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Effects of Compositional Tailoring 
on Drug Delivery Behaviours of 
Silica Xerogel/Polymer Core-shell 
Composite Nanoparticles
Wenfei Huang1, Chi Pong Tsui1, Chak Yin Tang1 & Linxia Gu  2

Conventional core-shell polymer nanoparticles usually exhibit a rapid release rate with their release 
kinetics mainly adjusted through changing composition of the polymer shells, limiting their applications 
for prolonged drug delivery. As a solution to these problems, silica xerogel/polymer core-shell-
structured composite nanoparticles have been proposed. Different with our previous work centring on 
studying process variables, we here focused on investigating the effects of key compositional variables 
on essential properties of the composite nanoparticles. The drug release profiles (in vitro) were well 
interpreted by the Baker and Lonsdale model on a predicted two-stage basis. The first stage (<1 day) 
was well controlled from 18.6% to 45.9%; the second stage (1–14 days) was tailored in a range from 28.7 
to 58.2% by changing the composition of the silica xerogel cores and polymeric shells. A substantial 
achievement was reducing the release rate by more than 40 times compared with that of conventional 
polymer nanoparticles by virtue of the silica xerogel cores. A semi-empirical model was also established 
in the first attempt to describe the effects of polymer concentration and drug loading capacity on the 
size of the composite nanoparticles. All these results indicated that the composite nanoparticles are 
promising candidates for prolonged drug delivery applications.

The demands for developing effective drug delivery systems will continue to expand substantially in the fore-
seeable future because of increasing numbers of patients and medical treatments. The characteristics of con-
trolled drug delivery systems, in terms of high therapeutic and low toxic effects, have attracted considerable 
attention for decades1,2. Biodegradable polymers such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and 
poly(lactic-co-glycolic acid) (PLGA) have been widely adopted as the primary components of controlled drug 
delivery systems because of their biocompatibility and controllable biodegradability3–5. Various active ingredi-
ents, including proteins, antibiotics, anti-cancer drugs, and DNA, have been successfully encapsulated by these 
biomaterials as core-shell polymer nanoparticles6–8.

For these conventional core-shell nanoparticles, drug release is characterized by the penetration of hydrophilic 
active molecules through the polymeric shells. Therefore, the drug release profiles usually follow the degrada-
tion kinetics of the biodegradable polymers. The drug release kinetics of these polymer nanoparticles, PLGA 
for instance, are usually adjusted by changing the composition of the polymeric shells in terms of the lactide/
glycolide ratio and molecular weight (MW)6,9. Regardless of these compositional adjustments, the drug release of 
polymer nanoparticles usually ranges from several hours to several days when hydrophilic small drug molecules 
(e.g., vancomycin, an antibiotic) are encapsulated10–13. Vancomycin-loaded PLGA core-shell nanoparticles have 
been found to reach complete release within 24 h14. For treating chronic diseases such as diabetes, long-term 
drug delivery, in the range from weeks to months or even longer, is important for patient compliance1,15,16. The 
relatively fast release rates of polymer nanoparticles are not suitable for long-term drug delivery applications. The 
exploration of an alternative or additional route to prolong the release and control the release kinetics is therefore 
necessary.
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A double emulsion/solvent evaporation technique is usually used for the preparation of core-shell polymer 
nanoparticles13,14,17. However, hydrophilic actives tend to leak into the external aqueous phase in the second 
emulsion, which leads to an undesirable waste of actives and, thus, to low encapsulation efficiency8,18,19. This 
phenomenon is attributed to the emulsification energy tending to break the polymer shell and accelerate the 
diffusion of hydrophilic actives into the aqueous phase19–21. This problem is even more severe for the encapsula-
tion of hydrophilic small molecules such as antibiotics. Unlike hydrophilic macromolecules (such as proteins), 
hydrophilic small molecules are more likely to diffuse into the aqueous phase through the hydrophobic polymer 
matrices8,22. One strategy to address this issue is to exploit the ionic interactions between charged polymers and 
active molecules. However, this route is only applicable to charged molecules and its applications are greatly 
limited by the choice of polymers and active molecules23. Another strategy is to use additives to stabilize the core 
materials (i.e., the internal phase containing the active molecules) of the core-shell-structured nanoparticles. 
Deepak et al. has successfully enhanced the encapsulation efficiency (40.5%) of gemcitabine HCl by stabilizing 
the core materials of core-shell PLGA nanoparticles by initiating the crosslinking of BSA in the core materials8. 
Yang et al. improved the encapsulation efficiency of protein and peptide from 32% to 57% and from 22% to 62%, 
respectively, in core-shell lipid nanoparticles by incorporating hydrogel cores (e.g., Pluronic gel and glyceryl 
palmitostearate)24. Compared with the strategy of ionic interaction, the route of core stabilization is more advan-
tageous because the choices of active molecules and polymers are less restricted. Even though the encapsulation 
efficiency in the aforementioned cases were enhanced to a great extent, the drug release in these systems is accom-
plished within only several days, which is still too fast to be applicable for long-term release25–27. Moreover, large 
gaps exist between encapsulation efficiencies of these systems and complete encapsulation, indicating potential 
opportunities for further improvement.

