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ARTICLE
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# US Government 2013

Abstract Nebraska’s Rainwater Basin has an abundance of
natural wetlands and is a focal point in the annual migration
corridor used by millions of waterfowl and shorebirds. Howev-
er, these wetlands are in a landscape dominated by agriculture
and as a result, siltation and poor water quality are continual
problems. We evaluated twelve wetland sites on federally man-
aged Waterfowl Protection Areas from 2007 – 2009 for water
quality, sediment quality, andmacroinvertebrate diversity. Six of
the sites received agricultural runoff directly via culverts and
drainage ditches (non-buffered sites) and six sites were protected
from agricultural runoff by a vegetated buffer (buffered sites).
Mean total number of aquatic macroinvertebrates were signifi-
cantly greater (p <0.001) for buffered sites (230±44 standard
error) than non-buffered sites (97±24).Water from non-buffered
sites had significantly greater turbidity, conductivity, and con-
centrations of chlorophyll α and atrazine than buffered sites
in addition to consistently greater annual averages of total nitro-
gen and total phosphorus. Furthermore, sediments from non-

buffered sites had significantly greater cadmium, potassium,
sodium and zinc than buffered sites. Use of vegetative buffers
to intercept direct row-crop runoff can improve water quality
and aquatic macroinvertebrate diversity and abundance in Rain-
water Basin wetlands.

Keywords Macroinvertebrate . Rainwater basin . Vegetative
buffers . Environmental contaminants .Water quality

Introduction

Aquatic macroinvertebrates are well represented in most
freshwater bodies throughout the world and play a critical role
in the structure and function of most aquatic ecosystems,
especially wetlands (Mitsch and Gosselink 2000; Williams
2006). Macroinvertebrates provide essential nutrients (pro-
teins, lipids, and energy) for secondary consumers (e.g. wa-
terfowl, shorebirds, fish, amphibians, and other vertebrate
predators) and aid in maintenance of water quality by facili-
tating organic decomposition and nutrient cycling (Batzer
et al. 1999; Davis and Bidwell 2008). Because of their sensi-
tivity to disturbance, aquatic macroinvertebrate communities
are also excellent biological indicators for evaluating health of
various wetland ecosystems (Adamus 1996; Resh et al. 1996).

The central Nebraska Rainwater Basin (Fig. 1) serves as a
midway migratory stopover for millions of waterfowl and
shorebirds but is also one of the most endangered wetland
ecosystems in North America (Schildman and Hurt 1984;
Smith 1998). Five to nine million ducks and several hundred
thousand geese stop in the Rainwater Basin annually and as
many as 30 species of migrant shorebirds use the region each
year, making it one of the most productive bird habitats in the
world. However, agricultural development has reducedwetland
area in the Rainwater Basin to 10 % of its former 40,500 ha
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with remaining wetlands subject to siltation, water quality
degradation, and altered hydrology from irrigation runoff
(LaGrange 2005).

Wetland degradation and alteration of macroinvertebrate
fauna can result from adjacent agricultural land use practices
that result in water pollution, sedimentation and altered wet-
land hydrology (Van Dam et al. 1998; Schulz 2004). Agri-
cultural chemical exposure within wetlands may harm wild-
life directly (e.g. exposure to harmful levels of pesticides or
metals) or indirectly (e.g. nutrient related changes in vegeta-
tion composition and density). Aquatic invertebrates have
been used as bioindicators to test the function of constructed
wetlands and wastewater treatment areas (Nelson et al. 2000;
Spieles and Mitsch 2000) and the success of wetland resto-
ration efforts (Sewell and Higgins 1991; Hemesath 1991;
Davis and Bidwell 2008), but few studies have evaluated
macroinvertebrates in natural wetlands. Within the Prairie
Pothole region of South Dakota, Euliss and Mushet (1999)
reported that wetlands adjacent to grassland systems had
significantly greater richness and abundance of cladoceran

eggs, snail shells, and ostracod shells than wetlands adjacent
to croplands, but few other studies have used measurements
of physicochemistry and macroinvertebrate assemblage
structure to assess the health of natural wetlands.

In Nebraska, the U. S Fish and Wildlife Service (Service)
Rainwater Basin Wetland Management District (WMD)
manages approximately 61 federally owned Waterfowl Pro-
duction Areas (WPAs) to protect and conserve wetland hab-
itat for wildlife and public use (Service 2007). Many of these
WPAs receive runoff directly from adjacent corn or soybean
agricultural fields. Several WPAs also have large concentrat-
ed animal feeding operations (CAFOs) within their water-
sheds (Schwarz et al. 2004). Runoff from row-crop fields or
feedlot areas enters some WPAs directly through drainage
ditches and culverts (non-buffered sites), whereas others
receive nonpoint source agricultural runoff after it has been
buffered by vegetation (buffered sites).

