Agricultural Research Division 100th Annual Report, July 1, 1985, to June 30, 1986

Follow this and additional works at: http://digitalcommons.unl.edu/ardnews

Part of the Agriculture Commons

http://digitalcommons.unl.edu/ardnews/362

This Article is brought to you for free and open access by the Agricultural Research Division of IANR at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agricultural Research Division News & Annual Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
100th Annual Report
University of Nebraska
Agricultural Research Division
July 1, 1985 to June 30, 1986
Agricultural Research Division
University of Nebraska
Institute of Agriculture and Natural Resources
Irvin T. Omtvedt, Dean and Director

The Nebraska Agricultural Research Division provides information and educational programs to all people without regard to race, color, national origin, sex or handicap.
The Nebraska Agricultural Research Division provides information and educational programs to all people without regard to race, color, national origin, sex or handicap.
FOREWORD

This 100th Annual Report contains lists of current faculty, active projects, refereed journal publications, brief descriptions of research in selected areas, and the financial report for the period July 1, 1985 through June 30, 1986. Research programs in agriculture, home economics, and natural resources at the University of Nebraska have changed greatly since the U. S. Congress approved the establishment of an Agricultural Experiment Station in each state with the passage of the Hatch Act on March 2, 1887. Although Hatch funds account for a smaller proportion of the total research expenditures in the program today, this legislation continues to be an important source of funding for addressing priority problems that require long-term research projects.

Faculty conducting research in agriculture, home economics, and natural resources in the University of Nebraska Institute of Agriculture and Natural Resources carry research appointments in the Agricultural Research Division. Most faculty are on joint appointments with teaching responsibilities in the College of Agriculture or the College of Home Economics or serve as extension specialists with appointments in the Cooperative Extension Service. As of June 30, 1986, the 136 full-time equivalents in the Agricultural Research Division were distributed among 260 faculty.

The Agricultural Research Division faculty are located on the East Campus of the University of Nebraska in Lincoln and at the District Research and Extension Centers at Clay Center, Concord, North Platte, and Scottsbluff. The University of Nebraska Agricultural Research and Development Center near Mead serves as the primary site for projects involving livestock or field plots for faculty located on the East Campus.

The primary program goals for the Agricultural Research Division are:

• To address priority problems facing Nebraska’s agricultural and food industries;
• To provide an expanded knowledge base for future developments in production, processing and distribution of agricultural products; and
• To provide research results to advance quality of life opportunities for all Nebraskans.

Results derived from various projects are published in scientific journals, trade journals, bulletins, University publications, and in departmental reports. The research results then become the information base for educational programs and publications prepared by the Nebraska Cooperative Extension Service. Reprints of most journal articles may be obtained by writing directly to the authors.

Researchers in the Agricultural Research Division are part of a national network of agricultural experiment station scientists located at land-grant universities across the United States. Nebraska researchers are currently involved in over 60 regional projects where they cooperate with scientists at other universities in addressing priority problems of regional importance. High priority is given to working cooperatively with USDA and US Forest Service researchers with similar responsibilities. There are currently 32 federally supported scientists located on East Campus and 33 scientists at the Roman L. Hruska U. S. Meat Animal Research Center at Clay Center who work jointly with IANR researchers. Several faculty in the Agricultural Research Division are also involved in cooperative projects with University of Nebraska faculty at the Medical Center and on City Campus.

For additional information regarding the Agricultural Research Division program, contact the Office of the Dean and Director, 109 Agricultural Hall, University of Nebraska, Lincoln, Nebraska 68583-0704.

Irvin T. Omtvedt
Dean for Agricultural Research and
Director of the Nebraska Agricultural Experiment Station
University of Nebraska - Lincoln
University of Nebraska

Board of Regents

Donald C. Fricke, Lincoln James H. Moylan, Omaha
Kermit Hansen, Elkhorn John W. Payne, Kearney
Nancy Hoch, Nebraska City Margaret Robinson, Norfolk
Robert R. Koefoot, Grand Island Robert G. Simmons, Jr., Scottsbluff

Greg Paul, UNMC
Allison Brown Corson, UNO
Chris Scudder, UNL

Administrative Officers

Ronald W. Roskens, President, University of Nebraska
Martin A. Massengale, Chancellor, University of Nebraska - Lincoln
Roy G. Arnold, Vice Chancellor, Institute of Agriculture and Natural Resources

Agricultural Research Division

Irvin T. Omtvedt, Dean and Director
Dale H. Vanderholm, Associate Dean and Associate Director
William L. Powers, Assistant Director for Water Research
Warren W. Sahs, Assistant Director for Operations
Administrative Units Reporting To Deans And Directors

Institute of Agriculture and Natural Resources
The University of Nebraska - Lincoln

Agricultural Academic Program Units
(Extension, Research and Teaching)

<table>
<thead>
<tr>
<th>Program Unit</th>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRICULTURAL BIOCHEMISTRY</td>
<td>Herman W. Knoche</td>
</tr>
<tr>
<td>AGRICULTURAL COMMUNICATIONS</td>
<td>Jay P. Holman</td>
</tr>
<tr>
<td>AGRICULTURAL ECONOMICS</td>
<td>William L. Miller</td>
</tr>
<tr>
<td>AGRICULTURAL ENGINEERING</td>
<td>William E. Splinter</td>
</tr>
<tr>
<td>AGRONOMY</td>
<td></td>
</tr>
<tr>
<td>ANIMAL SCIENCE</td>
<td>Elton D. Aberle</td>
</tr>
<tr>
<td>BIOMETRICS AND INFORMATION SYSTEMS CENTER</td>
<td>W. M. Schutz</td>
</tr>
<tr>
<td>CENTER FOR AGRICULTURAL METEOROLOGY AND CLIMATOLOGY</td>
<td>Norman J. Rosenberg</td>
</tr>
<tr>
<td>ENVIROMENTAL PROGRAMS</td>
<td>Roger E. Gold</td>
</tr>
<tr>
<td>FOOD PROCESSING CENTER</td>
<td>Charles E. Walker</td>
</tr>
<tr>
<td>FOOD SCIENCE AND TECHNOLOGY</td>
<td>Charles E. Walker</td>
</tr>
<tr>
<td>FORESTRY, FISHERIES AND WILDLIFE</td>
<td></td>
</tr>
<tr>
<td>HORTICULTURE</td>
<td>Roger D. Uhlinger</td>
</tr>
<tr>
<td>PLANT PATHOLOGY</td>
<td>Anne K. Vidaver</td>
</tr>
<tr>
<td>VETERINARY SCIENCE</td>
<td>John A. Schmitz</td>
</tr>
</tbody>
</table>

Home Economics Departments
(Extension and Research)

<table>
<thead>
<tr>
<th>Program Unit</th>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSUMER SCIENCE AND EDUCATION</td>
<td>Gwendolyn Newkirk</td>
</tr>
<tr>
<td>HUMAN DEVELOPMENT AND THE FAMILY</td>
<td>Helen C. Sulek</td>
</tr>
<tr>
<td>HUMAN NUTRITION AND FOOD SERVICE MANAGEMENT</td>
<td>Hazel M. Fox</td>
</tr>
<tr>
<td>TEXTILES, CLOTHING AND DESIGN</td>
<td>Joan M. Laughlin</td>
</tr>
</tbody>
</table>

Off-Campus Centers
(Extension and Research)

<table>
<thead>
<tr>
<th>Center Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTHEAST RESEARCH AND EXTENSION CENTER</td>
<td>Concord</td>
</tr>
<tr>
<td>WEST CENTRAL RESEARCH AND EXTENSION CENTER</td>
<td>North Platte</td>
</tr>
<tr>
<td>PANHANDLE RESEARCH AND EXTENSION CENTER</td>
<td>Scottsbluff</td>
</tr>
<tr>
<td>SOUTH CENTRAL RESEARCH AND EXTENSION CENTER</td>
<td>Clay Center</td>
</tr>
<tr>
<td>SOUTHEAST RESEARCH AND EXTENSION CENTER</td>
<td>Lincoln</td>
</tr>
<tr>
<td>AGRICULTURAL RESEARCH AND DEVELOPMENT CENTER</td>
<td>Mead</td>
</tr>
</tbody>
</table>

Organizational Chart

Institute of Agriculture and Natural Resources The University of Nebraska-Lincoln

[Organizational chart with VICE CHANCELLOR, DEAN & DIRECTOR, DEAN, DEAN & DIRECTOR, DIRECTOR, and WATER RESOURCES CENTER]
100th Annual Report

University of Nebraska
Agricultural Research Division
Agricultural Research Division
Faculty