To fill these gaps, we introduced silica xerogel as a core stabilizer to prevent the leakage of encapsulated drugs 
in a previous study28. Silica xerogel, serving as an amorphous, bioresorbable and biocompatible sol-gel-derived 
SiO2 matrix, is a promising biomaterial for drug delivery26,29–31. The proposed composite nanoparticles were 
designed to enhance encapsulation efficiency via the adjustment of process variables and better manipulate drug 
release behaviour via the adjustment of compositional variables. To fabricate these composite nanoparticles, we 
developed a novel gelation-emulsion method in our previous work with a focus on enhancing the encapsulation 
efficiency and adjusting the particle size through controlling key process variables28,32. The average diameters 
of the composite nanoparticles were adjusted in the range from 192 to 569 nm, with a maximum encapsulation 
efficiency as high as 82.2% by adjusting the process variables28. On the basis of these preliminary results, we 
deduced the optimal combination of process variables, which paved the way for the current study of the effects 
of compositional variables on controlled drug release. The most important function of the silica xerogel core was 
to better control the release kinetics and prolong drug release, which was not covered in our previous work. The 
drug release from the silica xerogel is governed by the physical properties of the xerogel, such as its porosity, den-
sity and internal structure, which are easily controlled by adjusting the parameters of the sol-gel chemistry33–35.

In the current study, we focused on investigating the effects of compositional parameters in controlling the 
drug release kinetics, size and encapsulation efficiency of drug-loaded core-shell silica xerogel/polymer compos-
ite nanoparticles. The composite nanoparticles loaded with a model drug, vancomycin, were fabricated using the 
gelation emulsion method. PLGA and poly((d,l-lactic acid-co-glycolic acid)-block-ethylene glycol) (PLGA-PEG) 
were selected as the components of the polymer shell. Control of the drug release kinetics of the fabricated 
composite nanoparticles was achieved by tailoring the structure and composition of the silica xerogel core and 
polymeric shell. The unique release kinetics of the composite nanoparticles were well elucidated via mathemat-
ical kinetic models. The influence of compositional factors (i.e., polymer concentration, drug loading, type of 
PLGA-PEG and gelation behaviour of the silica xerogel) on the encapsulation efficiency and particle size of the 
composite nanoparticles were also investigated theoretically and experimentally. These fabricated composite nan-
oparticles are promising candidates for drug delivery applications where a larger particle size is preferred, such as 
drug delivery to macrophages36.

Results and Discussion
Characterization of composite nanoparticles. The prepared vancomycin-loaded silica xerogel/polymer 
composite nanoparticles were spherical and smooth, as shown in Fig. 1(a). The particle size was tailored in the 
range from 230 to 925 nm by adjusting the compositional parameters of the composite nanoparticles, as discussed 
in the following section. The sample appeared in Fig. 1(a) was prepared with the parameters of polymer concen-
tration: 30 mg/ml, sonication time: 1.5 minutes and the ratio of water/tetraethyl orthosilicate (RW/T). The particle 
size distribution of the sample with a mean size of 301.8 nm in diameter was shown in Fig. S1.

The Fourier Transform Infrared (FT-IR) spectra of the PLGA, PLGA-PEG, composite nanoparticles and the 
silica xerogel are illustrated in Fig. 1(b). The sharp peak at 1755 cm−1 corresponds to the stretching vibration of 
the ester C=O bonds of PLGA and PLGA-PEG. The small peaks at 3003 cm−1 and 2955 cm−1 are assigned to the 
symmetric stretching vibration of the C−H bonds of the −CH3 groups of the PLGA and PEG-PLGA, respectively. 
The peak at 2883 cm−1 is ascribed to the C−H stretching vibration of −CH2. The absence of the characteristic 
peaks of the −CH3 and −CH2 groups in the spectrum of the silica xerogel indicates that all of the tetraethyl 
orthosilicate (TEOS) was hydrolysed. The bending vibrations of Si−O−Si bonds are characterized by the peak 
at 465 cm−1, which confirms the successful incorporation of the silica xerogel into the composite nanoparticles. 
The broad peaks at approximately 3480 cm−1 result from the −OH stretching vibrations of the PLGA, PLGA-PEG 
and the silica xerogel.

Study of PEG-PLGA. To extend the circulation time of the drug delivery vesicles, PEG groups should be 
incorporated into the surface of the nanoparticles. Ensuring that gelation occurs in the silica solution nanodrop-
lets (also known as nanoreactors) without significant agglomeration requires a biocompatible emulsion stabilizer. 
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To address both of the aforementioned targets simultaneously, PEG-PLGA was blended with PLGA to compose 
the polymeric shells. As an emulsifier, a proper hydrophilic-lipophilic balance (HLB) value of PEG-PLGA was 
necessary to stabilize the primary emulsion (W/O emulsion)37,38.