Information regarding pollution in Rainwater Basin wet-
lands is lacking. Gordon et al. (1997) evaluated contaminants
in Rainwater Basin wetlands, including WPA sites, and found

Fig. 1 Site Map. Figure Credit: Rainwater Basin Joint Venture
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concentrations of mercury, copper, lead, iron, and zinc that
exceeded water quality criteria, and concluded that high pesti-
cide and fertilizer use in the area may be the cause. More
recently Belden et al. (2012) commonly detected atrazine,
acetochlor, metolachlor and trifluralin in Rainwater Basin wet-
land sediments. Although concentrations were below known
acute toxicity thresholds, the authors concluded the potential
for chronic effects on resident biota was largely unknown.
They also concluded from their sediment data that waterborne
atrazine concentrations could exceed those found in sediments
and could cause intersex frogs (Hayes et al. 2010). A publica-
tion associated with the current study, Papoulias et al. (2012),
found that Plains leopard frog (Lithobates blairi) metamorphs
exposed to atrazine and glyphosate at four WPA sites in the
Rainwater Basin exhibited ovarian dysgenesis, high rates of
testicular oocytes, and female-biased sex ratios. Although there
were no clear statistical association between pesticide concen-
trations and frog biomarkers, timing and duration of exposures
were unknown.

Within the Rainwater Basin, Gordon et al. (1990) provid-
ed some baseline data on aquatic invertebrate taxonomic
richness. More recently, Davis and Bidwell (2008) reported
no difference in macroinvertebrate assemblage structure
among ponds subject to differing riparian vegetation man-
agement techniques (prescribed burning, cattle grazing,
disking, and mowing). The authors suggested that surrounding
land use practices had a greater influence on macroinvertebrate
assemblages than local vegetation management techniques.
We are not aware of any studies that have simultaneously
compared wetland sediment and water quality with aquatic
macroinvertebrate assemblages at sites with and without veg-
etative buffers to intercept runoff from agricultural fields. Thus,
the purpose of the present study was to evaluate aquatic
macroinvertebrate communities and pollutant concentrations
in samples from buffered and non-buffered WPA sites in the
Rainwater Basin.

Materials and Methods

Study Area

The Rainwater Basin encompasses 17 counties across the
south-central region of Nebraska (Fig. 1). Precipitation
ranges from 45 cm/year in the west to 60 cm/year in the east
(Pederson et al. 1989), with winter low temperatures aver-
aging −17.8 C and summer highs reaching 37.8 C in summer.
Topography of the region is flat to gently rolling loess plains
with elevations ranging from 455 m to 758 m above sea
level. Rainwater Basin wetlands are playa wetlands of vary-
ing size with substrates consisting of silty loam and clay
loam soils (Pederson et al. 1989). These wetlands depend
primarily on direct rainfall, surface runoff, and snowmelt

(Bishop et al. 2004). The plant community of the Rainwater
Basin includes wet-meadow plants such as sedges (Carex
spp.), rushes (Juncus spp.), and spikerush (Eleocharis spp.),
moist-soil plants, including smartweeds (Polygonum spp.)
and barnyard grass (Echinochloa crusgalli), and emergent
plants such as cattail (Typha spp.), bulrushes (Scirpus spp.)
and river bulrush (Schoenoplectus fluviatilis) (Bishop et al.
2004).

Field Sites

This study was conducted on twelve wetland sites, six buff-
ered and six non-buffered, which were chosen among WPAs
managed by the Rainwater Basin WMD. Sites were selected
based on adjacent land-use, the presence of vegetative
buffers, and the likelihood of holding water until August.
Buffered sites were Prairie Dog, Real,Massie, Atlanta,Wilkins,
and Moger WPAs that had a minimum of 25 m of vegetative
buffer (generally the buffer was much larger than 25 m) be-
tween surrounding row-crop fields and the water body. Non-
buffered sites were located at Cottonwood, Harvard, Linder,
Hultine, Sinninger, and Gleason WPAs at areas that received
agricultural runoff directly from adjacent land via drainage
culverts or ditches.

Invertebrate Sampling

Invertebrate sampling was conducted bi-weekly from mid-
April to early August from 2007 to 2009. For each sam-
pling occasion, four active sweep samples were made with
a standard 30.5 cm×20 cm D-Frame aquatic net at ran-
domly chosen locations. Each sweep sample consisted of
four figure-eight motions of the net through vegetation and
open water at depths ranging from 20 cm to 65 cm.
Macroinvertebrates and vegetative material were then
gathered from the net and preserved in a 50 % ethyl alcohol
solution for later sorting and identification. The D-Frame
aquatic net was chosen as the primary sampling method
because of its ease of use through dense vegetation (Davis
and Bidwell 2008). This technique has also been shown to
adequately sample a wide variety of species with few
abundant macroinvertebrates absent from resulting collec-
tions (Turner and Trexler 1997).

In 2008 and 2009, multi-plate Hester-Dendy samplers
consisting of 8 square layers at 0.3 cm width, two layers at
0.7 cm width, and two layers at 1.6 cm width were also used.
Four Hester-Dendy passive samplers were placed on the
bottom of each wetland and were sampled bi-weekly. Traps
were rinsed and returned into the habitat on the same day.
Collected material was preserved in a 50 % ethyl alcohol
solution for later identification.

In the laboratory, macroinvertebrates were separated from
debris with a Leica 2000 10× dissecting microscope. Organisms

Wetlands



were counted and identified to genus when possible. Or-
ganisms were identified with keys developed by Douglas
(Douglas 2001) and Merritt et al. (2008). Three voucher
specimens of each genus were also collected for reference
and deposited in the University of Nebraska at Kearney
Biology Department collection.