<table>
<thead>
<tr>
<th>Rank</th>
<th>Rsch</th>
<th>Ext</th>
<th>Tch</th>
<th>Other</th>
<th>Area of Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Biochemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herman W. Knoche</td>
<td>Professor</td>
<td>0.80</td>
<td>0.20</td>
<td>Head, Lipid Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Raymond Chollet</td>
<td>Professor</td>
<td>0.88</td>
<td>0.12</td>
<td>Photosynthesis</td>
<td></td>
</tr>
<tr>
<td>J. M. Daly(^1)</td>
<td>Professor</td>
<td>0.79</td>
<td>0.21</td>
<td>Plant Disease Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Richard Dam</td>
<td>Associate Professor</td>
<td>0.84</td>
<td>0.16</td>
<td>Nutritional Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Robert M. Hill</td>
<td>Associate Professor</td>
<td>0.80</td>
<td>0.20</td>
<td>Protein Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Robert V. Klucas</td>
<td>Professor</td>
<td>0.90</td>
<td>0.10</td>
<td>Nitrogen Fixation</td>
<td></td>
</tr>
<tr>
<td>Ricky J. Krueger(^2)</td>
<td>Assistant Professor</td>
<td>0.80</td>
<td>0.20</td>
<td>Molecular Endocrinology</td>
<td></td>
</tr>
<tr>
<td>John P. Markwell</td>
<td>Assistant Professor</td>
<td>0.90</td>
<td>0.30</td>
<td>Plant Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Robert L. Ogden</td>
<td>Assistant Professor</td>
<td>1.00</td>
<td></td>
<td>Alfalfa Processing</td>
<td></td>
</tr>
<tr>
<td>Robert J. Spreitzer</td>
<td>Assistant Professor</td>
<td>0.75</td>
<td>0.25</td>
<td>Plant Molecular Genetics</td>
<td></td>
</tr>
<tr>
<td>Fred W. Wagner</td>
<td>Professor</td>
<td>0.90</td>
<td>0.10</td>
<td>Enzymes</td>
<td></td>
</tr>
<tr>
<td>Agricultural Communications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Phil Holman</td>
<td>Professor</td>
<td>0.19</td>
<td>0.53</td>
<td>0.19</td>
<td>0.09</td>
</tr>
<tr>
<td>Deloris R. Clouse</td>
<td>Professor</td>
<td>0.10</td>
<td>0.90</td>
<td>Educational Media</td>
<td></td>
</tr>
<tr>
<td>Richard L. Fleming</td>
<td>Professor</td>
<td>0.25</td>
<td>0.57</td>
<td>0.18</td>
<td>Marketing</td>
</tr>
<tr>
<td>James W. King</td>
<td>Associate Professor</td>
<td>0.20</td>
<td>0.70</td>
<td>0.10</td>
<td>Visual Aids</td>
</tr>
<tr>
<td>Kathleen L. Kline</td>
<td>Assistant Instructor</td>
<td>0.10</td>
<td>0.90</td>
<td>Publications</td>
<td></td>
</tr>
<tr>
<td>Daniel B. Lutz</td>
<td>Professor</td>
<td>0.10</td>
<td>0.80</td>
<td>0.10</td>
<td>News</td>
</tr>
<tr>
<td>Terrance Meisenbach</td>
<td>Assistant Instructor</td>
<td>0.22</td>
<td>0.78</td>
<td>Publications</td>
<td></td>
</tr>
<tr>
<td>Charlotte Murphy</td>
<td>Assistant Instructor</td>
<td>0.10</td>
<td>0.90</td>
<td>News</td>
<td></td>
</tr>
<tr>
<td>David E. Parrish</td>
<td>Assistant Instructor</td>
<td>0.20</td>
<td>0.60</td>
<td>0.20</td>
<td>News</td>
</tr>
<tr>
<td>James K. Randall</td>
<td>Professor</td>
<td>0.10</td>
<td>0.90</td>
<td>Radio</td>
<td></td>
</tr>
<tr>
<td>Edward F. Vitzthum</td>
<td>Assistant Professor</td>
<td>0.25</td>
<td>0.75</td>
<td>Environmental Programs</td>
<td></td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>William L. Miller</td>
<td>Professor</td>
<td>0.40</td>
<td>0.30</td>
<td>0.30</td>
<td>Head</td>
</tr>
<tr>
<td>J. David Aiken</td>
<td>Associate Professor</td>
<td>0.55</td>
<td>0.35</td>
<td>0.10</td>
<td>Water Law</td>
</tr>
<tr>
<td>Dale G. Anderson</td>
<td>Professor</td>
<td>0.60</td>
<td>0.40</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>Maurice E. Baker</td>
<td>Professor</td>
<td>0.60</td>
<td>0.40</td>
<td>Resource Economics</td>
<td></td>
</tr>
<tr>
<td>Allen L. Frederick</td>
<td>Professor</td>
<td>0.30</td>
<td>0.70</td>
<td>Public Policy Economics</td>
<td></td>
</tr>
<tr>
<td>Paul H. Gessaman</td>
<td>Professor</td>
<td>0.10</td>
<td>0.90</td>
<td>Agricultural Finance</td>
<td></td>
</tr>
<tr>
<td>James B. Hassler</td>
<td>Professor</td>
<td>0.60</td>
<td>0.40</td>
<td>Marketing and Price Analysis</td>
<td></td>
</tr>
<tr>
<td>Glenn A. Helmers</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td>Farm Management and Production</td>
<td></td>
</tr>
<tr>
<td>Bruce B. Johnson</td>
<td>Associate Professor</td>
<td>0.47</td>
<td>0.53</td>
<td>Resource Economics</td>
<td></td>
</tr>
<tr>
<td>H. Douglas Jose</td>
<td>Associate Professor</td>
<td>0.20</td>
<td>0.80</td>
<td>Farm Management</td>
<td></td>
</tr>
<tr>
<td>James G. Kendrick</td>
<td>Professor</td>
<td>0.20</td>
<td>0.80</td>
<td>Marketing and Agricultural Policy</td>
<td></td>
</tr>
<tr>
<td>Dean A. Linsenmeyer</td>
<td>Associate Professor</td>
<td>0.60</td>
<td>0.40</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>Lynn H. Lutgen</td>
<td>Associate Professor</td>
<td>0.30</td>
<td>0.70</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>Emilio Pagoulatos</td>
<td>Professor</td>
<td>0.70</td>
<td>0.30</td>
<td>Marketing and International Trade</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Ended research appointment during 1985-86
\(^2\) Began research appointment during 1985-86
<table>
<thead>
<tr>
<th>Faculty</th>
<th>Rank</th>
<th>Rsch</th>
<th>Ext</th>
<th>Tch</th>
<th>Other</th>
<th>Area of Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>George H. Pfeiffer</td>
<td>Assistant Professor</td>
<td>0.40</td>
<td>0.60</td>
<td></td>
<td></td>
<td>Farm and Ranch Management</td>
</tr>
<tr>
<td>Raymond J. Supalla</td>
<td>Professor</td>
<td>0.75</td>
<td>0.25</td>
<td></td>
<td></td>
<td>Resource Economics</td>
</tr>
<tr>
<td>Michael S. Turner</td>
<td>Professor</td>
<td>0.10</td>
<td>0.50</td>
<td>0.15</td>
<td>0.25</td>
<td>Marketing</td>
</tr>
<tr>
<td>John F. Yanagida</td>
<td>Associate Professor</td>
<td>0.60</td>
<td>0.40</td>
<td></td>
<td></td>
<td>Quantitative Methods</td>
</tr>
<tr>
<td>Agricultural Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmund S. Gilbertson</td>
<td>Professor</td>
<td>0.20</td>
<td>0.15</td>
<td>0.65</td>
<td></td>
<td>Head</td>
</tr>
<tr>
<td>Allen G. Blezek</td>
<td>Associate Professor</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
<td></td>
<td>Curriculum Programs and Advanced Studies</td>
</tr>
<tr>
<td>Roy B. Dillon</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>James T. Horner</td>
<td>Professor</td>
<td>0.50</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
<td>Advanced Studies</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>William E. Splinter</td>
<td>Professor</td>
<td>0.50</td>
<td>0.30</td>
<td>0.20</td>
<td></td>
<td>Head, George Holmes Distinguished Professor</td>
</tr>
<tr>
<td>Leonard Bashford</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Power and Machinery</td>
</tr>
<tr>
<td>Gerald R. Bodman</td>
<td>Associate Professor</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td>Livestock Environment</td>
</tr>
<tr>
<td>Y. R. Chen</td>
<td>Associate Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USDA Modeling Animal Physiology Processes</td>
</tr>
<tr>
<td>James A. DeShazer</td>
<td>Professor</td>
<td>0.75</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
<td>Livestock Environment</td>
</tr>
<tr>
<td>Elbert C. Dickey</td>
<td>Associate Professor</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td>USDA Modeling Animal Physiology Processes</td>
</tr>
<tr>
<td>Conrad B. Gilbertson</td>
<td>Associate Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USDA Livestock Waste Management</td>
</tr>
<tr>
<td>James R. Gilley</td>
<td>Professor</td>
<td>0.75</td>
<td>0.25</td>
<td></td>
<td></td>
<td>USDA Irrigation Engineering</td>
</tr>
<tr>
<td>John E. Gilley</td>
<td>Assistant Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USDA Soil and Water Conservation</td>
</tr>
<tr>
<td>Robert D. Grisso</td>
<td>Assistant Professor</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td>USDA Power and Machinery</td>
</tr>
<tr>
<td>G. L. Hahn</td>
<td>Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USDA Animal Calorimetry</td>
</tr>
<tr>
<td>Milford A. Hanna</td>
<td>Professor</td>
<td>0.50</td>
<td>0.30</td>
<td></td>
<td></td>
<td>USDA 0.20 Food Engineering</td>
</tr>
<tr>
<td>A. G. Hashimoto</td>
<td>Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USDA Modeling Animal Physiology Processes</td>
</tr>
<tr>
<td>Louis I. Leviticus</td>
<td>Professor</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>USDA Tractor Testing</td>
</tr>
<tr>
<td>Derrel L. Martin</td>
<td>Assistant Professor</td>
<td>0.44</td>
<td>0.56</td>
<td>0.25</td>
<td></td>
<td>Irrigation Engineering</td>
</tr>
<tr>
<td>George E. Meyer</td>
<td>Associate Professor</td>
<td>0.75</td>
<td>0.25</td>
<td></td>
<td></td>
<td>Biological Engineering</td>
</tr>
<tr>
<td>Jack A. Nienaber</td>
<td>Associate Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USDA Animal Calorimetry</td>
</tr>
<tr>
<td>Richard Pierce</td>
<td>Assistant Professor</td>
<td>0.20</td>
<td>0.80</td>
<td></td>
<td></td>
<td>Crop Processing</td>
</tr>
<tr>
<td>Dennis D. Schulte</td>
<td>Professor</td>
<td>0.67</td>
<td>0.33</td>
<td></td>
<td></td>
<td>USDA Structures, Processing</td>
</tr>
<tr>
<td>LaVerne Stetson</td>
<td>Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USDA Electrical Safety</td>
</tr>
<tr>
<td>Thomas L. Thompson</td>
<td>Professor</td>
<td>0.70</td>
<td>0.30</td>
<td></td>
<td></td>
<td>Product Processing and System</td>
</tr>
<tr>
<td>Kenneth Von Bargen</td>
<td>Professor</td>
<td>0.40</td>
<td>0.60</td>
<td></td>
<td></td>
<td>Systems Engineering</td>
</tr>
<tr>
<td>Howard D. Wittmuss</td>
<td>Associate Professor</td>
<td>0.53</td>
<td>0.47</td>
<td></td>
<td></td>
<td>USDA Soil and Water Conservation</td>
</tr>
<tr>
<td>Agronomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darrell W. Nelson</td>
<td>Professor</td>
<td>0.40</td>
<td>0.30</td>
<td>0.30</td>
<td></td>
<td>Head</td>
</tr>
<tr>
<td>Bruce E. Anderson</td>
<td>Assistant Professor</td>
<td>0.40</td>
<td>0.60</td>
<td></td>
<td></td>
<td>Forage Management</td>
</tr>
<tr>
<td>David J. Andrews</td>
<td>Professor</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td>USDA Small Grains Breeding and Genetics</td>
</tr>
<tr>
<td>Roger J. Assmus</td>
<td>Assistant Instructor</td>
<td>0.23</td>
<td>0.77</td>
<td></td>
<td></td>
<td>USDA Millet and Sorghum Breeding</td>
</tr>
<tr>
<td>P. Stephen Baenziger</td>
<td>Associate Professor</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td>USDA Soil Chemistry/Fertility</td>
</tr>
<tr>
<td>Ralph B. Clark</td>
<td>Professor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USDA Sorghum Physiology</td>
</tr>
<tr>
<td>Max Clegg</td>
<td>Associate Professor</td>
<td>0.85</td>
<td>0.15</td>
<td></td>
<td></td>
<td>Crop Physiology</td>
</tr>
<tr>
<td>William A. Compton</td>
<td>Professor</td>
<td>0.80</td>
<td>0.20</td>
<td></td>
<td></td>
<td>Corn Breeding</td>
</tr>
<tr>
<td>Name</td>
<td>Rank</td>
<td>Rsch</td>
<td>Ext</td>
<td>Tch</td>
<td>Other</td>
<td>Area of Responsibility</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>John W. Doran</td>
<td>Associate Prof.</td>
<td>0.74</td>
<td>0.26</td>
<td></td>
<td>USDA</td>
<td>Soil Biochemistry</td>
</tr>
<tr>
<td>August F. Dreier</td>
<td>Professor</td>
<td>0.85</td>
<td>0.15</td>
<td></td>
<td>USDA</td>
<td>Crop Physiology</td>
</tr>
<tr>
<td>Jerry D. Eastin</td>
<td>Professor</td>
<td>0.70</td>
<td>0.30</td>
<td></td>
<td>USDA</td>
<td>Soil Microbiology</td>
</tr>
<tr>
<td>James R. Ellis</td>
<td>Associate Prof.</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td>USDA</td>
<td>Crop Production</td>
</tr>
<tr>
<td>Charles A. Francis2</td>
<td>Professor</td>
<td>0.65</td>
<td>0.35</td>
<td></td>
<td>USDA</td>
<td>Forage Physiology</td>
</tr>
<tr>
<td>Byron C. Gabrielsen</td>
<td>Associate Prof.</td>
<td>0.40</td>
<td>0.60</td>
<td></td>
<td>USDA</td>
<td>Soil Conservation</td>
</tr>
<tr>
<td>Charles O. Gardner</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Crop Physiology</td>
</tr>
<tr>
<td>Herman J. Gorz</td>
<td>Professor</td>
<td>0.83</td>
<td>0.17</td>
<td></td>
<td>USDA</td>
<td>Soil Physics</td>
</tr>
<tr>
<td>Francis A. Haskins</td>
<td>Professor</td>
<td>0.48</td>
<td>0.52</td>
<td></td>
<td>USDA</td>
<td>Herbicide Dissipation</td>
</tr>
<tr>
<td>Michael D. Jawson</td>
<td>Associate Prof.</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td>USDA</td>
<td>Soil Fertility</td>
</tr>
<tr>
<td>Virgil A. Johnson1</td>
<td>Professor</td>
<td>0.64</td>
<td>0.36</td>
<td></td>
<td>USDA</td>
<td>Soybean Physiology and Breeding</td>
</tr>
<tr>
<td>Alice J. Jones</td>
<td>Associate Prof.</td>
<td>0.64</td>
<td>0.36</td>
<td></td>
<td>USDA</td>
<td>Range Ecology and Management</td>
</tr>
<tr>
<td>Lowell Klepper</td>
<td>Associate Prof.</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Range Weed Control</td>
</tr>
<tr>
<td>Delno Knudsen</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Cereal Quality</td>
</tr>
<tr>
<td>Steven L. Kuhr1</td>
<td>Assistant Prof.</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Soil Physiology</td>
</tr>
<tr>
<td>David T. Lewis</td>
<td>Professor</td>
<td>0.33</td>
<td>0.67</td>
<td></td>
<td>USDA</td>
<td>Foundation Seed Production</td>
</tr>
<tr>
<td>Jerry Maranville</td>
<td>Professor</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td>USDA</td>
<td>Soil Fertility</td>
</tr>
<tr>
<td>Alexander Martin</td>
<td>Professor</td>
<td>0.65</td>
<td>0.35</td>
<td></td>
<td>USDA</td>
<td>Wheat Genetics</td>
</tr>
<tr>
<td>Stephen C. Mason</td>
<td>Assistant Prof.</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Soil Genetics</td>
</tr>
<tr>
<td>Robert A. Masters2</td>
<td>Assistant Prof.</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Soil Fertility</td>
</tr>
<tr>
<td>Paul J. Mattern</td>
<td>Professor</td>
<td>0.83</td>
<td>0.17</td>
<td></td>
<td>USDA</td>
<td>Wheat Genetics</td>
</tr>
<tr>
<td>Dennis McCallister</td>
<td>Associate Prof.</td>
<td>0.64</td>
<td>0.36</td>
<td></td>
<td>USDA</td>
<td>Soil Chemistry</td>
</tr>
<tr>
<td>Loyd N. Mielke</td>
<td>Associate Prof.</td>
<td>0.64</td>
<td>0.36</td>
<td></td>
<td>USDA</td>
<td>Foundation Seed Production</td>
</tr>
<tr>
<td>Richard Mills</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Soil Fertility</td>
</tr>
<tr>
<td>M. Rosalind Morris</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Wheat Genetics</td>
</tr>
<tr>
<td>Lowell E. Moser</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Soil Fertility, Extension</td>
</tr>
<tr>
<td>John Norman</td>
<td>Professor</td>
<td>0.80</td>
<td>0.20</td>
<td></td>
<td>USDA</td>
<td>Soil Chemistry</td>
</tr>
<tr>
<td>Robert Olson1</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Small Grain Breeding</td>
</tr>
<tr>
<td>Edwin J. Pesas</td>
<td>Associate Prof.</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td>USDA</td>
<td>Herbicide Dissipation</td>
</tr>
<tr>
<td>C. James Peterson</td>
<td>Assistant Prof.</td>
<td>0.70</td>
<td>0.30</td>
<td></td>
<td>USDA</td>
<td>Soil Physics</td>
</tr>
<tr>
<td>James F. Power</td>
<td>Professor</td>
<td>0.48</td>
<td>0.52</td>
<td></td>
<td>USDA</td>
<td>Soil Fertility</td>
</tr>
<tr>
<td>Donald H. Sander</td>
<td>Professor</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td>USDA</td>
<td>Soybean Physiology and Breeding</td>
</tr>
<tr>
<td>James S. Schepers</td>
<td>Associate Prof.</td>
<td>0.80</td>
<td>0.20</td>
<td></td>
<td>USDA</td>
<td>Molecular Genetics</td>
</tr>
<tr>
<td>John W. Schmidt1</td>
<td>Professor</td>
<td>0.75</td>
<td>0.25</td>
<td></td>
<td>USDA</td>
<td>Range Ecology and Management</td>
</tr>
<tr>
<td>Patrick J. Shea</td>
<td>Assistant Prof.</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Crop Physiology</td>
</tr>
<tr>
<td>Joseph H. Skopp</td>
<td>Assistant Prof.</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Soil Physics</td>
</tr>
<tr>
<td>Robert C. Sorensen</td>
<td>Professor</td>
<td>0.70</td>
<td>0.30</td>
<td></td>
<td>USDA</td>
<td>Weed Physiology</td>
</tr>
<tr>
<td>James E. Specht</td>
<td>Professor</td>
<td>0.48</td>
<td>0.52</td>
<td></td>
<td>USDA</td>
<td>Soil Fertility</td>
</tr>
<tr>
<td>Paul E. Staswick</td>
<td>Assistant Prof.</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td>USDA</td>
<td>Grass Breeding</td>
</tr>
<tr>
<td>James Stubbrandieck</td>
<td>Professor</td>
<td>0.80</td>
<td>0.20</td>
<td></td>
<td>USDA</td>
<td>Grass Breeding</td>
</tr>
<tr>
<td>Charles Y. Sullivan</td>
<td>Professor</td>
<td>0.75</td>
<td>0.25</td>
<td></td>
<td>USDA</td>
<td>Crop Physiology</td>
</tr>
<tr>
<td>Dale Swartzendruber</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Soil Physics</td>
</tr>
<tr>
<td>Beth A. Swisher</td>
<td>Assistant Prof.</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA</td>
<td>Weed Physiology</td>
</tr>
<tr>
<td>Gary E. Varvel</td>
<td>Associate Prof.</td>
<td>0.70</td>
<td>0.30</td>
<td></td>
<td>USDA</td>
<td>Soil Management</td>
</tr>
<tr>
<td>Kenneth P. Vogel</td>
<td>Associate Prof.</td>
<td>0.70</td>
<td>0.30</td>
<td></td>
<td>USDA</td>
<td>Grass Breeding</td>
</tr>
</tbody>
</table>
Faculty

