccgaggacc 10200
acacacacagc aacccgctggt ccctcggcgg gggatcggtgc cctcaggcctg 10260
gggggttttc ctggcagaga tttgctcctta gttgagccag cgtattggca tcacgtagct 10320
tgctgggttc ccctctgagtt caacaacttc acctgtctgag gatcctccac gcacactccc 10380
cagcaggttt cttgctttta tttgatatgt tttgacatac tgccttaaac tcaacctgga 10440
accctcgcag gttgggttga cctaaacttc gatgtcctac aggagatatt ttttagttttg gaaacgagaa 10500
cctctgcttca tgtgctacac caccgggtttg acctagtgtgg aaaaaactcag cggcggttg 10560
ccagggtcctgtggctctg gaccgtcgttg gcctcgctctgc ttgaattggc cggagccacg 10620
caaggccccca cttcgtatgt gttccacattg cttcgtggcc ctaaaacttc acctgcaagg 10680
caaaagcgcaggctgctcgatac ccaccgctgat ccctgtgcgttc cagacccatg 10740
aggggtgtttc ccagacctgg cgtgttctct gcacggcagg ccaagcgttgc gttggctagc 10800
ccagcggcag ccctggctgtt gttgctggat aagattccac aagatgctgc gggggttctgg 10860
gctgtgtgg gccttttcagag agggctgatc ttcggctccc ccaaggtcgc acaaacactc 10920
gatttgactt tttcaacctcag tttcctagtaa tcctctgggc caacaggcttc acaaacactc 11040
cactggccgc tgtgctagct tctaggccccc gacagacgcag gttggttaga ttcgctccgc 11000
cctggccccca cccgctactc gacgaactac gttgctggtt gggtggcctttt gttggctagt 11160
-continued

tcggttttcg tggagcaacct tggggtcgtg tcatactate tcacaatttt tgttaagggc 11220

gaggtcaag tcgctcggga gacggtttttc agcaaccggc gattgagggt agatcgcgg 11280

gaatatttgg atagatggag gagcaagttt gggtgcttcc tccccacagc ttttattggc 11340

gagttcaag gcacactcgtg tagggagtgt catcactgtca cctcagcata cctccggcgc 11400

gtcttcccc gcagattagct tcggctagttc ggggcttccca ggcacagaaag agccggagaa 11460

gcattgtgca cctcagcaga tgggtcagctt cccagcttttg aagcctaatct tccacccggag 11520

acccagtcaca cggctgtggaa aatgattggtg gctctcaaaag aagttcgcact aatgtccttg 11580

aaagaccaaa cacgctatttt ccacccttgaa ggtgcgctatt tcacctcggtat tcgcctgtc 11640

agcatagctgtccatacctgcag tgcctctgtc aaactacgag tggatcctgga ccctctcgtatg 11700

gccaccggcct tttgcaacac gagaagctcgc ggggtccaccactgaggggcc tgtacccgacg 11760
gtcacccttt atgcattagc gctctaatatt acactcgtct gtggctctacaca tttggaatattg 11820