Water Quality

When macroinvertebrates were sampled, water temperature,
dissolved oxygen, conductivity, pH, chlorophyll α, turbidity,
nitrogen, phosphorus, and chlorides were also sampled at
each wetland site. Temperature and dissolved oxygen were
measured using a field YSI model 55 Dissolved Oxygen
meter. Conductivity and pH were measured with a Hanna
Combo pH & EC 98,129 m. Measurements for dissolved
oxygen, pH, conductivity, and temperature were also mea-
sured every two weeks at each site by Service staff using an
In-Situ® Inc., Troll 9500 water quality multimeter (Service
unpublished data 2009). Chlorophyll αwas analyzed with an
Aquafluor 8000 (Turner Design). Turbidity, nitrogen, and
phosphorus were measured by the University of Nebraska
at Kearney using a Hach DR/870 Colorimeter. Water sam-
ples were also collected by the Service and tested for total
phosphorus, dissolved phosphorus, total nitrogen, and chlo-
rides by Ward Laboratories Inc. Kearney, Nebraska.

Elemental Contaminants

Elements were measured in water and sediment by the Service
(Service unpublished data 2009). All samples for elemental
contaminant analysis were collected into pre-cleaned certified
(PC Class) high density polyethylene plastic containers
obtained from Environmental Sampling Supply (http://www.
essvial.com/). Water samples were collected for total recover-
able analysis and were preserved at a pH near 2 with certified
clean nitric acid. Invertebrates for elemental analyses were
collected with pole nets separately from community surveys.
Sediments were collected with a cleaned stainless steel spoon.
All samples were submitted to the Service’s Analytical Con-
trol Facility (Shepherdstown, WV).

In brief, the analysis of duplicate samples, spiked sam-
ples, and standard reference materials generally indicated
acceptable levels of precision and accuracy. For elemental
contaminants analyses, non-water samples were freeze dried,
percent moisture was determined, and results were provided
as wet weight (ww) and dry weight (dw) concentrations. For
all samples, inductively coupled plasma atomic emission
spectrometry was used to determine concentrations of alu-
minum (Al), boron (B), barium (Ba), beryllium (Be), cadmi-
um (Cd), chromium (Cr), copper (Cu), iron (Fe), magnesium
(Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead
(Pb), potassium (K), sodium (Na), strontium (Sr), vanadium

(V), and zinc (Zn). Mercury (Hg) concentrations were deter-
mined by cold vapor atomic absorption, and graphite furnace
atomic absorption was used to measure arsenic (As), selenium
(Se), and small concentrations of Pb and Cd. Detailed descrip-
tions of lab methods including sample preparation, sample
digestion, Quality Assurance/Quality Control (QA/QC) re-
sults, and detection limits are available upon request (http://
chemistry.fws.gov/).

Herbicide Analysis

Water samples for atrazine and glyphosate analysis were
collected in pre-cleaned amber glass containers, immediately
cooled on ice and refrigerated until analysis. Atrazine and
glyphosate concentrations in water were quantified by En-
zyme Linked Immuno Sorbent Assay (ELISA) procedure
with kits purchased from AbraxisTM (Warminster, PA,
USA) and according to manufacturer’s protocols. The assay
ranges were 0.05 to 5 micrograms per liter (μg/L) for atra-
zine and 0.15 to μg/L for glyphosate. Samples that exceeded
the upper range were re-run following a 10-fold serial dilu-
tion (Service unpublished data 2009).

Statistical Analysis

Data collected for water quality and element concentrations
in sediment were analyzed individually under a repeated
measures analysis (PROC GLIMMIX, SAS Institute 2012)
to test for significant (p<0.05) differences between buffered
and non-buffered sites. Water quality parameters included
temperature, pH, dissolved oxygen (DO), conductivity, tur-
bidity, total nitrogen, total phosphorus, orthophosphorus,
total phosphorus, atrazine, glyphosate, and chlorophyll α.
Individual parameters were analyzed using three years of
data collection (U.S. Fish and Wildlife Service 2007, 2008,
and 2009) from both buffered and non-buffered conditions.
Dry weight concentrations of elemental contaminants in-
cluding aluminum, arsenic, boron, barium, beryllium, cad-
mium, chromium, copper, mercury, magnesium, manganese,
molybdenum, nickel, selenium, strontium, vanadium and
zinc from buffered and non-buffered conditions were com-
pared across 2 years (2008, 2009).

Sweep sample and Hester-Dendy plate sample data from
each site were pooled by sample date and compared inde-
pendently. The presence of total invertebrates and number
of genera in sampled sites were analyzed separately among
three years (2007, 2008, and 2009) and two conditions
(buffered, non-buffered). The comparison of individual
invertebrate orders (Diptera, Coleoptera, Hemiptera,
Odonata (Anisoptera and Zygoptera), Ephemeroptera and
gastropoda) among buffered and non-buffered sites among
3 years was also conducted with repeated measures analy-
sis under split plots.
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Results

Biotic Measures

Between April 2007 and July 2009, we collected and iden-
tified a total of 37,985 macroinvertebrates representing 69
genera (Table 1). Sweep sampling collected significantly
more genera from buffered locations (p<0.001). Plate sam-
pling with multi-plate Hester-Dendy samplers was signifi-
cantly less productive than sweep sampling (p<0.001) but
results were similar proportionally when comparing mean
numbers of specimens and genera between buffered and non-
buffered sites.