(Agronomy....)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Rsch</th>
<th>Ext</th>
<th>Tch</th>
<th>Other</th>
<th>Area of Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven S. Waller</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Range Management and Improvement</td>
</tr>
<tr>
<td>Daniel T. Walters</td>
<td>0.35</td>
<td></td>
<td>0.65</td>
<td></td>
<td>Soil Management</td>
</tr>
<tr>
<td>Wallace W. Wilhelm</td>
<td>0.35</td>
<td></td>
<td>0.65</td>
<td>USDA Crop Physiology</td>
<td></td>
</tr>
<tr>
<td>James H. Williams, Jr.</td>
<td>0.75</td>
<td></td>
<td>0.25</td>
<td></td>
<td>Soybean Breeding</td>
</tr>
</tbody>
</table>

Animal Science

<table>
<thead>
<tr>
<th>Rank</th>
<th>Rsch</th>
<th>Ext</th>
<th>Tch</th>
<th>Other</th>
<th>Area of Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elton D. Aberle</td>
<td>0.35</td>
<td>0.34</td>
<td>0.31</td>
<td></td>
<td>Head</td>
</tr>
<tr>
<td>William T. Ahlswede</td>
<td>0.30</td>
<td>0.70</td>
<td></td>
<td></td>
<td>Swine Production</td>
</tr>
<tr>
<td>Mary M. Beck</td>
<td>0.60</td>
<td></td>
<td>0.40</td>
<td></td>
<td>Poultry Physiology</td>
</tr>
<tr>
<td>Gary L. Bennett</td>
<td>0.75</td>
<td></td>
<td>0.25</td>
<td>USDA Breeding</td>
<td></td>
</tr>
<tr>
<td>Dennis R. Brink</td>
<td>0.26</td>
<td>0.74</td>
<td></td>
<td>Ruminant Nutrition</td>
<td></td>
</tr>
<tr>
<td>Robert Britton</td>
<td>0.60</td>
<td></td>
<td>0.40</td>
<td>Ruminant Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Chris R. Calkins</td>
<td>0.70</td>
<td></td>
<td>0.30</td>
<td></td>
<td>Meats</td>
</tr>
<tr>
<td>Ronald K. Christenson</td>
<td>0.35</td>
<td></td>
<td>0.65</td>
<td>USDA Physiology</td>
<td></td>
</tr>
<tr>
<td>Larry V. Cundiff</td>
<td>0.75</td>
<td></td>
<td>0.25</td>
<td>USDA Breeding</td>
<td></td>
</tr>
<tr>
<td>Gordon E. Dickerson</td>
<td>0.30</td>
<td>0.70</td>
<td></td>
<td>USDA Animal Breeding and Genetics</td>
<td></td>
</tr>
<tr>
<td>Franklin E. Eldridge</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>Dairy Breeding</td>
<td></td>
</tr>
<tr>
<td>Calvin L. Ferrell</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td>USDA Nutrition</td>
<td></td>
</tr>
<tr>
<td>Johnny J. Ford</td>
<td>1.00</td>
<td></td>
<td></td>
<td>USDA Physiology</td>
<td></td>
</tr>
<tr>
<td>Earl W. Gleaves</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>Poultry Production</td>
<td></td>
</tr>
<tr>
<td>Keith E. Gregory</td>
<td>0.70</td>
<td></td>
<td>0.30</td>
<td>USDA Breeding</td>
<td></td>
</tr>
<tr>
<td>Paul Q. Guyer</td>
<td>0.05</td>
<td>0.75</td>
<td>0.20</td>
<td>Beef Nutrition</td>
<td></td>
</tr>
<tr>
<td>Thomas G. Jenkins</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>USDA Breeding</td>
<td></td>
</tr>
<tr>
<td>Rodger K. Johnson</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>Swine Breeding</td>
<td></td>
</tr>
<tr>
<td>Steven J. Jones</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>Jeffrey T. Keown</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>Dairy Management</td>
<td></td>
</tr>
<tr>
<td>James E. Kinder</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>Beef Physiology</td>
<td></td>
</tr>
<tr>
<td>Roger J. Kittok</td>
<td>0.75</td>
<td></td>
<td>0.25</td>
<td>Reproductive Physiology</td>
<td></td>
</tr>
<tr>
<td>Terry J. Klopfenstein</td>
<td>0.56</td>
<td>0.44</td>
<td></td>
<td>Ruminant Nutrition</td>
<td></td>
</tr>
<tr>
<td>Robert M. Koch</td>
<td>1.00</td>
<td></td>
<td></td>
<td>Research Geneticist</td>
<td></td>
</tr>
<tr>
<td>Larry L. Larson</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>Dairy Physiology</td>
<td></td>
</tr>
<tr>
<td>Austin J. Lewis</td>
<td>0.70</td>
<td></td>
<td>0.30</td>
<td>Swine Nutrition</td>
<td></td>
</tr>
<tr>
<td>Kreg A. Leymaster</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>USDA Breeding</td>
<td></td>
</tr>
<tr>
<td>Roger Mandigo</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>Merlyn K. Nielsen</td>
<td>0.40</td>
<td>0.39</td>
<td>0.21</td>
<td>USDA Nutrition</td>
<td></td>
</tr>
<tr>
<td>Robert R. Oltjen</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>Beef Breeding</td>
<td></td>
</tr>
<tr>
<td>Foster G. Owen</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>USDA Nutrition</td>
<td></td>
</tr>
<tr>
<td>Ernest R. Peo, Jr.</td>
<td>0.40</td>
<td>0.39</td>
<td>0.21</td>
<td>Dairy Nutrition</td>
<td></td>
</tr>
<tr>
<td>Wilson G. Pond</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td>Swine Nutrition</td>
<td></td>
</tr>
<tr>
<td>Bruce D. Schanbacher</td>
<td>0.30</td>
<td>0.70</td>
<td></td>
<td>USDA Nutrition</td>
<td></td>
</tr>
<tr>
<td>Steven C. Seideman</td>
<td>0.60</td>
<td></td>
<td>0.40</td>
<td>USDA Physiology</td>
<td></td>
</tr>
<tr>
<td>Rick A. Stock</td>
<td>0.48</td>
<td>0.52</td>
<td></td>
<td>USDA Meats</td>
<td></td>
</tr>
<tr>
<td>Thomas W. Sullivan</td>
<td>0.48</td>
<td>0.52</td>
<td></td>
<td>Beef Nutrition</td>
<td></td>
</tr>
<tr>
<td>John K. Ward</td>
<td>0.48</td>
<td>0.52</td>
<td></td>
<td>USDA Nutrition</td>
<td></td>
</tr>
<tr>
<td>Thomas H. Wise</td>
<td>0.48</td>
<td>0.52</td>
<td></td>
<td>USDA Physiology</td>
<td></td>
</tr>
<tr>
<td>Jong-Tseng Yen</td>
<td>0.48</td>
<td>0.52</td>
<td></td>
<td>USDA Nutrition</td>
<td></td>
</tr>
<tr>
<td>Lawrence D. Young</td>
<td>0.48</td>
<td>0.52</td>
<td></td>
<td>USDA Breeding</td>
<td></td>
</tr>
<tr>
<td>Dwane R. Zimmerman</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td>USDA Breeding</td>
<td></td>
</tr>
<tr>
<td>Rank</td>
<td>Rsch</td>
<td>Ext</td>
<td>Tch</td>
<td>Other</td>
<td>Area of Responsibility</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>Biometrics and Information Systems Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilfred M. Schutz</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.70</td>
<td>Head</td>
</tr>
<tr>
<td>James G. Emal</td>
<td>0.25</td>
<td>0.75</td>
<td>0.10</td>
<td>0.10</td>
<td>Microcomputer Specialist</td>
</tr>
<tr>
<td>Stephen Lowry</td>
<td>0.35</td>
<td>0.65</td>
<td>0.10</td>
<td>0.10</td>
<td>Statistical Consultant</td>
</tr>
<tr>
<td>Robert F. Mumm</td>
<td>0.67</td>
<td>0.33</td>
<td>0.10</td>
<td>0.10</td>
<td>Statistical Consultant</td>
</tr>
<tr>
<td>Anne Parkhurst</td>
<td>0.70</td>
<td>0.30</td>
<td>0.10</td>
<td>0.10</td>
<td>Statistical Consultant</td>
</tr>
<tr>
<td>Ronald L. Roeber</td>
<td>0.25</td>
<td>0.75</td>
<td>0.10</td>
<td>0.10</td>
<td>Microcomputer Specialist</td>
</tr>
<tr>
<td>Walter W. Stroup</td>
<td>0.35</td>
<td>0.65</td>
<td>0.10</td>
<td>0.10</td>
<td>Statistical Consultant</td>
</tr>
<tr>
<td>Center for Agricultural Meteorology and Climatology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norman Rosenberg</td>
<td>0.90</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
<td>Director</td>
</tr>
<tr>
<td>Blaine Blad</td>
<td>0.78</td>
<td>0.22</td>
<td>0.10</td>
<td>0.02</td>
<td>Agricultural Meteorology</td>
</tr>
<tr>
<td>Kenneth Hubbard</td>
<td>0.25</td>
<td>0.25</td>
<td>0.10</td>
<td>0.05</td>
<td>Ag. Climatology & Conservation and Survey</td>
</tr>
<tr>
<td>Shashi Verma</td>
<td>0.77</td>
<td>0.23</td>
<td>0.10</td>
<td>0.05</td>
<td>Agricultural Meteorology</td>
</tr>
<tr>
<td>Albert Weiss</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Agricultural Meteorology</td>
</tr>
<tr>
<td>Consumer Science and Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gwendolyn Newkirk</td>
<td>0.17</td>
<td>0.12</td>
<td>0.05</td>
<td>0.71</td>
<td>Chairman</td>
</tr>
<tr>
<td>E. Raedene Combs</td>
<td>0.50</td>
<td></td>
<td></td>
<td>0.50</td>
<td>Family Economics and Housing</td>
</tr>
<tr>
<td>Jean Memken</td>
<td>0.37</td>
<td></td>
<td></td>
<td>0.63</td>
<td>Housing</td>
</tr>
<tr>
<td>Entomology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roger E. Gold</td>
<td>0.55</td>
<td>0.26</td>
<td>0.19</td>
<td></td>
<td>Head, Urban Entomology</td>
</tr>
<tr>
<td>Mary Ellen Dix</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
<td>USDA Shelterbelt Insects</td>
</tr>
<tr>
<td>Thomas O. Holtzer</td>
<td>0.80</td>
<td>0.20</td>
<td>0.10</td>
<td></td>
<td>Crop Insects and Spidermites</td>
</tr>
<tr>
<td>Tony Joern</td>
<td>0.25</td>
<td>0.75</td>
<td>0.10</td>
<td></td>
<td>USDA Insect Ecology</td>
</tr>
<tr>
<td>J. Ackland Jones</td>
<td>0.25</td>
<td>0.75</td>
<td>0.10</td>
<td></td>
<td>USDA Shelterbelt Insects</td>
</tr>
<tr>
<td>S. Dean Kindler</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
<td>USDA Forage Crops Insects</td>
</tr>
<tr>
<td>George R. Manglitz</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
<td>USDA Forage Insect Investigations</td>
</tr>
<tr>
<td>Z B Mayo</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
<td>USDA Cyto; genetics of Greenbugs</td>
</tr>
<tr>
<td>Lance J. Meinke</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
<td>USDA Corn Insects</td>
</tr>
<tr>
<td>James J. Petersen</td>
<td>0.20</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
<td>USDA Livestock Entomology</td>
</tr>
<tr>
<td>Kenneth P. Prues</td>
<td>0.37</td>
<td>0.75</td>
<td>0.10</td>
<td></td>
<td>USDA Aquatic Insects</td>
</tr>
<tr>
<td>Brett C. Ratcliffe</td>
<td>0.63</td>
<td>0.37</td>
<td>0.10</td>
<td>1.00</td>
<td>USDA Insect Curator</td>
</tr>
<tr>
<td>Gustave D. Thomas</td>
<td>0.35</td>
<td>0.65</td>
<td>0.10</td>
<td>0.05</td>
<td>USDA Livestock Entomology</td>
</tr>
<tr>
<td>Environmental Programs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shripat T. Kamble</td>
<td>0.25</td>
<td>0.75</td>
<td>0.10</td>
<td></td>
<td>Environmental Entomology</td>
</tr>
<tr>
<td>Food Science and Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowell D. Satterlee</td>
<td>0.40</td>
<td>0.34</td>
<td>0.26</td>
<td></td>
<td>Head, Food Peptide Chemistry</td>
</tr>
<tr>
<td>Charles E. Walker</td>
<td>0.40</td>
<td>0.34</td>
<td>0.26</td>
<td></td>
<td>Interim Head, Cereal Technology</td>
</tr>
<tr>
<td>R. C. Anantheswaran</td>
<td>0.80</td>
<td>0.05</td>
<td>0.10</td>
<td>0.20</td>
<td>Food Engineering</td>
</tr>
<tr>
<td>Lloyd B. Bullerman</td>
<td>0.50</td>
<td>0.10</td>
<td>0.40</td>
<td></td>
<td>Food Microbiology</td>
</tr>
<tr>
<td>Susan B. Cuppett</td>
<td>0.60</td>
<td>0.40</td>
<td>0.20</td>
<td></td>
<td>Food Lipids</td>
</tr>
<tr>
<td>Glenn W. Froning</td>
<td>0.60</td>
<td>0.40</td>
<td>0.20</td>
<td></td>
<td>Poultry Products</td>
</tr>
<tr>
<td>Michael B. Liewen</td>
<td>0.30</td>
<td>0.70</td>
<td>0.20</td>
<td></td>
<td>Food Microbiology</td>
</tr>
<tr>
<td>R. Burt Maxcy</td>
<td>0.60</td>
<td>0.40</td>
<td>0.20</td>
<td></td>
<td>Food Microbiology</td>
</tr>
<tr>
<td>John Rupnow</td>
<td>0.39</td>
<td>0.61</td>
<td>0.10</td>
<td></td>
<td>Food Biochemistry</td>
</tr>
<tr>
<td>Khem M. Shahani</td>
<td>0.45</td>
<td>0.05</td>
<td>0.10</td>
<td></td>
<td>Food Chemistry</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Rank</th>
<th>Area of Responsibility</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Science and Technology</td>
<td></td>
<td>Randy L. Wehling Assistant Professor 0.50 0.30 0.20 Food Processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Michael G. Zeece Assistant Professor 0.60 0.40 Food Protein Chemistry</td>
</tr>
<tr>
<td>Forestry, Fisheries and Wildlife</td>
<td></td>
<td>Gary L. Hergenrader Professor 0.05 0.07 0.15 0.73 Head</td>
</tr>
<tr>
<td></td>
<td></td>
<td>James R. Brandle Associate Professor 0.90 0.10 Wildlife</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ronald M. Case Professor 0.30 0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stephen G. Ernst 2 Assistant Professor 0.75 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mark O. Harrell Associate Professor 0.15 0.85 Nebraska Forest Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ronnie J. Johnson Associate Professor 0.31 0.43 Wildlife</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Michael R. Kuhns 2 Assistant Professor 0.25 0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edward J. Peters Associate Professor 0.30 0.70 Wildlife</td>
</tr>
<tr>
<td></td>
<td></td>
<td>David F. VanHaverbeke Professor USDA Forestry</td>
</tr>
<tr>
<td>Horticulture</td>
<td></td>
<td>Roger D. Uhlinger Professor 0.43 0.33 0.24 Head</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dermot P. Coyne Professor 0.96 0.04 Vegetable Breeding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jay B. Fitzgerald Associate Professor 0.21 0.24 0.55 Ornamentals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>William A. Gustafson Associate Professor 0.25 0.75 Fruit and Nut Crops</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edward J. Kinbacher Professor 0.35 0.65 Turf Physiology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ralph E. Neild Professor 0.39 0.56 0.05 Horticulture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ellen T. Paparozzi Assistant Professor 0.35 0.65 Ornamentals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terrance P. Riordan Associate Professor 0.89 0.11 Turf Breeding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sotero S. Salac Associate Professor 0.81 0.19 Ornamentals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robert C. Shearman Associate Professor 0.59 0.25 0.16 Turf</td>
</tr>
<tr>
<td>Human Development and the Family</td>
<td></td>
<td>Helen Sulek 2 Associate Professor 0.25 0.10 0.65 Interim Chairman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John D. DeFrain Associate Professor 0.50 0.50 Rural Family Crisis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Violet Kalyan-Masih Professor 0.59 0.41 Cognitive Development (Piaget)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patricia Knaub Associate Professor 0.27 0.73 Dual Career Families - Remarriage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lois D. Schwab Professor 0.75 0.25 Rehabilitation of Handicapped Women</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John C. Woodward Professor 0.48 0.52 Loneliness and Solitude</td>
</tr>
<tr>
<td>Human Nutrition and Food Service Management</td>
<td></td>
<td>Hazel Fox Professor 0.50 0.10 0.40 Chairman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nancy M. Betts Assistant Professor 0.35 0.65 Nutrition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anna M. Brenner Associate Professor 0.25 0.75 Food Service Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Audrey L. Hay Assistant Professor 0.30 0.70 Food Service Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Constance Kies Professor 0.70 0.30 Nutrition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phyllis Staats Assistant Professor 0.32 0.68 Foods</td>
</tr>
<tr>
<td>Northeast Research and Extension Center</td>
<td></td>
<td>Donald B. Hudman 2 Professor 0.23 0.69 Director</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cal J. Ward 1 Professor 0.23 0.69 0.08 Director</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John F. Witkowski Associate Professor 0.50 0.50 Interim Director, Entomology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Michael C. Brumm Associate Professor 0.50 0.50 Animal Science</td>
</tr>
</tbody>
</table>
Faculty