To design the proper structure of PEG-PLGA with an optimal HLB value, PEG-PLGA with different HLB 
values was prepared for the fabrication of the composite nanoparticles. Figure 2(a) shows that a small particle size 
and high encapsulation efficiency can be attained with a stable emulsion in our fabrication process. Moreover, the 
optimal emulsion stability was achieved with an HLB value of 3.64. With this optimal HLB value, the influences 
of the PEG-PLGA concentration on the size and encapsulation efficiency were investigated; the results, shown 
in Fig. 2(b), indicate that an increase in the PEG-PLGA content enhanced the drug encapsulation efficiency 
slightly and reduced the size (mean diameter) of the composite nanoparticles prepared with a constant polymer 
concentration. This result is attributed to a higher content of PEG-PLGA as an emulsifier stabilizing the pri-
mary emulsion. In addition, the prepared composite nanoparticles exhibited strong adhesive forces and tended 
to agglomerate at room temperature when the weight ratio of PEG-PLGA to PLGA was greater than 2:3. For 
this reason, the optimal composition of the polymer shell was deduced to be a weight ratio of 2:3 (PEG-PLGA: 
PLGA).

Study of polymer concentration. A theoretical analysis was first performed to investigate the effects of 
the polymer concentration on the size of the composite nanoparticles. Under a constant volume of the organic 
phase, the polymer concentration was directly linked to the added polymer. Assuming that the composite nano-
particles composed polymeric shells and silica-based cores (containing silica solution and drug molecules), the 
entire volume (Vp) of an individual core-shell structure composite nanoparticle before being completely dried is 
expressed as:

= + +V V V V (1)p s d si

Figure 1. (a) SEM image of composite nanoparticles; (b) FT-IR spectra of (b-1) PEG-PLGA, (b-2) PLGA, (b-3) 
composite nanoparticle and (b-4) silica xerogel.
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where Vs, Vsi and Vd are the volumes of the polymer shell, the silica solution and the loaded drugs of an individual 
composite nanoparticle, respectively. Assuming that all the added silica solution and polymer solution are trans-
formed into cores and shells of the composite nanoparticles without agglomeration in each batch of fabrication, 
the relationship described by Equation (1) can be written in the form

ρ ρ
= + +

′V C V
N

mE
N

V
N (2)

p
sol sol

s d

si

where Csol, Vsol, ρs, ρd, m, E and ′V si are the polymer concentration, the volume of the added polymer solution in 
each batch, the density of the solid polymeric shell, the density of the incorporated drugs, the weight of the incor-
porated drug in each batch, the encapsulation efficiency and the volume of added silica solution, respectively; N 
is the total number of fabricated composite nanoparticles in a single batch (refer to the fabrication process in 
“Methods”).

The diameter (dp) of the composite nanoparticle can then be expressed as

π ρ π ρ π
= + +

′d C V
N

mE
N

V
N

6 6 6

(3)
p

sol sol

s d

si3

Equation (3) was developed on the basis of an ideal situation in which each of the prepared composite nano-
particles possesses the same diameter; however, this assumption is not always valid. In a real case, the sizes of the 
composite nanoparticles are not all the same and usually exhibit a distribution of values. To accommodate these 
variations, empirical coefficients were introduced to calibrate Equation (3). Formation of the emulsions largely 
depends on process parameters such as emulsification power and time. As all the process parameters of the emul-
sification were fixed during the study of compositional factors, the number (N) of the prepared composite nano-
particles was assumed to be constant in the present study. This number was estimated empirically because of the 
lack of an effective method to calculate the number of nanoparticles. Considering the aforementioned situations, 
the mean diameter of the prepared composite nanoparticles (dav) can be expressed as

Figure 2. Effects of (a) different HLB values and (b) concentrations of PEG-PLGA on mean size 
and encapsulation efficiency of the composite nanoparticles (Fabrication parameters: total polymer 
concentration = 50 mg/ml; sonication time = 1.5 minutes; RW/T = 40; Drug loading = 3%).
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ρ ρ
= + + ′d B C V B mE B V

(4)
av

sol sol

s d
si

3
1 2 3

where B1, B2 and B3 are the empirical factors that account for variations of both the size distribution and the 
empirically obtained number (N).

To study the effects of polymer concentration, all of the parameters other than the polymer concentration 
(Csol) were kept constant. The encapsulation efficiency was assumed to be constant, regardless of the slightly 
difference as shown in Fig. 2(b); this assumption is incorporated into the determination of the empirical factor 
B2. In this case, a linear relationship model of the cube mean diameter of composite nanoparticles (dav

3) and the 
concentration of the polymer solution (Csol) is obtained as

ρ ρ
ε= + + ′ +d B V C B m B V

(5)
av

sol

s
sol

d
si

3
1 2 3

where ε is an error term due to measurement error. Given that the volume of added silica solution ( ′Vsi ) in each 
batch was unchanged, Equation (5) can be transformed to

ρ ρ
= + +d B V C B m B

(6)
av

sol

s
sol

d

3
1 2 0

where B0 is an empirical factor covering both the error term (ε) and ′B V si3 . According to the Equation (6), the 
cubic mean diameter is linearly related to the polymer concentration. This relationship was experimentally veri-
fied; the results are discussed in the following.