The repeated measure ANOVA for all the invertebrate
collection over 3 years for 12 different sites with the catego-
ries of buffered and non-buffered showed a significant effect
of site conditions and years on invertebrate presence
(p=0.0117 and p=0.0288 respectively). Invertebrates were
found in significantly higher numbers in buffered sites com-
pared to non-buffered sites (p=0.0117). The highest num-
bers of invertebrates were found in 2009 in buffered sites
while the lowest numbers of invertebrates were found in
non-buffered sites during 2007 (Table 2).

Among the seven most abundantly collected macro-
invertebrate groups, genera diversity was higher in buffered
wetlands for all groups except Hemiptera (Table 3). Differ-
ences were greatest for dragonfly larvae, mayfly larvae, and
lunged snails. Among the groups analyzed, the abundance of
all taxa except Hemiptera was significantly higher in buff-
ered sites for at least one of the three years (Table 4). Signif-
icantly more Anisoptera and Diptera were collected from
buffered sites for all years (Table 4).

Elements

Mean concentrations of the 21 elements measured in sediments
were generally higher on non-buffered sites than buffered sites
with non-buffered sites having significantly greater concentra-
tions of cadmium, potassium, sodium and zinc (Table 5).
Arsenic, cadmium, lead, and zinc exceeded sediment quality
benchmarks for the protection of aquatic life; however, none of
the elements measured in sediment exceeded consensus based
probable effect concentrations, above which adverse effects are
expected to occur more often than not (MacDonald et al. 2000)
(Table 5).

Water Quality

Water from non-buffered sites had significantly greater
(p<0.05) turbidity, conductivity, and concentrations of chlo-
rophyll α and atrazine than buffered sites (Table 6). Annual
mean concentrations of conductivity, chlorophyll α, total
phosphorus, orthophosphorus, total nitrogen, turbidity, and

atrazine were also consistently greater at non-buffered sites
than buffered sites for each year sampled (Table 6).

Discussion

The number of macroinvertebrates, and the number of genera
were significantly greater in wetlands with buffers (Tables 1
and 2) implying that these wetlands are more productive than
non-buffered wetlands. Orders containing aquatic larvae that
utilize dissolved oxygen including Odonata, Ephemeroptera,
prosobranch Gastropoda, and Coleoptera are widely recog-
nized for their sensitivity to pollution inputs and may be
sensitive to both short and long-term changes in water quality
(Batzer et al. 1999; Mackie 2004). In contrast the mean
numbers of Hemiptera were not significantly different be-
tween buffered and non-buffered wetlands. A lack of signifi-
cance for Hemiptera may be attributed to their use of atmo-
spheric oxygen at all life stages which may contribute to
survival in water of varying quality (Williams 1996; Voshell
2005).

Other studies of wetlands have found similar results with
higher percentages of Hemiptera and Diptera in disturbed
and non-buffered sites (Davis and Bidwell 2008). Among the
Diptera, some families and genera, such as Chironomidae
and Culicidae have adaptations to also use atmospheric
oxygen and are less affected by water quality (Williams
1996; Voshell 2005). In the present study, samples from
non-buffered wetlands rarely contained orders other than
Diptera, Hemiptera, Hirudinea (leaches) and the pulmonate
snail, Branchiobdellida sp. However, the Diptera contained
significantly more genera and specimens in buffered wet-
lands than in non-buffered wetlands, mainly as a result of the
presence of Ceratopogonidae and Chaoboridae, two groups
that utilize dissolved oxygen, in buffered wetlands (Table 1).

The increased nutrients, salts and herbicides detected in
water and/or sediments of non-buffered sites likely contrib-
ute to the differences we found in aquatic invertebrate as-
semblages between buffered and non-buffered sites. Others
have reported similar associations between increased pollut-
ant concentrations and changes in diversity and abundance
of macroinvertebrates (Levy 1998; Euliss and Mushet 1999;
Steinman et al. 2003). Annual average concentrations of total
nitrogen were consistently higher on non-buffered sites than
buffered sites and lower invertebrate taxa richness has been
previously observed in wetlands with higher nitrogen levels
(Hentges and Stewart 2010). Although most of the contam-
inants from non-buffered sites had concentrations that were
below water quality standards or literature established toxicity
thresholds, effects to wetland biota from chronic exposure to a
mixture of herbicides, salts and nutrients are not well under-
stood. Furthermore, water quality averages may not be as
important as acute effects from exposure to peak concentrations

Wetlands



Table 1 Number of individuals by sampling method and condition for all invertebrate taxa collected from Rainwater Basin across all years