(Northeast Research and Extension Center,...)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Rsch</th>
<th>Ext</th>
<th>Tch</th>
<th>Other</th>
<th>Area of Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>William L. Kranz</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td>Ag. Engineering</td>
</tr>
<tr>
<td>Terry L. Mader</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Animal Science</td>
</tr>
<tr>
<td>Russell S. Moomaw</td>
<td>0.49</td>
<td>0.51</td>
<td></td>
<td></td>
<td>Agronomy</td>
</tr>
<tr>
<td>Charles Shapiro</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy</td>
</tr>
<tr>
<td>David P. Shelton</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Ag. Engineering</td>
</tr>
</tbody>
</table>

Panhandle Research and Extension Center

<table>
<thead>
<tr>
<th>Rank</th>
<th>Rsch</th>
<th>Ext</th>
<th>Tch</th>
<th>Other</th>
<th>Area of Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert D. Fritschen</td>
<td>0.42</td>
<td>0.50</td>
<td></td>
<td>0.08</td>
<td>Director</td>
</tr>
<tr>
<td>Burton A. Weichenthal</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Associate Director</td>
</tr>
<tr>
<td>Frank N. Anderson</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy</td>
</tr>
<tr>
<td>Dale M. Groteleuschen</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Diagnostic Veterinary Science</td>
</tr>
<tr>
<td>Arthur F. Hagen</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td>Entomology</td>
</tr>
<tr>
<td>John L. Havlin</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy</td>
</tr>
<tr>
<td>Eric D. Kerr</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Plant Pathology</td>
</tr>
<tr>
<td>Lenis Nelson</td>
<td>0.75</td>
<td>0.25</td>
<td></td>
<td></td>
<td>Agronomy</td>
</tr>
<tr>
<td>David S. Nuland</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td>Horticulture</td>
</tr>
<tr>
<td>Robert O’Keefe</td>
<td>0.80</td>
<td>0.20</td>
<td></td>
<td></td>
<td>Horticulture</td>
</tr>
<tr>
<td>Patrick E. Reece</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy</td>
</tr>
<tr>
<td>James G. Robb</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agricultural Economics</td>
</tr>
<tr>
<td>Ivan G. Rush</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td>Animal Science</td>
</tr>
<tr>
<td>John A. Smith</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agricultural Engineering</td>
</tr>
<tr>
<td>Albert Weiss</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Agricultural Meteorology</td>
</tr>
<tr>
<td>Robert G. Wilson</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy</td>
</tr>
<tr>
<td>C. Dean Yonts</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agricultural Engineering</td>
</tr>
</tbody>
</table>

Plant Pathology

<table>
<thead>
<tr>
<th>Rank</th>
<th>Rsch</th>
<th>Ext</th>
<th>Tch</th>
<th>Other</th>
<th>Area of Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anne K. Vidaver</td>
<td>0.75</td>
<td>0.15</td>
<td>0.10</td>
<td></td>
<td>Head</td>
</tr>
<tr>
<td>Michael G. Boosalis</td>
<td>0.66</td>
<td>0.19</td>
<td>0.15</td>
<td></td>
<td>Root Diseases and Mycorrhizae</td>
</tr>
<tr>
<td>Myron K. Brakke</td>
<td>0.85</td>
<td></td>
<td>0.15</td>
<td></td>
<td>USDA Virus Diseases</td>
</tr>
<tr>
<td>Stan G. Jensen</td>
<td>0.85</td>
<td></td>
<td>0.15</td>
<td></td>
<td>USDA Corn and Sorghum Diseases</td>
</tr>
<tr>
<td>Leslie C. Lane</td>
<td>0.85</td>
<td></td>
<td>0.15</td>
<td></td>
<td>USDA Virus Diseases</td>
</tr>
<tr>
<td>Willem G. Langenberg</td>
<td>0.80</td>
<td>0.20</td>
<td></td>
<td></td>
<td>USDA Corn and Sorghum Stalk Rot</td>
</tr>
<tr>
<td>James Partridge</td>
<td>0.85</td>
<td>0.15</td>
<td></td>
<td></td>
<td>USDA Tree Diseases</td>
</tr>
<tr>
<td>Glenn W. Peterson</td>
<td>0.85</td>
<td>0.15</td>
<td></td>
<td></td>
<td>Nematology</td>
</tr>
<tr>
<td>Thomas O. Powers</td>
<td>0.90</td>
<td>0.10</td>
<td></td>
<td></td>
<td>USDA Tree Diseases</td>
</tr>
<tr>
<td>Jerry W. Riffle</td>
<td>0.85</td>
<td>0.15</td>
<td></td>
<td></td>
<td>Corn and Sorghum Diseases</td>
</tr>
<tr>
<td>Gurmel S. Sidhu</td>
<td>0.90</td>
<td>0.10</td>
<td></td>
<td></td>
<td>Epidemiology of Vegetable Diseases</td>
</tr>
<tr>
<td>James R. Steadman</td>
<td>0.90</td>
<td>0.10</td>
<td></td>
<td></td>
<td>Microbial Physiology</td>
</tr>
<tr>
<td>James L. Van Etten</td>
<td>0.90</td>
<td>0.10</td>
<td></td>
<td></td>
<td>Small Grains, Turf and Alfalfa</td>
</tr>
<tr>
<td>John E. Watkins</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