On the basis of the definition of drug loading capacity (C), the amount of added drug (m) in Equation (6) can 
be expressed as =m C V Csol sol . Equation (6) can then be transformed into the following form with consideration 
of the drug loading capacity:

ρ ρ
= + +d B C V B C V C B

(7)
av

sol sol

s

sol sol

d

3
1 2 0

In the study of the effects of drug loading, all the factors were kept constant except the drug loading capacity (C). 
A linear relationship between the cubic average diameter of the composite nanoparticles (dav

3) and the drug load-
ing capacity (C) is observed in Equation (7) and was verified by the experimental results.

Figure 3(a) shows that the particle size and the encapsulation efficiency increase with increasing total polymer 
concentration at the optimal HLB value and the optimal concentration of PLGA-PEG. The addition of more 
polymer resulted in an increase in the viscosity of the polymer solution, which contributed to the formation of 
larger particles in the second emulsion under the same emulsification energy. The likelihood of particle breakage 
was much less in a more viscous polymer solution under the same emulsification energy, explaining the obser-
vation that the drug encapsulations were higher at higher polymer concentrations. The encapsulation efficiency 
increased substantially when the polymer concentration was increased from 30 mg/ml to 50 mg/ml. A higher 
encapsulation efficiency indicates better drug encapsulation, which also influences drug release from the compos-
ite nanoparticles. This influence is discussed in the section ‘Modelling of drug release kinetics’.

A linear relationship between the cubic diameter of the composite nanoparticles (dp
3) and the polymer 

concentration (Csol) is observed (Fig. S2(a)). The R-squared value was 0.99, confirming the linear relationship 
between Csol and dp

3 as described in Equation (6). In addition, the slope coefficient of the regression was suffi-
ciently significant to express the linear relationship (Table S1; a significance level smaller than 0.10 was consid-
ered to be acceptable in this study). On the basis of these regression results (Table S1), the empirical factor B1 of 
Equation (6) was determined to be 15.42 × 104 by solving the following equation:

ρ
= . ×B V 1 15 10 (slope coefficient)sol

s
1

6

(ρs = 1.34 g/ml, Vsol = 10 ml). The intercept of the regression was then used to calculate the empirical factor B0 in 
the following discussion after the value of B2 was obtained.

Study of drug loading capacity. A high drug loading capacity of a drug delivery system is always preferred 
because it can minimize the use of polymers. From Fig. 3(b), increasing the drug loading capacity of the compos-
ite nanoparticles enhances the encapsulation efficiency to reach 84% at a loading capacity of 6%. An increase in 
size is also observed along with the increasing drug loading capacity because a higher drug amount led to a larger 
volume of the cores and, thus, to larger average sizes of the composite nanoparticles.

The relationship between the drug loading capacity (C) and the cubic diameter (dp
3) of the composite nano-

particles is illustrated in Fig. S2(b). A high R-squared value of 0.97 was also obtained, confirming the effectiveness 
of Equation (7) in determining the effect of drug loading capacity on the particle size. On the basis of the results 
in Table S2, B2 was calculated to be 18.67 × 103 by solving the following equation:

ρ
= . ×B C V 5 66 10 (slope coefficient)sol sol

d
2

6
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(ρd = 1.65 g/ml, Vsol = 10 ml, Csol = 50 mg/ml). Because the error terms of two regressions for calculating the values 
of B1 and B2 are different, there are two values for B0. After acquiring the values of B1 and B2, the two values of B0 
were obtained by applying the intercepts from the two regression results. One B0 value was determined to be 
−7.78 × 106 by solving the following equation using the intercept of regression from Table  S1: 

+ = − . ×
ρ

B B 7 61 10m
2 0

6

d
(m = 15 mg, ρd = 1.65 g/ml, B2 = 9.77 × 103). The other B0 value was calculated to be 

−28.5 × 106 by solving the following equation using the intercept of regression from Table  S2: 
+ = . ×

ρ
B C B 29 00 10V

sol1 0
6sol

s
(Vsol = 10 ml, Csol = 50 mg/ml, ρs = 1.34 g/ml, B1 = 8.07 × 104). In this case, B0 varies 

from −28.5 × 106 to −7.78 × 106 under the current conditions.
The following semi-empirical model describing the relationship of the average diameter and polymer concen-

tration/drug loading capacity was obtained:

ρ ρ
= + +d B V C B V C C B

(8)
av

sol

s
sol

sol

d
sol

3
1 2 0

(B1 = 15.42 × 104, B2 = 18.67 × 103, −28.5 × 106 ≤ B0 ≤ −7.78 × 106, Vsol = 10 ml, ρd = 1.65 g/ml, ρs = 1.34 g/ml, 
10 ≤ Csol ≤ 90 mg/ml, 3 ≤ C ≤ 18%).

Study of gelation behaviours. The gelation behaviours of the silica solution, which functions as a core 
stabilizer, influence the size and encapsulation efficiency of the prepared composite nanoparticles. The gelation 
or condensation of the silica solution was triggered after the addition of alkali to the hydrolysis solution dur-
ing the first step. The gelation rate or gelation time is directly linked to the alkali content (NH3 solution in the 
present study)39. A low gelation rate causes the leakage of drug molecules during the sonication process because 
wet gel cannot be completely formed to prevent the escape of the drug molecules to the external aqueous phase. 
Therefore, a fast gelation rate was preferred in our fabrication.