Order Family Genus BSS NBSS BPS NBPS BS NBS

Amphipoda Hyalellidae Hayalella 160 299 6 19 5 1

Branchiopoda Thamnocephalidae Branchinella 176 230 0 0 1 2

Artemiidae Artemia 9 74 0 0 1 2

Coleoptera Dystiscidae Celina 348 100 5 0 6 6

Derovatellus 6 3 0 0 3 0

Dytiscus 7 13 1 0 2 1

Oreodytes 59 10 0 0 6 2

Rhantus 57 19 0 0 4 4

Elmidae Narpus 18 37 2 0 3 4

Gyrinidae Dineutus 111 36 2 0 6 5

Gyretes 18 1 0 0 3 0

Gyrinus 142 47 1 0 6 5

Halipidae Peltodytes 45 17 0 0 4 1

Helophoridae Helophorus 31 12 0 0 5 2

Hydrophilidae Berosus 1 0 0 0 1 0

Hydrobius 7 5 0 0 2 2

Tropisternus 13 2 0 0 1 1

Psephenidae Psephenus 24 7 0 0 2 2

Diptera Ceratopogonidae Forcipomyia 22 0 0 0 3 0

Leptoconops 5 0 0 0 1 0

Probezzia 296 91 0 0 3 2

Sphaeromias 19 0 0 0 1 0

Chaoboridae Chaoborus 290 47 0 0 4 2

Chironomidae Ceratopogon 180 43 1 0 4 2

Chironomus 874 831 16 4 6 6

Cricotopus 2,611 1,920 20 12 6 6

Odontomesa 21 0 0 0 2 0

Stictochironomus 30 5 0 0 3 0

Culicidae Aedes 340 195 0 0 6 6

Dixidae Meringodixa 1 0 0 0 1 0

Ptychopteridae Ptychoptera 3 0 0 0 1 0

Stratiomyidae Odontomyia 18 11 0 0 3 1

Oxycera 2 0 0 0 1 0

Myxosargus 1 0 1 0 1 0

Tipulidae Megistocera 6 0 0 0 1 0

Ephemeroptera Ephemerellidae Attenella 59 23 0 0 5 1

Serratella 492 135 7 1 5 2

Leptohyphidae Leptohyphes 705 111 13 0 6 3

Potamanthidae Anthopotamus 53 0 0 0 2 0

Siphlonuridae Parameletus 4 0 0 0 2 0

Gastropoda Bithyniidae Bithynia 1,321 251 35 33 6 2

Physidae Physella 2,603 1,182 108 84 6 6

Planorbidae Helisoma 2,011 881 87 72 6 6

Haplotaxida Haplotaxidae 4,798 2,469 53 22 6 6

Haplotaxida Naididae 28 0 0 0 1 0

Hemiptera Belostomatidae Abedus 28 1 0 0 4 0

Corixidae Neocorixa 2,153 1,036 4 0 6 6

Gerridae Gerris 1 3 0 0 1 1

Nepidae Ranatra 1 0 0 0 1 0

Wetlands



of elements like nitrogen and phosphorus or lows for dissolved
oxygen (Williams 1996; Spieles and Mitsch 2000; Douglas
2001; Mackie 2004; Davis and Bidwell 2008).

Contaminants that exceeded water quality criteria (e.g.,
atrazine, chromium and zinc) or sediment quality guidelines
(e.g. arsenic, cadmium, lead and zinc) may also be directly
toxic to invertebrates and responsible for the altered aquatic
invertebrate assemblages found on non-buffered sites. In work
related to the current study, elements in aquatic invertebrates

Table 1 (continued)

Order Family Genus BSS NBSS BPS NBPS BS NBS

Notonectidae Notonecta 1,331 997 1 0 6 6

Hirudinea Hirudinidae 327 338 35 105 6 6

Hydrachnidia Arrenuridae Arrenurus 83 190 0 2 5 4

Notostraca Triopsidae Triops 9 6 0 0 1 1

Odonata Aeshnidae Boyeria 18 0 0 0 3 0

Nasiaeschna 52 1 0 0 6 1

Coenagrionidae Amphiagrion 328 84 6 0 6 4

Argia 15 0 3 0 2 0

Chromagrion 320 36 12 1 3 2

Nehalennia 218 67 0 0 3 1

Lestidae Archilestes 1 1 0 0 1 0

Lestes 704 198 10 2 6 5

Libellulidae Erythemis 17 2 0 0 4 1

Ladona 25 0 0 0 4 0

Libellula 18 0 0 0 4 0

Nannothemis 9 2 11 0 3 0

Plathemis 81 8 9 2 6 3

Poduromorpha Poduridae Podura 2 6 0 0 1 1

Spinicaudata Cyzicidae Caenestheriella 135 55 0 0 4 2

Veneroida Sphaeriidae Pisidium 953 153 28 4 4 3

Total 42 69 24,854 12,291 477 363

BSS buffered sweep sampling, NBAS non-buffered sweep sampling, BPS buffered plate sampling, NBPS non-buffered plate sampling, BS buffered
sites found, and NBS non-buffered sites found

Table 2 Mean number of invertebrates (± SE) present in collected
samples from Rainwater Basin wetlands which had vegetative buffers
(N=6) or were non-buffered (N=6)

Site conditions→ Buffered Non-Buffered
Years↓ Mean ± SE Mean ± SE

2007 128.2±34.05** 80.9±32.69**

2008 225.0±29.59** 103.8±26.08**

2009 228.7±34.80** 101.9±37.74**

Table 3 Mean (± S.E.) number of genera from the most common macroinvertebrate orders from buffered and non-buffered wetlands of the
Rainwater basin, 2007–2009

Condition Year Diptera Coleoptera Hemiptera Anisoptera Zygoptera Ephemeroptera Gastropoda