South Central Research and Extension Center

<table>
<thead>
<tr>
<th>Rank</th>
<th>Rsch</th>
<th>Ext</th>
<th>Tch</th>
<th>Other</th>
<th>Area of Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles L. Stonecipher</td>
<td>0.14</td>
<td>0.78</td>
<td></td>
<td>0.08</td>
<td>Director</td>
</tr>
<tr>
<td>Benjamin L. Doupink, Jr.</td>
<td>0.50</td>
<td>0.25</td>
<td></td>
<td>0.25</td>
<td>Plant Pathology</td>
</tr>
<tr>
<td>Dean E. Eisenhauer</td>
<td>0.49</td>
<td>0.51</td>
<td></td>
<td></td>
<td>Agricultural Engineering</td>
</tr>
<tr>
<td>Roger Elmore</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy</td>
</tr>
<tr>
<td>Richard Ferguson</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy</td>
</tr>
<tr>
<td>Donald G. Levis</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td>Animal Science</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Rsch</th>
<th>Ext</th>
<th>Tch</th>
<th>Other</th>
<th>Area of Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Southeast Research and Extension Center....)</td>
</tr>
<tr>
<td>Leroy Peters</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Entomology</td>
</tr>
<tr>
<td>Fred W. Roeth</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy</td>
</tr>
<tr>
<td>Roger Selley</td>
<td>Associate Professor</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td>Agricultural Economics</td>
</tr>
<tr>
<td>Loyd L. Young</td>
<td>Professor</td>
<td>0.05</td>
<td>0.87</td>
<td>0.08</td>
<td></td>
<td>Director</td>
</tr>
<tr>
<td>Southeast Research and Extension Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Textiles, Clothing and Design</td>
</tr>
<tr>
<td>Joan Laughlin</td>
<td>Professor</td>
<td>0.37</td>
<td>0.11</td>
<td>0.52</td>
<td></td>
<td>Chairman, Textiles</td>
</tr>
<tr>
<td>Audrey Newton</td>
<td>Professor</td>
<td>0.17</td>
<td></td>
<td>0.33</td>
<td></td>
<td>Clothing for Special Needs</td>
</tr>
<tr>
<td>Veterinary Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Southeast Research and Extension Center....)</td>
</tr>
<tr>
<td>John A. Schmitz</td>
<td>Professor</td>
<td>0.65</td>
<td>0.15</td>
<td>0.20</td>
<td></td>
<td>Head</td>
</tr>
<tr>
<td>Gary A. Anderson</td>
<td>Assistant Professor</td>
<td>0.90</td>
<td>0.10</td>
<td></td>
<td></td>
<td>Research Pathology</td>
</tr>
<tr>
<td>Edgar Clemens</td>
<td>Associate Professor</td>
<td>0.50</td>
<td></td>
<td>0.50</td>
<td></td>
<td>Physiology</td>
</tr>
<tr>
<td>Earl O. Dickinson</td>
<td>Professor</td>
<td>0.75</td>
<td>0.25</td>
<td></td>
<td></td>
<td>Diagnostic/Research Pathology</td>
</tr>
<tr>
<td>Alan R. Doster</td>
<td>Associate Professor</td>
<td>0.93</td>
<td>0.07</td>
<td></td>
<td></td>
<td>Diagnostic Pathology</td>
</tr>
<tr>
<td>Gerald E. Duhame1</td>
<td>Assistant Professor</td>
<td>0.85</td>
<td>0.15</td>
<td></td>
<td></td>
<td>Diagnostic/Research Pathology</td>
</tr>
<tr>
<td>E. Denis Erickson</td>
<td>Professor</td>
<td>0.90</td>
<td>0.10</td>
<td></td>
<td></td>
<td>Diagnostic Bacteriology</td>
</tr>
<tr>
<td>Donald L. Ferguson</td>
<td>Professor</td>
<td>0.86</td>
<td>0.14</td>
<td></td>
<td></td>
<td>Parasitology</td>
</tr>
<tr>
<td>Merwin L. Frey</td>
<td>Professor</td>
<td>0.69</td>
<td>0.06</td>
<td></td>
<td></td>
<td>Research Virology</td>
</tr>
<tr>
<td>Alex Hogg</td>
<td>Professor</td>
<td>0.07</td>
<td>0.88</td>
<td>0.05</td>
<td></td>
<td>Swine Diseases</td>
</tr>
<tr>
<td>Clayton L. Kelling</td>
<td>Associate Professor</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td>Research Virology</td>
</tr>
<tr>
<td>Rodney A. Moxley</td>
<td>Assistant Professor</td>
<td>0.93</td>
<td>0.07</td>
<td></td>
<td></td>
<td>Diagnostic/Research Pathology</td>
</tr>
<tr>
<td>Rebecca Nicholson2</td>
<td>Instructor</td>
<td>0.40</td>
<td>0.60</td>
<td></td>
<td></td>
<td>Physiology</td>
</tr>
<tr>
<td>Fernando Osorio</td>
<td>Assistant Professor</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Diagnostic/Research Pathology</td>
</tr>
<tr>
<td>Marvin B. Rhodes</td>
<td>Professor</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Immunoochemistry</td>
</tr>
<tr>
<td>Duane N. Rice2</td>
<td>Associate Professor</td>
<td>0.07</td>
<td>0.87</td>
<td>0.06</td>
<td></td>
<td>Dairy and Beef Cattle Diseases</td>
</tr>
<tr>
<td>Norman R. Schneider</td>
<td>Associate Professor</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Diagnostic/Research Toxicology</td>
</tr>
<tr>
<td>S. Srikumaran</td>
<td>Assistant Professor</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Research Immunology</td>
</tr>
<tr>
<td>R. Gene White</td>
<td>Professor</td>
<td>0.10</td>
<td>0.25</td>
<td>0.15</td>
<td>0.50</td>
<td>Beef Cattle Diseases</td>
</tr>
<tr>
<td>West Central Research and Extension Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Southeast Research and Extension Center....)</td>
</tr>
<tr>
<td>Lavon J. Sumption</td>
<td>Professor</td>
<td>0.46</td>
<td>0.47</td>
<td>0.07</td>
<td></td>
<td>Director</td>
</tr>
<tr>
<td>Donald B. Hudman1</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Associate Director</td>
</tr>
<tr>
<td>John B. Campbell</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Entomology (Livestock Insects)</td>
</tr>
<tr>
<td>Donald C. Clanton</td>
<td>Professor</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Animal Science (Beef)</td>
</tr>
<tr>
<td>Richard Clark2</td>
<td>Associate Professor</td>
<td>0.25</td>
<td>0.75</td>
<td></td>
<td></td>
<td>Agricultural Economics</td>
</tr>
<tr>
<td>David M. Danielson</td>
<td>Professor</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Animal Science (Swine)</td>
</tr>
<tr>
<td>Gene H. Deutscher</td>
<td>Associate Professor</td>
<td>0.28</td>
<td>0.72</td>
<td></td>
<td></td>
<td>Animal Science (Beef)</td>
</tr>
<tr>
<td>Philip H. Grabouski1</td>
<td>Assistant Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy (Crops)</td>
</tr>
<tr>
<td>Gary W. Hergert</td>
<td>Associate Professor</td>
<td>0.40</td>
<td>0.60</td>
<td></td>
<td></td>
<td>Agronomy (Soil Science)</td>
</tr>
<tr>
<td>Jerre Johnson</td>
<td>Associate Professor</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Veterinary Science</td>
</tr>
<tr>
<td>Norman L. Klocke</td>
<td>Assistant Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agricultural Engineering</td>
</tr>
<tr>
<td>Dale T. Lindgren</td>
<td>Associate Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Horticulture</td>
</tr>
<tr>
<td>James T. Nichols</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy (Range Management)</td>
</tr>
<tr>
<td>Paul T. Nordquist</td>
<td>Associate Professor</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>Agronomy (Sorghum Breeding)</td>
</tr>
<tr>
<td>Gail A. Wicks</td>
<td>Professor</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
<td>Agronomy (Weed Science)</td>
</tr>
</tbody>
</table>
Research Highlights

100th Annual Report
University of Nebraska
Agricultural Research Division
Research Highlights

Agricultural Biochemistry

Nitrogen fixation is a process by which nitrogen is taken from the air and reduced to ammonia, a form of nitrogen usable by plants. Legumes have root nodules which incapsulate bacteria to perform nitrogen fixation. In effect, the leguminous plant supplies the bacteria with nutrients and oxygen and the bacteria reciprocates by providing the plant with nitrogen fertilizer. Oxygen inhibits nitrogen fixation by the bacteria so free oxygen must be excluded in nodules. However, the bacteria need oxygen to live and provide the energy needed to produce ammonia. Legumes produce a molecule called leghemoglobin. It resembles hemoglobin which is the red, oxygen-binding protein in red blood cells. Leghemoglobin, which is also red, binds oxygen within nodules. This provides a store of oxygen needed by the bacteria and keeps the oxygen in a bound, rather than a free state.

In one agricultural biochemistry project, factors that affect the efficiency of oxygen binding to leghemoglobin were investigated. The efficiency of this process affects the efficiency of the nitrogen fixation process. If these processes are understood, it seems possible to find ways to increase the amount of nitrogen fixed by legumes in the field.

As soybean plants approach maturity, their root nodules undergo senescence and the nodules stop fixing nitrogen before the plant dies. If the nodules could be induced to continue fixing nitrogen, two possible advantages could accrue. The excess nitrogen might increase crop yield or be left as a crop residue that would reduce the amount of fertilizer needed for a crop of corn or sorghum that might follow.

Another project in the Department of Agricultural Biochemistry is aimed at determining conditions that precipitate nodule senescence. By understanding these conditions it may be possible to delay nodule senescence, which if only for a day or two, could yield a significant economic benefit.

Agricultural Economics

The use of cash flow analysis as a tool in credit decisions was examined. Inflation was identified as causing short-run cash deficits for many firms that have borrowed funds for capital investments. However, from the long-run point of view, these firms could be making substantial progress on lowering their debt levels and building their earning capacity. The inflation problem combined with other weaknesses inherent in short-run cash flow analysis suggest that exclusive reliance on the cash flow statement alone in evaluating investments would result in errors in the selection of the most appropriate investment alternative and/or the most credit-worthy borrowers. Long-run investment decisions should be judged on long-run performance criteria without the distortion of inflation in order to select the most appropriate investment alternative.

The interaction between the feed grain and livestock subsectors in Nebraska was compared to the rest of the United States. Several implications relative to the impact of feed grain policy were disclosed. It was demonstrated that increases in the export demand for grains due to national farm policies will increase cattle placements in commercial feedlots, but result in relatively lower placements in farmer operated feedlots. A greater financial impact occurs on ranchers than on cattle feeders when grain exports increase. The rancher suffers a decline in the value of the cattle breeding resources, in particular the cow herd, and also suffers a lower value for rangeland. Adjustments in Nebraska due to increased exports of grain differ somewhat from those which occur in other regions of the United States due in part to the important role of ranching in the state.

Agricultural Engineering

Degradation of groundwater quality due to agricultural practices is receiving much attention in the United States and internationally. The buildup of nitrate in the groundwater is a primary concern. The Agricultural Engineering Department has had a long-standing program regarding irrigation and nitrogen management with the objective of producing high crop yields while minimizing percolation of nitrate into the groundwater. Research has evaluated the effects of irrigation scheduling on the fate of nitrogen to illustrate the importance of nitrate in the groundwater as a source of nitrogen. Field research has been augmented with computer models to describe how nitrate moves in the soil and how irrigation and nitrogen management affect the rate of nitrate leaching. Results show that some nitrate leaching is inevitable on sandy soils, but that management can be fine-tuned to minimize nitrate losses and still produce high yields. Current research is underway to develop methods to schedule nitrogen applications to match crop needs, to study the interaction of nitrogen and water stress for areas of the state faced with limited irrigation water, and to develop methods to predict the rate of accumulation of nitrate in the groundwater. We will also ex-
Research Highlights

Microprocessor-based, electronic image processing is providing a new and rapid means of obtaining basic information concerning plant growth and development. A dual television camera system has been tested as a means of acquiring three-dimensional plant architectural measurements, using principles of stereoscopic photogrammetry. These nondestructive measurements of the canopy include *in situ* leaf area, stem length, stem diameter, and leaf orientation angles. These data are used to build a composite picture of canopy structure and light intercepting ability. Other imagery applications include rapid measurement of surface residue levels as a result of various tillage operations from carefully controlled, still photography. Still frames are automatically analyzed by special software written for a personal computer equipped with a television camera and special interface card. With this system, more than 200 residue frames can be reliably analyzed in an hour. These data will help to evaluate erosion potentials as a result of various tillage operations.

Agronomy

The Nebraska Sandhills (52,000 km²) is the largest dune formation in the western hemisphere. Topography is rolling, and the sandy soils have low organic matter and high infiltration rates. Conversion of the tallgrass prairie to irrigated cropland accelerated after the introduction of center pivot systems. The Ogallala aquifer provides adequate water, but poor site selection and increasing production costs have resulted in abandonments. Revegetation of these critical areas represents a unique challenge.

Germinator, greenhouse, and field trials were initiated in 1982 and are continuing today. Sites near Milburn and Ainsworth have been used to evaluate soil characteristics of abandoned sandy cropland, seeding mixtures of native grasses and monocultures of native and introduced grasses; seeding rates; seedbed preparation including clean till, stubble and seeded cover crop; types of drills; aerial seeding of coated and uncoated seeds; and supplemental water during the seeding year. Liming did not affect seedling density or frequency in field trials. Greenhouse studies determined that mycorrhizae populations at the research site were sufficient to provide adequate infection for grass establishment. Weed competition, particularly sandbur on dryland sites, was a major factor influencing seedling establishment. Germination studies documented that sandbur plants exhibited an allelopathic effect inhibiting germination and radicle elongation of seeded species. This suggested that pre-emergent herbicides offered sandbur control; however, herbicide antidotes would have to be used to protect the seeded species. Selected combinations of pre-emergent herbicides and antidotes have resulted in successful seedling establishment in greenhouse trials. Research to date has identified several revegetation practices that can provide successful stand establishment within various management, economic, and ecological strategies.

(continued)
The essence of western Nebraska research is to diversify farming by introducing grain sorghum (and pearl millet later) into a sorghum-fallow-wheat system. This permits two crops in three years compared to the two wheat crops in four years in the traditional wheat-fallow system. The first cycle of yield testing under several tillage systems gave combined wheat and sorghum yields over three years which are equal to or exceed combined wheat yields over a four-year period. Water use per pound of grain produced was clearly superior in the first cycle of the three-year system. Long-term feasibility of this system will have to be evaluated over several years along with economic analyses of tillage system costs plus wheat and sorghum grain prices.

The Agronomy Department is conducting research to reclaim former pivot sites in the Sandhills with perennial grasses.

Adaptation of grain sorghum to the Panhandle area has resulted from extensive commercial and university screening of sorghums to fit the dry, cool night climate of the Sidney area. Breeding germplasm imports from cool, high elevations in Mexico have been invaluable. About 600 new food quality hybrids were tested this year. Smaller tests the last two years were encouraging. This drought stress research has required testing for tolerance to cool night temperatures.

A large drought screening effort for central and eastern Nebraska has evolved over the last 10 years.

The screening technique is based on basic physiology research into the timing and nature of heat and drought induced floret damage in sorghum. The applied screening was mostly in western Kansas. Results have been unusually encouraging. A new line is yielding twice as much as an old standard, CK 60, under stress at Garden City, Kansas. The first release of stress-resistant germplasm will be in 1987.

Research is being conducted to assess the effects of reduced tillage on herbicide availability and dissipation in soil. Research has emphasized situations where these practices have been recently introduced. In these instances the presence of crop residue on the soil surface and changes in moisture and temperature status of the underlying soil have the greatest impact on herbicide availability and dissipation. Among the herbicides under study are atrazine, cyanazine, metribuzin, alachlor and metoachlor, which are commonly used in corn or soybean production.

Animal Science

Poor sow productivity caused by small litters continues to be a problem for swine producers. Selection for larger litters has been relatively ineffective in both commercial producer and research herds because number born per litter is a lowly heritable trait. Research by the Animal Science Department has shown that number born per litter is determined primarily by the sow’s ovulation rate and uterine environment. These traits are negatively related, both genetically and environmentally. A genetic line was selected to have an ovulation rate 3.5 to 4 eggs higher than most swine stocks. However, number of pigs born increased very little due to higher fetal mortality in the high ovulating line. The line was then selected for litter size at birth which, in this stock, means it was selected for higher embryo and fetal survival rate. After seven generations, litter size is about one pig per litter more than in high ovulation rate swine selected randomly. This is one of the first examples that litter size can be improved by selection and leads to optimism that reproductive efficiency of the sow herd can be improved genetically.