The concentration of the silica solution was expressed as the ratio of water/TEOS (RW/T ratio) with the oppo-
site trend, such that the highest concentration of silica solution corresponded to the lowest RW/T ratio. To inves-
tigate the gelation rate, the lowest RW/T ratio (20) was used. As confirmed in Fig. 4(a), the gelation time decreases 
substantially from 0.15% to 6% NH3 concentration and reaches the lowest value at the concentration of 0.6% and 
1.2%. Decreasing the NH3 concentration leads to an increase in the gelation time. Without the addition of the 

Figure 3. Effects of (a) the polymer concentration and (b) the drug loading capacity on mean size and 
encapsulation efficiency of composite nanoparticles (fabrication parameters: PEG-PLGA/PLGA ratio = 2:3; 
sonication time = 1.5 minutes; RW/T = 40).
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alkali, the gelation time was longer than two weeks. With increasing alkali content (the NH3 concentration in the 
present study), decreasing gelation times were observed until reaching the lowest point. The lowest water/TEOS 
(RW/T) ratio was 20 in this study because a lesser amount of drug would dissolve in the silica solution with a lower 
water content of silica solution (lower RW/T ratio).

From Fig. 4(b), the decreasing encapsulation efficiency is observed at a low concentration of NH3 (RW/T ratio 
was kept constant at 40), which was caused by the gelation rate being too slow to effectively stabilize the core of 
the composite nanoparticles and thus results in severe drug leakage during the emulsification. The unreacted 
silica solution therefore tended to flow out from the particles and deposit onto the surfaces of the composite 
nanoparticles, leading to their agglomeration. The optimal gelation rate was achieved at an NH3 concentration of 
1.2% at an RW/T ratio of 40, as judged by the maximum value of encapsulation efficiency (84%) and the smallest 
particle size (403 nm).

The influence of the RW/T ratio on the encapsulation efficiency and size of the composite nanoparticles was 
less significant than that of the NH3 solution concentration, as shown in Fig. 5(a,b). No significant change in the 
encapsulation efficiency or particle size is observed at different RW/T ratios. A similar trend is observed even at a 
different sonication time. A significant size reduction is observed (at a significance level of 0.05) for the composite 
nanoparticles fabricated with a longer sonication time. Unlike the NH3 solution, the increase of the R ratio did 
not contribute to the deferred gelation process because the environment contained insufficient alkali. Instead, 
the gelation occurred rapidly after the addition of the NH3 solution, as indicated by the constant encapsulation 
efficiency.

Comparison with polymer nanoparticles. The size and encapsulation efficiency of the prepared com-
posite nanoparticles and conventional polymer nanoparticles fabricated with different sonication times for the 
second emulsion are compared in Fig. 5(c,d). Student’s t-test with a significance level of 0.05 revealed a statis-
tically significant improvement in the encapsulation efficiency for composite nanoparticles. The encapsulation 
efficiency of the prepared composite nanoparticles was 2–3 times higher than that of the conventional PLGA nan-
oparticles, which indicates that the silica xerogel is an effective core stabilizer for improving drug encapsulation. 
In the absence of the silica xerogel, drug molecules are likely to leak out even under a short emulsification time. 

Figure 4. (a) Relationships between the required time for the formation of bulk silica wet gel and the added 
NH3 concentrations when RW/T = 20; (b) Effect of the concentration of NH3 solution on mean size and 
encapsulation efficiency of composite nanoparticles (fabrication parameters: PEG-PLGA/PLGA ratio = 2:3; 
polymer concentration = 50 mg/ml; sonication time = 1.5 minutes; RW/T = 40; drug loading = 6%).
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Because the drug molecules were trapped in the networks of the silica xerogel, their escape from the nanoparticles 
was limited even under a greater emulsification intensity.

Study of drug release kinetics. Nanoparticles with different structures and drug distributions undergo 
different drug release mechanisms. Because the fabricated composite core-shell nanoparticles were composed of 
silica xerogel as the primary core materials and biodegradable polymers as the shells, the erosion behaviour of 
the polymeric shells should be the same as that of conventional polymer nanoparticles. However, the drug mole-
cules dissolved and diffused in the silica xerogel, which was different from conventional polymer nanoparticles. 
Therefore, the overall drug release behaviours of the composite nanoparticles differ from those of conventional 
polymer nanoparticles. To interpret the drug release behaviours of the composite nanoparticles, mathematical 
models with consideration of one or more of the characteristic drug release behaviours of composite nanoparti-
cles were first analysed in terms of the erosion behaviours of biopolymer and the drug release behaviours from 
the polymeric matrices.

Because the silica xerogel core was encapsulated by the polymeric shell, the drug release may be associated 
with the degradation behaviours of the biodegradable polymer. Drug release from the biodegradable polymer 
matrix is usually characterized by the following first-order kinetics equation on the basis of its hydrolytic degra-
dation behaviour40:






−





= −
∞

M
M

ktln 1
(9)

t

where Mt and M∞ are the fractions of the released drug at time t and at infinite time, respectively, and k is the 
release rate constant.