Buffered 2007 15.3±5.78 4.2±0.66 2.0±0.32 2.4±1.25 2.4±0.245 1.4±0.68 2.6±0.24

Buffered 2008 6.2±0.61 8.2±0.79 2.7±0.33 3.3±0.61 2.7±0.33 2.3±0.49 2.7±0.21

Buffered 2009 5.4±1.08 6.2±1.63 2.4±0.40 4.2±1.16 2.8±0.80 2.6±0.40 2.8±0.20

Non Buffered 2007 2.8±0.25 2.8±0.48 2.3±0.25 0.0±0.00 1.0±0.41 0.3±0.25 2.0±0.71

Non Buffered 2008 3.8±0.54 4.5±0.67 2.2±0.17 0.7±0.33 1.3±0.49 0.5±0.22 2.2±0.31

Non Buffered 2009 3.3±0.75 4.3±0.95 2.0±0.00 0.3±0.24 2.0±0.82 1.3±0.48 1.0±0.58

Buffered Overall 5.6±0.69 6.4±0.57 2.4±0.18 3.3±0.76 2.6±0.34 2.1±0.37 2.7±0.18

Non Buffered Overall 3.47±0.38 3.9±.33 2.2±0.17 0.3±0.17 1.3±0.43 0.5±0.25 1.89±0.39
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Table 4 Comparison of least
squares means (±SE) of inverte-
brate by year and site condition

**Indicates significance

Years→ 2007 2008 2009
Orders↓ Buffered vs. Non-buffered Buffered vs. Non-buffered Buffered vs. Non-buffered

S.O. Anisoptera 2.276±0.5136** 2.1268±0.4681** 2.8699±0.5333**

Coleoptera 1.3027±0.7735 2.4916±0.6844** 0.7266±0.8143

Diptera 2.5484±0.6153** 1.9190±0.5892** 1.4385±0.6256**

Ephemeroptera 0.6359±0.4051 1.1457±0.3872** 0.6582±0.4122

Hemiptera 0.02054±0.2432 0.2149±0.2156 0.3596±0.2559

S.O. Zygoptera 1.5155±0.4205** 0.9480±0.4029** 0.5798±0.4275

Gastropoda 0.0648±29.8049 0.2467±23.0590 86.292±34.7**

Table 5 Concentrations of metals and metalloids in sediment from buffered and non-buffered sites on Waterfowl Production Areas, Nebraska
Rainwater Basin, 2008 and 2009

Buffered Sites Non-buffered Sites

Dry Weight Concentration (mg/kg) Dry Weight Concentration (mg/kg) Published Background or
Threshold Concentrations (mg/kg)

Trace Element ND/NA Mean ± S.E. Range ND/NA Mean ± S.E. Range

Aluminum 31/31 17424±1866 7050–41000 45/45 19746±1166 9170–41700 74000a, 25519d

Arsenic 31/31 2.68±0.11 1.51–4.1 45/45 3.67±0.16 1.04–6.09 1.1b, 5.9c,9.8d

Barium 31/31 203±8 124–292 45/45 214±7 90.6–326 670a

Beryllium 31/31 1.07±0.06 0.66–1.8 45/45 1.18±0.04 0.58–1.62 1a

Boron* 29/31 5±1 1.36–20 45/45 6±1 1.04–30 30e

Cadmium* 27/31 0.40±0.05 0.1–1.5 45/45 0.54±0.02 0.1–0.909 0.3b, 0.6c, 1d, 5e

Chromium 31/31 16±1 7.05–33 45/45 17±1 7.72–36 13b, 43d

Copper 31/31 15±1 8.42–24 45/45 17±1 6.76–29 25b, 36c,32d

Iron 31/31 13265±768 7130–23100 45/45 16284±492 8500–22000 26000a

Lead 31/31 16±1 7.53–22 45/45 20±1 7.47–38.5 17b, 35c, 36d

Magnesium 31/31 3264±203 1720–6340 45/45 3986±127 2150–5960 400b

Manganese 31/31 203±10 109–298 45/45 252±12 94.2–578 480a

Mercury 20/31 0.044±0.007 0.009–0.200 31/45 0.040±0.002 0.008–0.100 0.18d 0.49e

Molybednum 23/31 0.78±0.19 0.085–2.5 33/45 0.86±0.15 0.069–2.5 3f

Nickel 31/31 10.84±0.36 7.59–17 45/45 13±0 6.18–18 10b, 23d

Potassium* 23/23 3517±185 2170–5890 33/33 4850±197 2790–7240 None

Selenium 24/31 0.57±0.05 0.25–1.19 37/45 0.86±0.08 0.25–2.32 0.29b,4g

Sodium* 2/23 60±4 33.95–111 22/23 138±14 39.2–349 None

Strontium 31/31 35±1 25.3–44 45/45 44±1 25.3–71.3 49b

Vanadium 31/31 25±2 12.2–51 45/45 28±2 11.2–61 50b

Zinc* 31/31 55±3 26.6–85 45/45 82±3 37.8–135 38b, 121d,123c, 459e

Bold=exceedence of a sediment quality guideline (CCME 2002)

ND number of samples above detection, NA number analyzed, S.E. standard error
a Background (Shacklette et al. 1984)
b Background (Buchman 2008)
c Canadian sediment quality guideline (CCME 2002)
d Threshold effects concentration below which adverse effects are not expected to occur (MacDonald et al. 2000)
e Probable Effect Concentration above which adverse effects are expected to occur more often than not (MacDonald et al. 2000)
f Recommended soil criteria (Eisler 1989)
g Toxicity threshold for adverse effects to some wildlife species (USDOI 1998)