ccccccggatt ccaacactttt ggcocgcggc ggttcctcttt ggggttacccag atgtaaataag 11880

aacatacctc ggggggtttga acgcggatca ccgtctctgtc tataagctac ccagcaacaggt 11940

aggaatgctgg aggacactca tggcctgcttt cgtgtggcggc agaaaggacca aattttaaaa 12000

gccacctcaca ccacccttgaaitt cccgggggcct ggcctcattga accacactttt atttccaa 12060

gggctggaatt gataaatgattt cgggtctcccatt tgtcacaattt ttgggacacttc 12120

ttctttcggaggt ctccccggaggtgctttggcc ttcctggcttgcatctatt attttcctggc 12180

agtctgtgg tggctccacat cggcgcctggt ctgggtgtgct tgggtgaccat atggttttttc 12240

tcggcgtacgcc ctcttcgcttc ccctcctgcaatg ggtctacattgc aacaccccaah 12300

ggcttccttctcc agtcaagtgc aagtcaccat tccacccgtg gggacactaaac aactttcgg 12360

ggtgtctggc ccaacacttttt ggttgtgtgg ggtggtgggac ccggctggtct 12420

ccgcagaaagct gcaccgcttgg ccggggcctcgc gggtgacagct gcggttcggct 12480

gtcggtcaatt agggttgctgtctgtctgca tcttttcctgagctcagcgc gcctgaaaagc 12540

cagagactctgg aatatttggcc tccccgggcct ggcctcattga cacaacccggc gcgtgaaaagc 12600

gtacccagaat accacagtgt gttgaactcct tgggtctgga cttctccacct 12660

cccctggttcc gcggcccaaggt ttttgcaatttt atcctgaccttctacatct 12720

cacatctttct cccagtctgatctctctgttg ttttgggttgg tgggtggtttgc 12780

aatcaagtat ctcttttttttttgctttgcttg ttttggtttgc acttttcttttgtaa 12840

gtcggtttacccagcgcgttc ttttccagccgaccctggggtg gggggggcaagtctttttttaa 12900

coccggaggt ctgttccggtccaggtgtgccgtgtgttggaggt ggtgggagggcgcgtg 12960

gagtggaggt ttttgcaacac gcgggtgcgtct tccagcagagac cggacgttacgagtggtata 13020

gcggttgctgg gcctgtggtgcct cctcagcata gtcggtgtgtg ggggggttcg 13080

attataaatgc acggtgttgtc ttttccagtctt acacccctatttaaatgtcctcctcagcgt 13140

gacgagggaca ccaccacccgcttgctccgctcaaccctggagctgagtcgctgcttg 13200

taccagacaatc aagtcggcagtg cgggggattccct ggtttcagtggttctcttcctcccttctt 13260

tctgggtgggtctttggggtgttgctttttgggtgttttgcttttttcttctttcttttctttttct 13320

ttcagctcagagtccgagat ctaacttggc acccccggcgcgtggtgtgcgctggcgaa 13380

tccagacaat caggtgtgttc gacgtgtaagtc cggcgtgcgtctg gggcgtgcggctc 13440

tccagctgccc aggccgcttgg ttcagcttgatctcccagcccccggcgtggtgcagcttct 13500
atgagaatta ttacattct ttcgtactcc tacatgttct ctcgtgccct ttcgtcatct 13560
cctggagatgg tgaaaagggg tttacagcag cagtcaccgc ateagcgtggt 13620
tgtgtgctaa ttttattcagg atctcaaggag ttgtacccaa gctgcccttg 13680
tggtcgacca tcgctcaagt cagacacttg aacacatagg tggggcaact 13740
ttttagcctg ttttttttgc accatggag caatatggaat gtttaagcat gttggagaaa 13800	
tgcttcgacc cgggcttttg cttcccgtatgt gtcgctactc atgccgtttctg 13860
tttgtctgctc cggcgcaagc cgggcaagt ggtgcttcgc ccgccctttg 13920
tggacgctcat gttggccaaa tgggcaagat cggctcacta acaaaatgta tggggaacgt 13980
gagagttttg ttcattttcc tggttttggct gcaatggtgt ccagtgccctg 14040
agcgcaatttc cggacacagt gctctttggct actcttgctca cccggtcggt 14100
cggatatgc ccgatacgcgtc ctggcgctg ctcggtgcctc 14160
attagtgtg tgtgtcagtc ctgctcctgg cgtcagcgtg ttcgggcaat cttcaacctt 14220
cctctggaca tcaagggcgag acotcagcgt cgtgctagcag ctggcaccat 14280
gggaagttgt gcgtgagcag tcaagttcct ccggcagcag tgggtggcag 14340
tgtggcaccct ctttcctggct ggcagtggcag gcacatgggg gtctcccttg cagacacat 14400
gctgctgatt aacggtgcgg cagtcagcag ttcggttcgag ttcgctacta 14460
tgatctatat gtcgctaccg gcacagtcca tcgcaccct 14520
tctttgcaca tgccttaaag ctttgttcgt tcgtattctc acgccagccc 14580
ataaggctgc gcctcactag ggagcatcag ttcgctactc tggggggggt t tgtccggcc 14640
tagaaaccctg gaaatcctgc acocctcagat gcocgtttgt gttccgatgg cggcaagct 14700	
tcttgccccc gcctccaccct gttctaagtt gcgcagctct tcacccgatt gcgggcaagt 14760
ataaccaagc atttcgctgc ccgggtcctcg gtctctacac ggtcaccggc acaattgtgcg 14820
cgggctttaa gcagtggttgt gcggctggca gaaagctgtg taacagcgga gtctgtaacc 14880
ttgctaaata tggcaataa caggggcaag cggcagaaaga ggaaggggg ggatggccag 14940
ccagctacaco agctgcggca gatgctgggtt aagatcatg ccgcacccaa cagctccaga 15000
ggcaagggcg ggaggggaag aaaaagag aaaaaccccg aagaggcccc cttcctctca 15060
gcgcctgaag atagccagcg acatacttct aacccatgag acggccaaat cggcctctg 15120
tcaacccaga gcgcctttta tcaagggctg gggaattcga cccgtgcaag ttcggggagg 15180
ataagtcacca cttggtgggt tagttgcgct gacagctcata cttggtgggt gatcgcgcct 15240
acacgctcacc cttcagcgtg atgcctgtgg catctctgag tttgaaatgg 15300
aagaagttgt gggacacggc atgcacgctc atgcagctcct ctaaacagagtg 15360
gggaagccctgg ggaggctgat atttatattg cgggacacat ggcggcaggaa taaaaaaat 15420