Drug release from porous sol-gel matrices has been demonstrated to occur primarily through 
diffusion-controlled mechanisms26,41,42. Derived from Fick’s first law of diffusion, the Higuchi square root of time 
model has been widely adopted to describe the drug release behaviours from the silica xerogel matrices because 

Figure 5. Effects of different RW/T ratios and sonication time on mean size and encapsulation efficiency of 
composite nanoparticles and polymer nanoparticles: (a) 1.5-minute sonication time; (b) 3.5-minute sonication 
time (fabrication parameters: PEG-PLGA/PLGA ratio = 2:3; polymer concentration = 50 mg/ml; drug 
loading = 6%; sonication power: 100 W); effects of sonication time of the second emulsion process on mean 
size and encapsulation efficiency of (c) composite nanoparticles and (d) polymer nanoparticles (Fabrication 
parameters: PEG-PLGA/PLGA ratio = 2:3; polymer concentration = 50 mg/ml; RW/T = 40; Drug loading = 6%; 
sonication power: 100 W).
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this model is applicable to homogeneous planar or porous polymers in cases where the matrix is reasonably 
assumed to be non-dissolvable43:
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The zero-order release model is commonly used to describe the dissolution behaviours of modified-release 
pharmaceutical matrices and may also be used to describe the drug release from composite nanoparticles44. The 
mathematical model is given by

=
∞

M
M

kt
(11)

t

Because of the escape of loaded drug molecules, drug-loaded biocompatible sol-gel-processed silica nano-
particles have been demonstrated to be decomposable into smaller fragments45. In this case, the dimensions of 
drug-loaded silica xerogel matrices are not constant during the dissolution of drug molecules. To describe this 
release behaviour, the following cube-root Hixson-Crowell model46 was considered:
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The prepared composite nanoparticles exhibited spherical morphologies. To better describe the drug release 
behaviours from these spherical diffusion-rate-limiting matrices, the following Baker-Lonsdale model developed 
from the Higuchi model47 was considered:
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On the basis of the structure of the composite nanoparticles, the drug release was assumed to exhibit a 
two-stage profile. Stage 1 is characterized by an initial fast release, which reflects the dissolution and diffusion 
behaviours of the small fraction of drug molecules incorporated into the polymer shells and deposited onto the 
surface of the silica xerogel core28. Drug release in the stage 1 largely relies on the erosion of the polymer shell, 
which was therefore assumed to exhibit first-order release kinetics. Stage 2 is characterized by a sustained slow 
release, which describes the combinational effects of the erosion of the polymeric shells as well as the dissolution 
and diffusion of the drug molecules from the silica xerogel cores. Because of the porous structure of the spherical 
silica xerogel as well as the porous structure of the eroded polymeric shell, the stage 2 was assumed to be best 
described by the Baker-Lonsdale model. As most of the drug would be released in stage 2, the drug release of both 
stages might be best described by the Baker-Lonsdale model. To confirm these assumptions, all of the aforemen-
tioned release models were applied to describe experimental drug release profiles.

On the basis of the theoretical analysis, control of the drug release kinetics was achieved by adjusting the pol-
ymer shell and the silica xerogel core. To confirm this assumption, the cumulative drug release of the composite 
nanoparticles fabricated with different R ratios and different polymer concentrations was measured. In this study, 
the drugs encapsulated in the nanoparticles were assumed to be the total releasable drug amount in the experi-
ment. Definition of the encapsulated drug is stated in the section of “determination of drug loading and encap-
sulation efficiency”. The comparisons of drug release are based on the drug released fraction of total releasable 
amount of each sample. Compared with the conventional polymer nanoparticles, the composite nanoparticles 
exhibit a much slower release rate as shown in Fig. 6(a,b) due to the presence of the silica xerogel. Generally, 
the drug release from the composite nanoparticles over 14 days (336 h) was controlled from 23.7% to 49.1% by 
adjusting the RW/T ratio from 20 to 80. This control was possible because increasing the RW/T ratio contributed to 
a high porosity and large pore size of the silica xerogel matrix and, thus, a relatively high release rate. The cumu-
lative drug release over 14 days was controlled in the range from 34.0 to 58.2% by the adjustment of the polymer 
concentration from 10 to 70 mg/ml at a constant RW/T ratio of 40. As shown in Fig. 6(c,d), faster drug release was 
observed at a lower polymer concentration because the drug molecules penetrated through the thinner polymeric 
shell more rapidly. By manipulating the polymer concentration, the drug release over 1 day could be varied from 
18.6% to 84.6%, whereas the drug release over 14 days could be tailored from 23.7% to 100%.