*Significantly (p-value<0.05) greater on non-buffered than buffered sites as determined by PROC GLIMMIX (SAS Institute 2012)
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were also detected at higher concentrations on non-buffered
than buffered sites (Service unpublished data 2009). Themean
cadmium concentration in aquatic invertebrates from non-
buffered sites was 0.75±0.54 mg per kilogram (mg/kg) dw
(n=16) and was significantly greater than from invertebrates
collected at non-buffered sites (0.36±0.28 mg/kg dw, n=13).
However, the highest concentration of cadmium in aquatic
invertebrates (0.46 mg/kg ww, fromGleason) did not exceed a
0.54 mg/kg ww concentration associated with growth reduc-
tion in freshwater amphipods (Stanley et al. 2005). Cadmium
is known to bioaccumulate in aquatic biota (Eisler 1985) and
the higher concentration of cadmium in aquatic invertebrates
from non-buffered sites indicates its bioavailability. Although
cadmium did not exceed tissue concentrations associated with
decreased growth or mortality of freshwater amphipods in the
laboratory (Borgmann et al. 1991; Stanley et al. 2005), there is
still much uncertainty (e.g. species sensitivities, field condi-
tions) surrounding what tissue concentrations of cadmium
should be considered harmful. Cattle manure can be a source
of cadmium for plants and invertebrates (Putwattana et al.
2010; EPA 2001) and may be an important source of cadmium
in the Rainwater Basin playa wetlands.

Many of the other elemental contaminants detected at
higher concentrations at non-buffered sites than buffered sites

are the same as those in livestock manure that are of environ-
mental concern including arsenic, copper, selenium, zinc,
cadmium, molybdenum, nickel, lead, iron, manganese, alumi-
num and boron (EPA 2001). Arsenic, copper, selenium and
zinc are often included in animal feeds to promote growth or
as biocides (Sims 1995). Davis and Bidwell (2008) found that
benthic invertebrate richness and diversity may be enhanced
in Rainwater Basins wetlands managed with cattle grazing.
However, land application of manure or CAFO lagoon efflu-
ent as fertilizers on cropland, even at recommended applica-
tion rates, can result in substantial movement of elemental
contaminants along with nitrogen and phosphorous into adja-
cent wetlands through runoff (Burkholder et al. 2007).
CAFO’s generate high volumes of phosphorus, nitrogen, po-
tassium and sodium and their presence in the watershed of
some of our sites (Cottonwood, Sinninger, Harvard and
Linder) was likely associated with increased concentrations
of these elements in sediments.

In addition to the effects of nutrient inputs to wetlands,
pesticides from surrounding lands can cause direct mortality
of invertebrates (Grue et al. 1986). On non-buffered sites,
atrazine concentrations observed in the current study exceeded
concentrations known to adversely affect aquatic invertebrates.
The annual mean concentration of atrazine was significantly

Table 6 Summary statistics for water quality measurements at buffered and non-buffered sites from twelve Waterfowl Production Areas, Rainwater
Basin, Nebraska, 2007–2009

Year Site Category N Mean±S.E. Range N Mean±S.E. Range N Mean±S.E. Range N Mean±S.E. Range

Temperature Dissolved Oxygen Specific Conductivity* pH

2007 Buffered 28 20.8±0.9 10.9–30.0 28 5.8±0.6 0.39–12.25 NA 28 7.7±0.2 6.5–9.5

Non-buffered 30 21.8±1.2 6.0–32.5 30 4.9±0.42 1.22–9.65 2 NA 236–330 30 7.5±0.2 4–8.7

2008 Buffered 88 21.5±0.7 7.2–32.2 86 6.6±0.3 0.79–11.88 88 183±14 42–645 88 7.4±0.1 6.08–9.11

Non-buffered 82 20.5±0.8 5.2–33.7 79 7.0±0.34 1.35–17.31 79 268±23 8–1046 82 7.6±0.1 6.64–9.31

2009 Buffered 70 18.7±0.8 3.1–37.6 70 5.3±0.4 0.11–12.63 69 225±21 26–768 70 7.6±0.1 6.37–9.47

Non-buffered 70 20.2±0.9 1.7–35.9 70 6.4±0.42 0.09–16.02 70 325±28 64–1070 70 8.0±0.1 5.48–9.78

Chlorophyl a* Total phosphorus Orthophosphorus Total Nitrogen

2007 Buffered 20 179.98±26 64–435 18 5.5±0.6 1.7–10.2 NA 28 6.6±1.8 0.0–35.0

Non-buffered 24 245.96±22 106–508 20 9.4±2.0 0–33.0 NA 29 10.4±2.8 0.0–35.0

2008 Buffered 32 256.94±63 2–869 76 1.2±0.1 0.21–4.1 40 0.8±0.1 0.1–1.8 76 2.6±0.2 1.0–8.0

Non-buffered 29 280.92±68 6–877 75 2.4±0.3 0.21–7.4 39 1.6±0.3 0.1–6.4 75 4.7±0.4 0.4–16.2

2009 Buffered 25 352.83±127 7–1600 44 1.4±0.2 0.26–8.1 44 0.5±0.1 0.0–2.0 43 6.1±1.1 0.8–35.8

Non-buffered 22 967.59±166 18–1600 46 2.1±0.3 0.2–11.4 45 1.0±0.3 0.0–9.4 45 7.2±0.8 0.3–23.0