Much attention is being focused on reducing the fat content of red meat to improve consumer acceptance (continued)
Research Highlights

(Animal Science....)

and to avoid wasting feed for deposition of unwanted fat in meat animals. Two recent experiments were conducted at the U.S. Meat Animal Research Center at Clay Center by USDA and University of Nebraska scientists to examine the effect on feed costs which can be expected from genetic reduction of body fat content in beef cattle and sheep. The cattle experiment involved measurement of fasting body heat output (maintenance) and body chemical composition at birth, 3, 7, 10 and 14 months of age and feed consumed from 7 to 14 months in beef heifers of three biological types (Hereford, Charolais and Simmental). Similar measurements were studied in non-pregnant, non-lactating ewes of seven biological types, after feeding at either full or maintenance levels for six weeks. In both experiments, feed required for maintenance was closely associated with weight of lean tissue, especially of visceral organs, but not with body fat. Also, feed energy above maintenance required per pound of protein gain was more than twice that for fat gain. However, feed per pound of lean tissue gain was still much less than for fat gain because of the high water content (75 percent) in lean tissues compared with fat. These results indicate that genetic reduction in body fat in cattle or sheep will increase maintenance requirements per unit of liveweight in both adult and growing animals, but reduce the above-maintenance feed costs per pound of live weight gain in market animals. Thus, fatter genetic types are more efficient as female breeder replacements and use of leaner sire types of market animals (but not replacement females) will permit the greatest reduction in total feed cost per pound of lean beef or lamb production. However, it will not reduce feed cost per pound of liveweight appreciably. Market prices for slaughter animals must favor higher lean content to provide the economic incentive for reducing fatness in beef and lamb production.

— • —

In order for ruminants (cattle and sheep) to make maximum use of Nebraska’s forage resources, it is sometimes necessary to supply additional dietary energy as a supplement to forages. This has usually been in the form of grain. The grain adds energy but the starch in the grain depresses the digestion of the forage fiber. Research has recently given an answer to the dilemma. Soybean hulls, the seed coat which is removed in the processing plant before the oil is extracted, are almost all fiber. Unlike forage fibers, soyhull fiber is almost completely digested by ruminants. Corn bran, produced in the wet milling of corn (corn sweeteners and alcohol are the primary products), has similar characteristics. These two highly digestible fibers can be better energy supplements than grain because there is no negative effect on the fiber digestion of the forage. In addition, over-consumption does not create problems often observed when animals overconsume supplemented grain. Feeding trials have shown that soyhulls and corn bran are at least equal to grain in value as energy supplements to forage. This technology has developed a needed market for these byproducts and, at the same time, provided a safer and more economical energy supplement for beef cattle producers. High lactating dairy cows receive substantial grain supplements to supply energy for milk production. High grain intake reduces fiber digestion and can cause dairy cows to go off feed as observed in beef cattle. An additional unique problem in dairy cows is reduced milk fat test. Recent research indicates that highly digestible fiber in soyhulls and corn bran aids in solving these problems related to high grain feeding of the dairy cow.

Biometrics and Information Systems Center

Computer procedures were developed for streamlining the analysis of data from switchback designs in dairy nutrition trials. Various procedures were also initiated to apply balanced incomplete block designs to account for experimental constraints in agricultural engineering settings. Examination of different rates and sources of repellents on rodent control in corn fields provided useful recommendations. The interactions of rates and sources with years has modified these recommendations to account for different environmental conditions.

— • —

Work continues on a regional research project designed to help researchers determine the most accurate and cost-effective experimental design and analysis strategy. Recent directions include the identification of designs which are relatively insensitive to violations of classical model assumptions and the testing of mixed model computation algorithms which exploit recent advances in computing. Joint research with animal science includes modeling the feed consumption process of ruminant animals.

Center for Agricultural Meteorology and Climatology

Several micrometeorological techniques for accurately measuring crop photosynthesis and water demand have been developed and tested at the University of Nebraska’s Agricultural Meteorology Laboratory at the Agricultural Research and Development
Center at Mead. During the past three years, employing a prototype rapid response CO₂ sensor built by the Lawrence Livermore National Laboratory, the eddy correlation technique has been used to accurately measure carbon dioxide fluxes. This is a valuable tool in developing and testing techniques for improving crop water use efficiency (photosynthesis/evapotranspiration).

These techniques are applicable not only to agricultural crops but to other types of terrestrial ecosystems as well. Such measurements are needed to reduce the uncertainties that now exist concerning the role of terrestrial ecosystems in the global carbon balance. Eddy correlation systems have already been applied to measurements of carbon dioxide flux in a deciduous forest ecosystem near Oak Ridge, Tennessee.

Data were collected to determine the attitudes of home builders and loan officers toward the construction and financing of earth-sheltered dwellings and houses with passive and active solar systems. The identity of existing institutional barriers was a major concern. Findings point to the importance of building passive solar systems, although few home builders had actually built this kind. Loan officers were about evenly split on the question of whether to support or oppose financing for earth-sheltered housing.

A laboratory procedure has been developed for determining the toxicity of various chemicals to spider mites and other small arthropods such as aphids. By using this procedure, the toxicity of 12 chemicals used for insect and mite control in corn were determined for two species of mites. The results indicate there are important differences among products and between mite species. These differences should be considered by farmers when making management decisions. A joint study with researchers from four other states tested three chemicals. It showed that there are important geographical differences in toxicity to the spider mites. Further work using the procedure is underway, including experiments with aphids. The present studies are aimed at providing insights into some of the underlying mechanisms affecting the toxicity of various chemicals.
Research Highlights

gram, a study to assess human exposure to pesticides began two years ago. It involved commercial pest control operators who treated homes with a dilution of chlordane and heptachlor for subterranean termite control. Twenty-five operators were monitored for dermal and inhalation exposure. The ambient air of 19 chemically-treated homes was monitored for up to six months to evaluate exposure to residents. This research indicated there was minimal risk in terms of acute exposure of chlordane and heptachlor to pesticide applicators and residents.

Environmental Programs

The practice of chemigation — applying agricultural chemicals in irrigation water — is becoming increasingly widespread. An interdisciplinary team of IANR scientists is in the second year of a five-year project to intensely study this practice. Simulated agricultural chemical backflows with nontoxic tracer substances are used to study chemical movement in an aquifer and evaluate various "cleanup" methods. A 160-acre field at the South Central Research and Extension Center at Clay Center has been divided into a grid of plots to study the effects of different tillage, planting, irrigation and chemical treatment practices. Another dimension of the study is an extended evaluation under laboratory and field conditions of injection and antipollution equipment systems for applying chemicals through irrigation. The study is being funded by a $1 million grant from the Burlington Northern Foundation.

Institute of Agriculture and Natural Resources scientists are continuing their collaboration with University of Nebraska Medical Center researchers under the Pesticide Impact Assessment Program. A volunteer group of 89 agricultural producers and "controls" from two east central Nebraska counties are cooperating in a project to examine "planting time flu" syndrome. UNMC researchers are using highly sensitive procedures to analyze blood samples to find evidence of pesticide exposure. In another component of the Pesticide Impact Assessment Program, 25 commercial pest control operators were monitored for dermal and inhalation exposure to chlordane and heptachlor, commonly used for subterranean termite control. This study, along with a six-month monitoring program in treated homes, indicated minimal risk of exposure to the chemicals both to the pest control operators and residents of treated homes.

Food Science and Technology

The potential for commercial mushroom production in Nebraska is being studied by the Food Processing Center as part of a project funded by the Nebraska Department of Economic Development. Work includes developing the expertise and research program necessary to give technical support to a mushroom growing and processing industry. Specific activities include identifying suitable mushroom cultures, developing procedures for potential growers, and studying ways of extending the shelf-life of fresh mushrooms. The possibility of producing mushroom tissue by fermentation is also being studied for use in processed foods.

Amaranthas are broad-leaved plants which produce an edible cereal-like grain under arid conditions and have an excellent nutritional profile. Current research on amaranthus seed includes: 1) the isolation and determination of the stability of antinutritional factors; 2) protein complementation using amaranth blends and; 3) extrusion processing of such blends to improve sensory and nutritional qualities.
Another area of recent emphasis is the development of ready-to-eat breakfast cereals from Nebraska grown grains. In one case, the Food Processing Center assisted a start-up company in developing an extruded, star-shaped cereal made from high lysine corn, which is nutritionally superior to normal corn. The product has been introduced to the market under the name “Husker All Stars.” A second project involved the potential uses of grain sorghum (milo) for American-style foods. It has resulted in development of a prototype breakfast flake code-named “Captain Milo.” It is not in commercial production, although several companies have expressed an interest in it. It also has potential in Africa, Asia, and Central America where sorghum is commonly used as a human food and in countries “westernizing” their diets.

Forestry, Fisheries and Wildlife

Conservation tillage farming has increased markedly in recent years. These reduced tillage farming systems leave plant residue on the soil surface to benefit both agriculture and wildlife. Residue helps conserve soil and water and in some fields, especially no-till fields, the residue provides birds with nesting sites. However, small rodents also thrive in conservation tillage fields and at times cause damage to newly planted corn by digging and consuming the seed.

A two-year study in eastern and western Nebraska found that rodent damage in no-till fields resulted in stand losses that averaged from about 0 to 11 percent. The damage amounts were variable among fields and years. Nine kinds of rodents were captured in these fields including five which were implicated in damage. On the beneficial side, however, these rodents also consumed crop-damaging insects including wireworms and cutworms as well as weed seeds and waste grain that could produce unwanted volunteer crops during the following growing season. Because one cutworm can destroy three to four corn plants, each cutworm consumed can mean saving several plants.

Studies are underway to find an effective and safe way to prevent this rodent damage. In one approach, two chemicals, thiram and methiocarb, are being evaluated as potential seed-treatment repellents. Field and laboratory tests over four growing seasons show that both chemicals, if applied at proper rates, effectively repel 13-lined ground squirrels. Laboratory experiments show that they also repel deer mice. However, when corn seeds germinate and become soft, ground squirrels and possibly other rodents often remove the seed coat and therefore the repellent. Laboratory studies with deer mice indicate that adding a special odor cue to the repellent seed treatments may solve this by repelling rodents before they sample the seed.

Zimmerman pine moths are some of the most serious insect pests of pine trees in Nebraska. In their larval stage these insects damage trees by tunneling under the bark of the trunk and large branches. Heavily infested trees often are severely stunted and deformed and sometimes are killed. For many years it was assumed that there was only one species of Zimmerman pine moth in Nebraska. Insect control with pesticides was difficult and often not successful, and no resistant species of pine had been identified. A recent study, however, determined that three species of Zimmerman pine moth, not just one, are present in the state. These species differ significantly in their life cycles. Additional studies have developed effective chemical control strategies, identified jack pine as the pine species in Nebraska most resistant to the insects, and determined that water-deficiency stress in the trees increases the chance that the trees will become infested and damaged. These studies and the ongoing research of Zimmerman pine moths are aimed at developing a comprehensive management strategy to reduce damage.

Horticulture

Weed control in squash and pumpkins has been a chronic problem for growers. Trifluralin (Treflan) is a very effective herbicide which is used extensively in vegetable crop production but cannot be used in squash production because squash is sensitive to injury by the chemical. Some resistance to Treflan injury was discovered several years ago by a UNL horticulture student. During this past year, a bioassay test for screening squash for resistance to Treflan injury was successfully developed. If the resistance proves to be stable, a valuable contribution will have been made to commercial growers of vine-type squashes and pumpkins.

Increasing costs and decreasing availability of water for use in recreational and residential turf plantings are concerns being addressed by turf scientists. One approach is to select clones of warm season turfgrasses (specifically buffalograss) that may have good turf characteristics. These warm season grasses will be better adapted to the rigors of the Great Plains environment and should be able to persist in situations where water is limited. Preliminary efforts include ex-
Research Highlights

Exploring the Great Plains for suitable selections of buffalograss. These have now been propagated and are being evaluated under controlled conditions at the Nebraska Agricultural Research and Development Center near Mead. Preliminary observations reveal great diversity in height, color, rate of spread and general turf quality.

Department of Human Development and the Family

Rural Nebraska families, while sometimes experiencing serious economic distress, have reported no decline in the quality of family relationships in the home. While nearly two-thirds of a random sample of more than 300 rural Nebraska families reported that net spendable income had decreased, three-fourths reported a "perfect score" on being committed to each other, a measure of family cohesion. On a scale of 1 to 10, a mean of 8.8 was attained on the degree of family strengths maintained within the family unit. While economic distress has been apparent, there has been no decline among subjects in this study in the quality of family relationships.

This is not to say that Nebraska families are immune to stresses associated with changing lifestyle patterns in adapting to various societal problems impacting on most of our population. Women, particularly those who are entering the work force and who yet have children at home, face the potential of significant role conflict in attempting to continue in their more traditional roles of mother, wife and homemaker, and in their adjustment to working outside the home.

Another study of families in Nebraska involved the role of the working mother. Researchers found that women who interrupted their careers for short periods of time (two years or less) to have or care for children seemed to have more role conflict than women who had not interrupted their careers or who had interrupted them for longer periods of time. Those women experiencing role conflict possibly had not given as serious consideration to their decision to assume an additional major role and thus had not committed themselves as seriously to making such a significant change in their overall lifestyle.

Human Nutrition and Food Service Management

Safety, eating quality and energy used in preparation of poultry are being studied. The presence of ready-to-roast stuffed fresh turkey, chicken and duck in the supermarket prompted a survey to assess consumer knowledge and handling practices in relation to poultry. Survey results indicated less than one percent of poultry is purchased pre-stuffed. Also, persons over 55 years of age are more likely than younger consumers to stuff turkeys and fill the turkey cavity completely, making it more difficult for heat to penetrate. Microbiological studies are planned to determine the degree of bacterial destruction when a pre-stuffed bird is cooked.

Quality and cost control methods used in food service systems also are being studied. Control methods are important tools for the food service manager in maintaining a cost-effective operation. Errors in assembling patient diet trays in a hospital or nursing home influence patient satisfaction, nutrition education, and food cost. Employee in-service training programs targeting rationale and modifications of special diets were found to help decrease the number and type of errors in assembling patient trays. Fewer errors result in increased patient satisfaction, improved employee morale, and lower food costs.