To confirm the aforementioned assumption of a two-stage release profile, some analyses corresponding to 
both single-stage release and two-stage release were carried out by applying the proposed drug release equations 
for the drug release curves of each formulation. According to the single-stage analysis results (Tables S3 and S4), 
the Baker-Lonsdale model exhibited the best fit among the mathematical models for the drug release kinetics 
considered in the present study. Although the Baker-Lonsdale model is a derivative of the Higuchi model, the 
R value of the Baker-Lonsdale model was higher than that of the Higuchi model, indicating that the particle 
shape influenced the drug release behaviour of the nanoparticles. For the conventional polymer nanoparticles, 
the first-order kinetics model exhibited the best fit, which demonstrates that in the absence of silica xerogel cores, 
drug release of the polymer nanoparticles was primarily determined by the erosion behaviour of the polymer 
shells.

Regression analyses of the release profiles with different mathematical models were also conducted on a 
two-stage basis. For the two-stage analysis, the release profile of each stage was analysed independently with 
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mathematical models. As indicated in Fig. 6(a,c), the first release stage is the release profile within 24 h, whereas 
the second release stage is the release profile after 24 h, as judged on the basis of the significant differences between 
the slopes of the release curves. Similar to the previous finding, the Baker-Lonsdale model also exhibited the best 
fit among all of the studied models for each stage. Modelling of the two-stage basis resulted in better-fitting results 
(Tables 1 and 2) than modelling of the single-stage release curves, as shown by comparison with the correlation 
coefficient (R) values listed in Tables S3 and S4, suggesting that analysis on a two-stage basis is a better route for 
interpreting the drug release behaviours of the composite nanoparticles.

The k values (release rate constants) were used to quantify and compare the drug release profiles of different 
formulations. The k value of each formulation was determined by applying the Baker-Lonsdale model (Tables S5 
and S6). The release rate constants of the composite nanoparticles are much smaller than that of the conven-
tional polymer nanoparticles, which confirms the effectiveness of the composite nanoparticles for long-term drug 
release applications. The release rate (k value) is also proportional to the RW/T ratio and inversely proportional to 
the polymer concentration for both release stages, confirming the previous assumption that the RW/T ratio and 
polymer concentration were the two basic factors controlling the drug release rate. A regression analysis was also 
performed to better illustrate the relationships between the k values and RW/T ratio or polymer concentrations. 
Linear relationships are observed for the k value of stage 1 for both groups of formulations (Figs S3 and 4). A 

Figure 6. Cumulative drug releases of different formulations. (a) Full release profiles and (b) release profiles 
(<24 hours) of composite nanoparticles with different RW/T ratios and conventional polymer nanoparticles 
(PN); (c) Full release profiles and (d) release profiles (<24 hours) of composite nanoparticles prepared with 
different polymer concentration and a constant RW/T ratio of 40.

Model/equation

RW/T = 20 RW/T = 40 RW/T = 60 RW/T = 80

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Zero Order 0.906 0.929 0.850 0.913 0.831 0.995 0.803 0.982

First Order 0.915 0.931 0.867 0.917 0.853 0.996 0.831 0.985

Hixson and Crowell 0.912 0.931 0.861 0.916 0.846 0.996 0.822 0.984

Baker and Lonsdale 0.959 0.935 0.932 0.924 0.908 0.996 0.892 0.987

Higuchi 0.957 0.935 0.925 0.921 0.899 0.996 0.882 0.985

Table 1. Correlation coefficient (R) for fitting the release profiles of composite nanoparticles with different R 
ratios on a two-stage basis.



www.nature.com/scientificreports/

1 1SCIENTIfIC RepoRts |  (2018) 8:13002  | DOI:10.1038/s41598-018-31070-9

second-order polynomial relationship between the k value and R ratio was obtained; it indicates that increasing 
the RW/T ratio contributes to a substantial increase of the drug release rate (Fig. S3(b)). A significant reduction of 
the k value was also observed between the polymer concentrations of 30 and 50 mg/ml (Fig. S4(b)). Changes of 
the k values were mild at a polymer concentration less than 30 mg/ml or greater than 50 mg/ml. This phenomenon 
is explained by the fact that a much better drug encapsulation was achieved at polymer concentrations equal to 
or greater than 50 mg/ml. In summary, the drug release rate could be precisely manipulated by adjusting the RW/T 
ratio and/or the polymer concentration according to their relationships with the k values.

In all, the drug release kinetics of the composite nanoparticles could be effectively manipulated by changing 
the compositions of the polymer shells and core materials, in terms of the RW/T ratio and polymer concentration. 
To lower the release rate, the strategy of increasing the polymer concentration or decreasing the RW/T ratio, as 
observed in this study, can be adopted. The slowest drug release would be achieved by selecting the highest poly-
mer concentration and the lowest RW/T ratio simultaneously. To achieve a slower initial release and a relatively fast 
continuous release rates, the selection of a high polymer concentration and a high RW/T ratio would be a proper 
strategy because the sustained drug release rate (stage 2) is primarily dictated by the dissolution and diffusion 
of drug molecules from the silica xerogel cores, especially during the later stage of the erosion of polymer shells.

Methods
PLGA (Mw ≈ 30 kDa, PLA/PGA ratio: 50/50) and PLGA-PEG (Mw ≈ 11 kDa) were acquired from the Jinan 
Daigang Biomaterials Co., Ltd (Jinan City, China). Dichloromethane (DCM) and HCl and NH3 solutions were 
obtained from the Merck & Co. Polyvinyl alcohol (Mw ≈ 23 kDa) and tetraethyl orthosilicate (TEOS) were pur-
chased from the Sigma-Aldrich. Vancomycin hydrochloride was obtained from the Amresco.