<210> SEQ ID NO 18
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: synthetic
<400> SEQUENCE: 18
gcacaagcgc ccagagcgttc tc 22
<212> TYPE: DNA
<213> ORGANISM: synthetic

<400> SEQUENCE: 19

gttgattac gcctgagcgt tata

<210> SEQ ID NO 20
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: synthetic

<400> SEQUENCE: 20

gtgagctgcc tgacacagat tg

<210> SEQ ID NO 21
<211> LENGTH: 53
<212> TYPE: DNA
<213> ORGANISM: synthetic

<400> SEQUENCE: 21

gccacacagcg ccaacagtcctc tcatcttcag ttagtttaca gccctgagcgt atg

<210> SEQ ID NO 22
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: synthetic

<400> SEQUENCE: 22

gttgattac gcctgagcgt tata gcgcacagct gcgcacagct gcgcacagct

<210> SEQ ID NO 23
<211> LENGTH: 74
<212> TYPE: DNA
<213> ORGANISM: synthetic

<400> SEQUENCE: 23

gccacacagcg ccaacagtcctc tcatcttcag ttagtttaca actctgacgct atgtgcgctg
gctggcagc gcctgagcgt atg
gctggcagc gcctgagcgt atg
gctggcagc gcctgagcgt atg
gccacacagcg ccaacagtcctc tcatcttcag ttagtttaca actctgacgct atgtgcgctg

gctggcagc gcctgagcgt atg
gctggcagc gcctgagcgt atg
gccacacagcg ccaacagtcctc tcatcttcag ttagtttaca actctgacgct atgtgcgctg

<210> SEQ ID NO 24
<211> LENGTH: 74
<212> TYPE: DNA
<213> ORGANISM: synthetic

<400> SEQUENCE: 24

gccacacagcg ccaacagtcctc tcatcttcag ttagtttaca actctgacgct atgtgcgctg
gctggcagc gcctgagcgt atg
gccacacagcg ccaacagtcctc tcatcttcag ttagtttaca actctgacgct atgtgcgctg

<210> SEQ ID NO 25
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: synthetic

<400> SEQUENCE: 25

caccaaacat cagctgcgat gcgg

<210> SEQ ID NO 26
<211> LENGTH: 24
What is claimed is:

1. A composition comprising a polynucleotide encoding a hypoglycosylated North American PRRSV GP5 polypeptide variant wherein at least one N-linked glycosylation site corresponding to asparagine 51 in a reference GP5 protein of SEQ ID NO: 1 is inactivated by mutation, and a therapeutically acceptable carrier.

2. The composition of claim 1, wherein said polynucleotide comprises an infectious North American PRRSV RNA molecule.

3. The composition of claim 1, wherein said polynucleotide comprises a DNA molecule that encodes an infectious North American PRRSV RNA molecule.

4. The composition of claim 1, wherein said polynucleotide comprises a DNA molecule wherein a promoter active in mammalian cells is operably linked to said polynucleotide encoding said hypoglycosylated North American PRRSV GP5 polypeptide variant.

5. The composition of claim 4, wherein said promoter is a CMV promoter.

6. The composition of claim 1, wherein said N-linked glycosylation site is inactivated by replacing a codon encoding said asparagine 51 with a codon encoding an amino acid other than asparagine.