Accurate analysis of samples is critical to research in Human Nutrition.

Because of the high incidence of osteoporosis among elderly women in the United States, all women are being encouraged to increase their intake of calcium. Since these levels are considerably higher than those supplied by usual American diets, calcium supplements are being used with increased frequency.
Calcium utilization from several commercially available calcium supplements and milk were evaluated through the feeding of constant, laboratory-controlled diets to human adults. Results indicated that calcium from calcium carbonate, the most commonly sold calcium supplement, salt, was more poorly utilized than calcium from calcium phosphate and other calcium salts. However, because calcium carbonate contains more calcium per unit weight than other calcium supplements, calcium carbonate is more convenient to use since fewer capsules or tablets are needed to meet recommended intake levels. In addition, all calcium supplements evaluated tended to lengthen fecal transit times in comparison to milk.

Northeast Research and Extension Center

Scientists at the Northeast Research and Extension Center were among those who pioneered use of herbicides to establish warm season grass plantings. They demonstrated that atrazine could be used to establish new plantings of switchgrass and big bluestem. Research is continuing to find herbicides with tolerance to other warm and cool season grass cultivars. Research spanning 15 years continues to develop weed control techniques in various conservation tillage systems. A new phase of this research is looking at various grasses and legumes which might be used as living mulches or underseeded as cover crops for soil erosion protection and weed control.

Soybean production has sometimes been criticized because of the soil erosion potential created by the loose, mellow soil condition following soybeans. However, these soil conditions plus the fragile nature of the residue make no-till planting into soybean residue an excellent option. In research conducted at the Northeast Research and Extension Center using a rainfall simulator, soil losses were reduced by 50 percent or more for no-till planting into soybean residue, compared to soil losses from soybean residue that had been disked twice. Average soil losses were reduced 75 percent by planting on the contour, compared to up-and-down hill planting in soybean residue. By no-till planting on the contour, soil erosion was reduced by nearly 90 percent compared to a double disk system conducted up-and-down the slope in soybean residue. Thus, substantial reductions in soil erosion from soybean production areas are possible.

Research efforts at NEREC are being conducted to determine the effect of facilities (wind protection) on feedlot steer gain. Studies conducted to date have shown that wind protection is beneficial for cattle in the winter; however, detrimental effects of the windbreak are apparent in the summer primarily due to decreased air movement that more than offsets any of the beneficial effects of wind protection observed in the winter.

Implant (growth promotants) systems are another major area of emphasis. Studies to date have shown that subsequent performance of cattle in the feedlot can be depressed if the cattle had received implants previously. Data would suggest that optimum gain and efficiency is achieved when cattle, destined for slaughter, receive all implants post-weaning and preferably when they are being fed high concentrate rations.

Swine housing and energy conservation research has included alternative energy management schemes for 23-day-old weaned pigs housed in flat deck nurseries. By turning the temperature down at night, compared to conventional management of a constant warm temperature, researchers reduced the cost of propane and electricity by 31 percent. In addition, pigs exposed to the diurnal temperature fluctuation ate more feed and grew faster with no difference in feed conversion efficiency.

The application of insecticides through overhead center pivots has rapidly expanded in Nebraska. Experiments at several sites in northeast Nebraska have shown that the technique is successful for control of (continued)
Research Highlights

(Northeast Research and Extension Center....)

first and second generation European corn borers, a serious corn pest. Additional experiments indicate that oil is an unnecessary additive in most instances, the amount of water carrier is unimportant for satisfactory efficacy, reduced rates of selected insecticides are feasible, and that residual is relatively short.

Panhandle Research and Extension Center

Considerable interest has been expressed by local producers and agribusinesses in growing commercial vegetables. To establish a current information base for Nebraska producers, experiments were conducted to examine the yield and quality of selected varieties of broccoli, cabbage, carrots, cauliflower, celery, lettuce, onions, peppers, sweet corn, and tomatoes that were either direct seeded or transplanted. Most crops could be successfully grown in western Nebraska and all crops benefited from transplanting. Crops with the most potential for commercial development were onions, carrots, broccoli, cauliflower, cabbage, sweet corn, and peppers. Data collected provides information on variety selection, plant stand, crop yield, quality, and maturity. Although benefits of transplanting varied by crop, transplanted onion yields were 200 percent greater than direct seeded, and these onions were larger in size and matured several weeks earlier than direct seeded onions.

More than 15 research studies on sugarbeet transplanting have been conducted over the last four years by a multi-disciplinary team at the Panhandle Research and Extension Center. The transplanting system is based on a paperpot container in which growing media and seed are placed. Plants are then germinated and grown in a greenhouse and finally transplanted into the field. Research has been conducted on machinery performance, container design, greenhouse production techniques, field production including weed and nematode control, plant spacing, variety interactions, irrigation requirements, and costs and returns versus direct seeded sugarbeet production.

Compared to direct seeding, advantages of the transplanting system include:

1) increased yield which is attributed to lengthening the effective growing season;
2) improved weed control and the potential to eliminate hand weeding due to increased competitiveness with weeds and use of different herbicides;
3) reduced rates of nematicide application to age of plant when put in the field, placement of chemical in an effective manner, and the paperpot container acting as a barrier; and
4) reduced risk of stand loss due to extreme weather and soil crusting.

Additional costs of transplanting include machinery, greenhouses, material, labor, and management. This technology is potentially profitable, but the capacity of machinery and acreage over which costs are spread is very important. This technology has been made commercially available to sugarbeet growers, although further development of equipment and production details is needed.

Plant Pathology

More than 100 strains of bacteria from asymptomatic sorghum and corn stalks are continuing to be analyzed by polypeptide gel electrophoresis. A computer program is being generated for comparing the single dimension gel patterns from densitometer tracings. Preliminary comparisons show both reproducible qualitative and quantitative differences among strains, some of which show both marked similarity or dissimilarity with known pathogens. Some of these bacteria have potentially useful properties.

Transplanting of sugarbeets has proved effective. Now researchers are studying transplanting of other crops, such as broccoli.
A new wilt resistant cucumber that stays sweet while it fights off insects and plant diseases was released jointly by the U.S. Department of Agriculture and University of Nebraska. The new cucumber, ‘County Fair ‘83’ is ideal for home gardens because it does not become bitter even under severe stress caused by plant disease, drought or inadequate soil nutrients. The natural sweetness of the entire plant is unattractive to cucumber beetles that like to munch on vines having a bitter taste. Cucumber beetles spread the bacteria that cause a wilt disease but the non-bitter characteristic of the plant works, in effect, to ward off the beetles. The cucumber was widely tested in Nebraska before release.

This Opti-Visor device which has an illuminator and magnifier attached, allows the researcher to count spider mites on corn.

South Central Research and Extension Center

A 228-acre reservoir at the Meat Animal Research Center was constructed by the Little Blue Natural Resources District in 1982. The reservoir is for downstream flood protection and for capturing runoff water for groundwater recharge. Research was conducted at the reservoir site: 1) to determine the recharge realized from a new and relatively large multi-purpose surface reservoir, 2) to determine how the rate of recharge changes with age of the reservoir, and, 3) to evaluate the groundwater response to the infiltrated water.

During the first 30 months of monitoring, water infiltration ranged from 0.2 to 2.5 inches per day and averaged 0.65 inches per day. The accumulated volume of water that has seeped through the bottom of the reservoir was enough to cover 8200 acres with one foot of water. During periods of maximum recharge rates, the water level in the principal aquifer directly below the reservoir rose more than five feet indicating a good response to the recharge water.

As part of the plant pathology program at the South Central Research and Extension Center, corn hybrids have been evaluated for reactions to three of the more destructive diseases in Nebraska. These include stalk rot, Goss' bacterial wilt and blight, and corn lethal necrosis. Stalk rot evaluations were begun in 1972 and have continued annually.

Publications summarizing the results of the stalk rot, Goss' wilt, and corn lethal necrosis evaluations have been made available to the public. These evaluations have been used extensively throughout the industry (farmers, seed corn companies, corn breeders, and agricultural extension agents) to compare the relative susceptibility of hybrids to these three important diseases. The stalk rot and CLN evaluations are continuing. Crop rotation and hybrid resistance have been very effective in reducing losses caused by corn lethal necrosis and Goss' wilt, although crop rotation has had little effect in reducing stalk rot. The importance of hybrid selection for disease control is obvious.

Textiles, Clothing and Design

Of concern among agriculturalists today is exposure to farm chemicals during mixing and application. Protective clothing can minimize dermal exposure, the most common route of pesticide exposure, but protective clothing becomes contaminated, and contamination is difficult to remove in laundering. Previous research on lowering residues through laundering has involved the study of new textiles. The objective of this study was to determine if “used” fabrics become more easily soiled with pesticides because the “use” had become a predisposer to soiling and had increased the difficulty of pesticide soil removal through laundering. Generally, abrasion did assist in pesticide removal but prior laundering resulted in less complete removal of subsequent pesticide residues. Although prior soiling with pesticides neither increased nor decreased pesticide absorption, build-up was observed.

Rather than burning or burying protective clothing contaminated with highly toxic pesticides, long-term storage with pesticide degradation due to time or tem-
Research Highlights

(Textiles, Clothing and Design....)

perature of storage may be feasible. This phase evaluated four conditions of holding (0°, 21°C, ambient 18-24°C but no air exchange, and ambient plus moving air) over six time periods, (24 hours, 48 hours, 72 hours, 1 week, 1 month and 6 months) with methyl parathion-contaminated fabric. There was a steady decrease in pesticide residue over time and moving air greatly assisted the volatilization of pesticides.

The second phase addressed the concern for location and amounts of pesticide residue in 50 percent cotton/50 percent polyester poplin, unfinished, with a durable press finish, or with a soil repellent (fluorocarbon finish), contaminated with methyl parathion. Pesticide solutions were pipetted onto the center of one square meter of fabric, and fabric sampled or laundered (49°C wash and rinse, HDL detergent) then sampled. Pesticide solution did move from the site of the “spill”, dependent upon fabric finish. This work confirms previous findings that a soil repellent finish is preferred over unfinished or durable press finished fabric.

The purpose of the third phase was two-fold: 1) to determine build-up of methyl parathion on fabrics contaminated daily for up to five days, and the effectiveness of laundry in lowering pesticide residues from repeated contamination of fabrics and 2) to measure the contamination of water used in the laundering process.

The soil repellent finish caused less absorption of pesticide. In fabrics laundered daily, there was an increase in baseline contamination and the soil repellent finish was effective in lowering sorption of pesticide through two launderings only. A recommendation from this study was to include daily laundering of protective clothing during application seasons.

Veterinary Science

Bovine respiratory syncytial virus (BRSV) is now recognized as a significant respiratory pathogen of cattle. A major problem, however, has been rapid and accurate diagnosis of these infections. Highly specific monoclonal antibodies (moAb) to BRSV have been developed and increase the sensitivity of virus detection tests, while decreasing time and cost of diagnosing infections. The moAb is being used as an effective diagnostic reagent for bovine respiratory disease in many veterinary diagnostic laboratories throughout the United States. Additionally, the moAb is being used in testing procedures for a recombinant vaccine. The vaccine should be more effective, safer, and less expensive than ones presently available to producers and veterinarians.

Escherichia coli is a bacterium which causes severe diarrheal disease in livestock and humans. Diarrhea-producing strains typically attach to gut cells by means of hair-like projections called pili and induce watery secretion in the bowel lumen by means of toxins. Recently, diarrhea in a group of newborn calves was determined to be caused by an E. coli that lacked typical pili and toxins. Experimental studies in germ-free calves established that the organism causes diarrhea, but acts in a manner different from previously recognized calf strains. The organism, in fact, produces a disease remarkably similar to certain strains found in humans, in that bacteria tightly attach to the gut cells resulting in loss of minute surface projections called microvilli. The prevalence of the organism in cattle is unknown, but studies suggest that infections may be missed unless complicated by a concurrent viral infection. Future studies aimed at delineating the mechanism of disease and prevalence of infection should help in the treatment and control of this newly recognized disease of cattle and serve as a model for similar infections in humans.

West Central Research and Extension Center

A corn germplasm was discovered that tolerates high soil pH (surface pH of 8.5 to 9.1, higher in sub soil) while still producing substantial grain yields, in sites where conventional hybrids produced little grain or would not survive. Attempts are underway to transfer this desirable characteristic to corn germplasm better adapted to Nebraska growing conditions. Soil pH over 8.0 inhibits corn plant growth by disrupting normal use of iron in chlorophyll development. At higher pH levels, most corn germplasm develops little or no chlorophyll and will not survive. The discovery of pH tolerant germplasm could have an impact on up to one million acres in central and western Nebraska and large acreages of high pH soils in the western United States where corn is an important crop. These findings have the potential to increase income stability on land regularly being used for dryland or irrigated crop production.

The Cropping Systems Research Unit at North Platte is developing technology for limited irrigation combined with no-till methods and crop rotations to conserve water and soil, extend aquifer life, improve environmental quality, and reduce dependence on high levels of irrigation while increasing profits. The no-till
cropping systems being studied under (a) continuous dryland, (b) limited irrigation (6" per crop per year) and (c) full irrigation, include continuous corn, wheat-soybean, wheat-corn-soybean, and wheat-corn-sorghum rotations. The six scientists involved include agronomists, and an ag engineer, economist and hydrologist.

Various cultural practices are evaluated within crop rotations to gain information required for decisions on fertilization, variety selection, plant populations and irrigation timing. Results can be used by both farmers and water management agencies to improve irrigation management, soil and water conservation and net profitability.

Crop yields and irrigation water use efficiency for all crops in continuous no-till systems for limited irrigation treatments have exceeded expectations. Preliminary results show how farmers in areas of declining water tables can extend existing water supplies, use moderate resource inputs and achieve economical yields.

Corn on the right tolerates high soil pH in sites where conventional hybrids (left) produce little grain or do not survive.