Chloride Turbidity* Atrazine* Glyphosate

2007 Buffered NA 28 86±23 10–574 NA NA

Non-buffered NA 30 596±81 40–1100 NA NA

2008 Buffered 40 10±2 1–56 87 314±135 0–9885 41 1.2±0.1 0.08–4.2 20 3.1±0.6 0.06–7.9

Non-buffered 39 14±1 3–39 82 617±105 0–7659 37 15.7±8.6 0.16–287 22 3.1±0.7 0.08–15.2

2009 Buffered 43 14±2 1–65 70 1020±305 0–11930 44 0.8±0.1 0.09–4.52 29 0.1±0.0 0.01–0.1445

Non-buffered 46 14±1 3–38 70 1182±347 3.5–20180 46 5.8±3.1 0.29–143.7 34 0.4±0.1 0.08–2.7603

N sample size, NA not applicable

*Significantly (p-value<0.05) greater on non-buffered than buffered sites as determined by PROC GLIMMIX (SAS Institute 2012)
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greater on non-buffered sites for both years and exceeded
Nebraska’s chronic aquatic life water quality standard of
12 μg/L (NDEQ 2009) at four non-buffered sites (Gleason,
Linder, Cottonwood and Hultine). The greatest atrazine con-
centrations detected in this study were in May of 2008 and
included 287 μg/L at Gleason and 162 μg/L at Linder. For
comparison, the highest atrazine concentration on a buffered
site was 4.5 μg/L at Prairie Dog. Concentrations of atrazine as
low as 0.5 μg/L shifted water flea (Daphnia pulicaria) sex
ratios towards males and the abundance of emerging chirono-
mids (Labrundinia pilosella) was significantly reduced when
exposed to 20 μg/L atrazine (Dewey 1986). In addition to
direct effects, atrazine can cause synergistic effects on the
toxicity of insecticides to non-target aquatic invertebrates
(Jin-Clark et al. 2002; Anderson and Zhu 2004).

Unlike atrazine, glyphosate is used by Rainwater Basin
WMD staff to control noxious weeds and this may account
for some of the similarity in glyphosate concentrations be-
tween buffered and non-buffered sites in 2008 and the rather
high concentrations (above 3 μg/L) detected at three buff-
ered sites (Real, Massie and Moger). The highest observed
concentrations of glyphosate in wetland water were 15.2 and
8.7 μg/L at Harvard WPA, a site where direct runoff from
glyphosate-treated soybean fields was expected to occur.
There are no water quality standards for glyphosate, but no
sites had concentrations above an interim Canadian guide-
line of 65 μg/L (CCME 1999).

During the time of sampling, atrazine and glyphosate
were likely the most frequently applied herbicides in Nebras-
ka for corn and soybeans, respectively (NASS 2010). The
increased presence of pesticides on non-buffered sites, along
with the increases in nutrients, salts and select elemental
contaminants clearly suggest that runoff from agriculture is
contributing to water quality degradation of non-buffered
WPA sites. Contaminated sediments and water associated
with non-buffered sites coupled with the decreases in aquatic
invertebrate diversity and abundance at the same sites may
indicate overall habitat degradation for waterfowl and possi-
bly other organisms such as amphibians (Papoulias et al.
2012).

Riparian buffer zones (vegetated filter strips) are perma-
nently vegetated areas that serve as a buffer between pollut-
ant sources and water bodies (Narumalani et al. 1997). This
vegetative cover increases hydraulic roughness while de-
creasing surface flow velocities which limit sediment and
nutrient influxes (USDA 1991). Riparian buffer zones have
been shown to limit pollution input to water sources
(Muscutt et al. 1993; Osborne and Kovacic 1993) with
various buffer strip sizes being implemented. This study
did not directly test the effects of buffer strip widths on water
quality or macroinvertebrate diversity and no trends were
noticed during sampling. In addition, the buffer size needed
to significantly improve water quality and macroinvertebrate

diversity may depend on characteristics of the wetland’s
watershed such as drainage slope and size rather than being
a fixed size. A 24-m grass buffer around an English water-
way dramatically reduced pollutants in the water (Haycock
and Burt 1991). Similar buffer widths reduced concentra-
tions of nitrogen and phosphorus entering water bodies as
surface runoff from agricultural fields (Peterjohn and Correll
1984). It appears that the presence of modest vegetative
buffers will improve water quality by reducing contamina-
tion and thus, assist in protecting wetland invertebrate
communities.

This study showed invertebrate numbers and diversity
differed between buffered and non-buffered sites. Water qual-
ity parameters and contaminant variables appear to have an
influence on resident macroinvertebrate communities. Argu-
ably the most alarming result of this study is the lack of
representation of many key families of macroinvertebrates in
non-buffered sites (Table 1). When these macroinvertebrates
disappear, a breakdown of community composition and there-
fore biological services can occur (Williams 2006). Biological
services including nutrient cycling are critical to preventing
elements such as nitrogen and phosphorus from accumulating
in the wetland, further degrading the habitat (Davis and
Bidwell 2008). Future research is needed to better understand
the effects of vegetative buffers on ecosystem services. In
addition, changes in water quality parameters during peak
runoff periods should be examined.
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