Fabrication of composite nanoparticles. Based on the gelation emulsion method developed in our pre-
vious work28, minor modifications were further made to the primary emulsion process to improve the stability 
of the primary emulsion for the gelation reaction. Briefly, TEOS, H2O and HCl were mixed with a molar ratio of 
1:20:0.0002 under mild agitation at room temperature until TEOS was completely hydrolysed to give a clear silica 
solution. A calculated amount of vancomycin was dissolved in 0.6 ml of the 0.15–2.4% NH3 solution. Next, 0.4 ml 
of the prepared silica solution was ultrasonically homogenized using an ultrasonic cell crusher (model SKL250-
11N, Ningbo Haishu Sklon Electronic Instrument Co. Ltd.) into 10 ml of polymer solution (shell material) to 
form the primary emulsion. The polymer solution was prepared by dissolving a predetermined amount of PLGA 
and PEG-PLGA with a weight ratio of 3:2 into 10 ml of DCM. Then, 0.6 ml of NH3/vancomycin solution was 
added gradually during the emulsification of the primary emulsion to initiate the gelation of the silica solution. 
Afterward, this primary emulsion was dispersed into 22 ml of 0.5% PVA aqueous solution to generate a secondary 
emulsion under sonication for a predetermined time. A suspension of vancomycin-loaded silica xerogel/polymer 
composite nanoparticles was obtained after 3 h of mild agitation for solvent evaporation. The nanoparticle sus-
pension was centrifuged at 12,000 rpm using a high-speed centrifuge (model TG16-W, Hunan Xiangyi Centrifuge 
Instrument Co., Ltd.) for 30 min, and the supernatants were kept for drug concentration analysis using UV/vis 
spectrophotometry (model UV1102, Techcomp Ltd.). Conventional PLGA nanoparticles were prepared using 
the same process parameters as the composite nanoparticles except that the silica solution and NH3 solution were 
replaced with pure water.

Characterization. The morphology and structure of the samples were observed by scanning electron 
microscopy (SEM) (JEOL JSM-6335F). Compositional information of the composite nanoparticles was obtained 
by Fourier transform Infrared infrared (FTIR) spectroscopy (Thermo Scientific Nicolet IS50). The average size 
of the nanoparticles was determined by a Zetasizer Nano ZS (Malvern Instruments, Malvern, U.K.) instrument.

Determination of drug loading and encapsulation efficiency. The concentration of vancomycin in 
the supernatant was determined by measuring its absorbance via UV spectrophotometry at 280.5 nm. A standard 
curve, which was used to calibrate the relationship between the drug concentration and UV absorbance, was pre-
pared using drug concentrations ranging from 0.35 to 0.0024 mg/ml in 0.5% of PVA. The standard curve of drug 
concentration in response to UV absorbance was determined to be y = 0.16672 × −0.00421, with a correlation 
factor R-square of 0.999 in regression analysis. The encapsulation efficiency of the vancomycin in the nanopar-
ticles was determined by identifying the concentration of the non-encapsulated free drug in the supernatant 
after centrifugation of the nanoparticle suspension at 12,000 rpm for 30 min. The encapsulation efficiency of the 
drug-loaded nanoparticles was calculated using the following equation:

Model/equation

10 mg/ml 30 mg/ml 50 mg/ml 70 mg/ml

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Zero Order 0.888 0.949 0.870 0.888 0.850 0.913 0.877 0.917

First Order 0.931 0.957 0.894 0.896 0.867 0.917 0.893 0.922

Hixson and Crowell 0.918 0.955 0.886 0.893 0.861 0.916 0.886 0.920

Baker and Lonsdale 0.993 0.960 0.963 0.903 0.932 0.924 0.972 0.929

Higuchi 0.988 0.956 0.955 0.898 0.925 0.921 0.968 0.926

Table 2. Correlation coefficient (R) for fitting the release profiles of composite nanoparticles with different 
polymer concentration on a two-stage basis.
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= ×−Encapsulation Efficiency (%) 100%Total drug amount Free drug amount
Total drug amount

The drug loading capacity is defined as follows:

= ×Drug loading capacity (%) 100%Total encapsulated drug amount
Total polymer amount

In vitro drug release. An appropriate amount of nanoparticles containing 3 mg of vancomycin was dis-
persed into 40 ml of phosphate buffer solution (PBS) (pH = 7.2 ± 0.2) in a 50-ml tube with a cap. The tube was 
shaken at 100 cycles/min in a gas bath shaker with a constant temperature of 37.0 ± 0.2 °C. Then, 4 ml of disso-
lution medium was withdrawn from each tube at a fixed time interval. After centrifugation at 12,000 rpm for 
10 min, 2 ml of supernatant from each of the collected dissolution medium samples was filtered through a 0.22 
μm membrane before analysis of the drug concentration via UV/vis spectrophotometry at 280.5 nm. All the dis-
solution media were added back to their corresponding tubes after the analysis was completed.
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