7. The composition of claim 6, wherein said codon encoding an amino acid other than asparagine encodes an alanine or a glutamine residue.

8. The composition of claim 1, wherein said polynucleotide encodes a hypoglycosylated North American PRRSV GP5 polypeptide variant wherein both of said N-linked glycosylation sites corresponding to asparagine 34 and asparagine 51 in a North American reference GP5 protein of SEQ ID NO:1 are inactivated.

9. The composition of claim 8, wherein both of said N-linked glycosylation sites are inactivated by replacing codons encoding asparagine 34 and asparagine 51 with codons encoding an amino acid other than asparagine.

10. The composition of claim 9, wherein said codons encoding another amino acid encode either an alanine or a glutamine residue.

11. The composition of claim 8, wherein one of said N-linked glycosylation sites is inactivated by replacing one codon encoding said asparagine 34 or said asparagine 51 with a codon encoding an amino acid other than asparagine.

12. The composition of claim 1, wherein said therapeutically acceptable carrier is selected from the group consisting of a protein, a buffer, a surfactant, and a polyethylene glycol polymer, or any combination thereof.

13. The composition of claim 1, wherein said composition further comprises at least one adjuvant.

14. The composition of claim 13, wherein said adjuvant is selected from the group consisting of aluminum hydroxide, Quil A, an alumina gel suspension, mineral oils, glycerides, fatty acids, fatty acid by-products, mycobacteria, and CpG oligodeoxynucleotides, or any combination thereof.

15. The composition of claim 13, wherein said composition further comprises a second adjuvant is selected from the group consisting of interleukin 1 (IL-1), IL-2, IL-4, IL-5, IL-6, IL-12, gamma interferon (g-IFN), cell necrosis factor, MDP (muramyl dipeptide), immuno stimulant complex (ISCOM), and liposomes.

16. The composition of claim 1, wherein said polynucleotide comprises a viral vector selected from the group consisting of a vaccinia virus vector, a herpes simplex viral vector, an adenovirus vector, an alphavirus vector, and a TGEV vector.

17. An isolated polynucleotide encoding a hypoglycosylated North American PRRSV GP5 polypeptide variant wherein at least one N-linked glycosylation site corresponding to asparagine 51 in a reference GP5 protein of SEQ ID NO:1 is inactivated by mutation.

18. The isolated polynucleotide of claim 17, wherein both N-linked glycosylation sites corresponding to asparagine 34 and asparagine 51 in SEQ ID NO:1 are inactivated.

19. The isolated polynucleotide of claim 17, wherein said polynucleotide comprises an infectious North American PRRSV RNA molecule.

20. The isolated polynucleotide of claim 17, wherein said polynucleotide comprises a DNA molecule that encodes an infectious North American PRRSV RNA molecule.

21. The isolated polynucleotide of claim 17, wherein said polynucleotide comprises a DNA molecule wherein a promoter active in mammalian cells is operably linked to said polynucleotide encoding said hypoglycosylated North American PRRSV GP5 polypeptide variant.

22. The isolated polynucleotide of claim 21, wherein said promoter is a CMV promoter.

23. The isolated polynucleotide of claim 17, wherein said N-linked glycosylation site corresponding to asparagine 51 is inactivated by replacing a codon encoding said asparagine 51 with a codon encoding an amino acid other than asparagine.

24. The isolated polynucleotide of claim 23, wherein said codon encoding another amino acid encodes an alanine or a glutamine residue.

25. The isolated polynucleotide of claim 17, wherein an N-linked glycosylation site corresponding to asparagine 34 in a reference GP5 protein of SEQ ID NO:1 is inactivated.

26. The isolated polynucleotide of claim 25, by replacing a codon encoding said asparagine 34 with a codon encoding an amino acid other than asparagine.

27. The isolated polynucleotide of claim 25, wherein said codon encoding another amino acid encodes an alanine or a glutamine residue.

28. The isolated polynucleotide of claim 25, wherein one of said N-linked glycosylation sites is inactivated by replacing one codon encoding said asparagine 34 or said asparagine 51 with a codon encoding an amino acid other than asparagine.

29. The isolated polynucleotide of claim 17, wherein said polynucleotide comprises a viral vector selected from the group consisting of a vaccinia virus vector, a herpes simplex viral vector, an adenovirus vector, an alphavirus vector, and a TGEV vector.