Raw soybeans have been successfully used to replace soybean meal in swine gestation-lactation rations, serving as a favorable protein and energy source. Roasting is essential to secure favorable value of raw soybeans in growing-finishing rations. The swine feeding industry is adopting these findings, allowing producers to utilize lower quality soybeans directly in their feeding programs without the necessity of round trip transportation and more expensive processing.
Research Projects

100th Annual Report
University of Nebraska
Agricultural Research Division
Research Projects

Research projects are listed by departments. An asterisk (*) indicates that the project was discontinued in fiscal 1985-1986.

Administration

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-001</td>
<td>General administration of federal fund research (I. T. Omvedt)</td>
</tr>
<tr>
<td>01-004</td>
<td>Regional research coordination, North Central Region (I. T. Omvedt)</td>
</tr>
</tbody>
</table>

Agricultural Biochemistry

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*15-005</td>
<td>Harvesting, processing and evaluating alfalfa crops and materials (R. L. Ogden)</td>
</tr>
<tr>
<td>*15-011</td>
<td>Analytical advisory and service laboratory (R. M. Hill)</td>
</tr>
<tr>
<td>15-022</td>
<td>Cellular photosynthetic processes and the regulation of photosynthesis (R. Chollet)</td>
</tr>
<tr>
<td>*15-028</td>
<td>Biochemistry of plant disease (J. M. Daly)</td>
</tr>
<tr>
<td>15-030</td>
<td>Factors affecting functional leghemoglobin in legume nodules (R. V. Klucas)</td>
</tr>
<tr>
<td>15-031</td>
<td>Structure, chemistry and metabolism of compounds toxic to plants (H. W. Knoche)</td>
</tr>
<tr>
<td>*15-032</td>
<td>Mechanisms of cultivar resistance to host-specific fungal pathotoxins (J. M. Daly)</td>
</tr>
<tr>
<td>*15-033</td>
<td>Homogenous pyruvate, pi dikinase from A C₄ plant and photosynthetic bacterium (R. Chollet)</td>
</tr>
<tr>
<td>15-034</td>
<td>Composition, architecture and functional role of the photosynthetic membrane (J. P. Markwell)</td>
</tr>
<tr>
<td>15-035</td>
<td>Proteolytic enzymes in plant senescence and molecular studies on metalloproteases (F. W. Wagner)</td>
</tr>
<tr>
<td>15-036</td>
<td>Factors limiting biological nitrogen fixation: leghemoglobin and nickel (R. V. Klucas)</td>
</tr>
<tr>
<td>15-037</td>
<td>Soybean nodule senescence (F. W. Wagner)</td>
</tr>
<tr>
<td>*15-038</td>
<td>The role of thylakoid organization in photosynthesis and its regulation (J. P. Markwell)</td>
</tr>
<tr>
<td>15-039</td>
<td>Associative nitrogen fixation in nonleguminous plants (R. V. Klucas)</td>
</tr>
<tr>
<td>15-040</td>
<td>Cellular photosynthetic processes and the regulation of photosynthesis (J. P. Markwell)</td>
</tr>
<tr>
<td>15-041</td>
<td>Genetic manipulation of RuBP carboxylase/oxygenase (R. J. Spreitzer)</td>
</tr>
<tr>
<td>15-042</td>
<td>Identification of host resistance or susceptibility to toxins (J. M. Daly, H. W. Knoche)</td>
</tr>
<tr>
<td>15-043</td>
<td>Genetic modification of RuBP carboxylase/oxygenase in chlamydomonas reinhardii (R. J. Spreitzer)</td>
</tr>
<tr>
<td>15-044</td>
<td>Regulation of pyruvate, pi dikinase activity (R. Chollet)</td>
</tr>
<tr>
<td>15-045</td>
<td>Factors affecting fermentation technology of crop materials and by-products (R. L. Ogden)</td>
</tr>
<tr>
<td>15-046</td>
<td>Investigation of some nitrogenous constituents of selected plants (R. M. Hill)</td>
</tr>
</tbody>
</table>

Agricultural Communications

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-001</td>
<td>Dissemination of research information (J. P. Holman)</td>
</tr>
</tbody>
</table>

Agricultural Economics

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-071</td>
<td>Effect of changes in transportation on performance of the U.S. Agricultural Transportation System (D. G. Anderson, J. B. Hassler)</td>
</tr>
<tr>
<td>10-077</td>
<td>Reporting and analyzing farm real estate values and market developments in Nebraska (B. B. Johnson, R. J. Hanson)</td>
</tr>
<tr>
<td>10-083</td>
<td>Organization and performance of the U.S. Food production and distribution system (L. H. Lutgen, E. Pagoulatos)</td>
</tr>
<tr>
<td>10-086</td>
<td>Performance of the U.S. grain marketing system in a changing economic and policy environment (D. A. Linzemeyer, J. B. Hassler)</td>
</tr>
<tr>
<td>10-087</td>
<td>Evaluating financial markets for agriculture (P. H. Gessaman, G. A. Helmers)</td>
</tr>
<tr>
<td>10-089</td>
<td>Evaluating risk management strategies for Nebraska farmers (H. D. Jose)</td>
</tr>
<tr>
<td>10-090</td>
<td>Economic analysis of water management strategies in Nebraska (R. J. Supalia, J. B. Hassler)</td>
</tr>
<tr>
<td>10-092</td>
<td>Analysis of food and agricultural policies in an uncertain economic environment (G. A. Helmers, J. G. Kendrick, R. Frederick)</td>
</tr>
<tr>
<td>10-093</td>
<td>Nebraska water allocation law and policy (J. D. Aiken)</td>
</tr>
<tr>
<td>10-094</td>
<td>Economics of range beef cattle production systems in Nebraska (G. H. Pfeiffer)</td>
</tr>
<tr>
<td>10-096</td>
<td>Economic analysis of factors associated with financial success of farmer cooperatives (M. S. Turner)</td>
</tr>
<tr>
<td>10-097</td>
<td>Economics of uncertain water supplies for irrigation (M. E. Baker, G. A. Helmers)</td>
</tr>
<tr>
<td>10-098</td>
<td>Evaluation of consumption, production and marketing changes in the crops-livestock sectors (J. F. Yanagida)</td>
</tr>
<tr>
<td>10-099</td>
<td>Economic analysis of the potential for production and (continued)</td>
</tr>
</tbody>
</table>
Research Projects

(Agricultural Economics....)

marketing of grain sorghum in the Philippines (D. G. Anderson, G. Pfeiffer)

Agricultural Education

*24-017 An appraisal of innovative approaches to education/action for rural community resource development (J. T. Horner)

24-019 Pre-service evaluation of student teachers and of student teaching centers (R. D. Dillon)

*24-020 An assessment of professionalism and leadership of Nebraska vocational agricultural educators (A. G. Blezek)

Agricultural Engineering

11-001 Evaluation of performance of new tractors (L. I. Leviticus)

11-008 Engineering phases of tillage, land treatment and crop management for conservation of soil and water (H. D. Wittmuss)

*11-030 Development and operation of irrigation systems (P. E. Fischbach, A. R. Martin, D. E. Eisenhauer)

*11-037 Safety, demand, and operational characteristics of electrical irrigation equipment (L. E. Stetson)

11-044 Improvement of thermal process for food (M. A. Hanna)

11-053 Adaptive, physiological crop production models with controlled and natural environments (G. E. Meyer)

11-060 Hybrid solar systems for young pigs (G. R. Bodman, D. D. Schulte, J. A. DeShazer)

11-061 Development and evaluation of conservation tillage systems (H. D. Wittmuss, E. C. Dickey)

*11-062 Integrated energy management for irrigated grain and livestock production (D. D. Schulte, W. E. Splinter)

*11-063 Energy and by-products from animal manure (D. D. Schulte)

11-064 Soybean production and management simulation models (G. E. Meyer)

11-065 Study rural electric demands and provide electrical load management mechanisms for management of rural power (L. E. Stetson)

11-066 Harvesting, processing & utilization of sweet sorghum and oil crops as energy sources for power (L. L. Bashford)

11-067 Irrigation scheduling methods for efficient water and energy use (J. R. Gilley, D. L. Martin)

11-069 Dynamic simulation of soybean/weed competition and effects on crop performance (G. E. Meyer)

11-070 Vegetable oils as an alternative fuel for diesel engines (M. A. Hanna)

11-071 Mechanics of soil erosion deposition and sediment transport on croplands (J. E. Gilley, L. N. Mielke, J. F. Power)

11-072 Increasing performance efficiency of agricultural tractors and machinery (L. L. Bashford)

11-073 Crop productivity as limited by the rhizosphere and by water and nutrient use efficiencies (D. L. Martin, N. L. Klocke)

11-074 Modeling responses of growing swine to environmental and nutritional conditions (J. A. DeShazer, A. J. Lewis)

11-075 Drying grain to maintain quality and market value (R. O. Pierce)

11-076 Influences of tillage and crop residue on soil erosion (E. C. Dickey, D. P. Shelton, D. E. Eisenhauer)

11-077 Irrigation and farmstead electrical demands, load management and safety (L. E. Stetson)

Agricultural Research and Development Center

45-001 Field laboratory development (W. W. Sahs)

Agronomy

12-001 Corn breeding and genetics (W. A. Compton, P. T. Nordquist)

12-002 Improvement and evaluation of oats and barley (J. W. Schmidt)

12-007 Systems of weed control in crop production for eastern Nebraska (O. C. Burnsaid)

12-008 Forage grass breeding (K. P. Vogel)

12-011 Properties of Nebraska soils as related to soil genesis, classification, survey and land use (D. T. Lewis)

12-012 Soybean breeding and genetics (J. H. Williams)

*12-023 Optimizing the productive capacity of irrigated soil through effective soil management (R. A. Olson, K. D. Frank)

12-034 Cytotgenetic studies on wheat (M. R. Morris, J. W. Schmidt, P. J. Mattern, V. A. Johnson)

12-046 Market quality in wheat (P. J. Mattern, V. A. Johnson, J. W. Schmidt)

12-049 Quantitative genetic investigations in plants (C. O. Gardner, M. Thomas-Compton)
Research Projects

12-055 Genetics, breeding and evaluation of common wheats, durums and triticales for Nebraska (J. W. Schmidt, V. A. Johnson, P. J. Mattern)

12-072 Introduction, multiplication, evaluation, preservation, cataloguing and utilization of plant germplasm (D. Anderson, K. P. Vogel)

12-077 Systems for controlling weeds with emphasis on velvetleaf, shattercane and leaf spurge (A. R. Martin)

12-078 Fate of nutrients in the environment as affected by soil and crop management (D. H. Sander, K. D. Frank)

12-080 Chemical aspects of phosphorus movement and availability to plants in sandy soils (R. C. Sorensen)

12-084 Evaluating plant nutrient needs and product quality (D. Knudsen)

12-089 Integrating crop culture, chemicals, and life cycles to control persistent weeds (B. A. Swisher, R. G. Wilson)

12-091 Soybean physiology in varietal improvement (J. E. Specht)

12-095 Effects of environment and fertilization practices on mineral element uptake, distribution, and use by sorghum (R. B. Clark)

12-097 Physiological investigations of nutritive value and its improvement in sorghum and millet (J. W. Maranville)

12-100 Nitrogen metabolism and chemical growth regulation of plants (L. A. Klepper)

12-101 Environmental and morphological crop physiology (M. D. Clegg)

12-102 Residue incorporation and soil disturbance effects on crop growth and yield (W. W. Wilhelm)

12-103 Influence of tillage on soil physical characteristics and biological processes (L. N. Mielke)

12-110 Dynamics of water in rigid and swelling soils (D. Swartzendruber)

12-111 Morphology and physiology of selected perennial grasses (L. E. Moser)

12-112 Organic residues and by-products in crop production (W. W. Sahs)

12-113 Mineral element efficiencies and tolerances in sorghum and millet (R. B. Clark, J. W. Maranville, W. M. Ross, R. A. Olson)

12-114 Genetics, biochemistry, and breeding of forage sorghum and sudangrass (F. A. Haskins, H. J. Gorz)

12-115 Breeding sorghum for Nebraska and developing countries (W. M. Ross, D. J. Andrews)

12-116 Crop productivity as limited by the rhizosphere and by water and nutrient use efficiencies (C. Y. Sullivan, D. L. Martin)

12-117 Improvement practices for range on blue grama-buffalograss dominated loess soils in Nebraska (S. S. Waller)

12-119 Crop production systems in the western corn belt (S. C. Mason)

12-121 Plant breeding for physiological traits (J. E. Specht, C. O. Gardner, K. P. Vogel, M. D. Clegg)

12-122 Grain sorghum and millet response to temperature stress (J. D. Eastin, C. Y. Sullivan)

12-123 Characterization of Nebraska rangeland vegetation and its improvement through ecologic and agronomic manipulation (J. L. Stubbendieck, W. W. Stroup)

12-125 Modeling the water use and growth of plants (J. M. Norman)

12-126 Chemistry of micaceous and feldspathic soils in Nebraska (D. L. McCallister)

12-127 Crop physiological and morphological characteristics and cultural practices affecting crop yield, water use and metabolic efficiency (J. D. Eastin, J. L. Havlin, L. A. Nelson, M. Witt)

12-128 Relating soil wetness to selected soil and landscape features and to land use decisions (D. T. Lewis)

12-129 Physical factors controlling microbiological aspects of movement and transformation of solutes in soil (J. M. Skopp)

12-130 Gene locations for wheat economic traits by reciprocal chromosome substitutions (M. R. Morris)

12-131 Dissipation and bioavailability of herbicides and other pesticides in soil (P. J. Shea)

12-132 Improving the forage quality of grasses (B. C. Gabrielsen, R. A. Britton, K. P. Vogel)

12-133 Ontogenetic and physiological factors in the root bud development of three geophytes (B. A. Swisher)

(continued)
Research Projects

(Agronomy....)

<table>
<thead>
<tr>
<th>Project Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-134</td>
<td>Revegetation for increased productivity of abandoned irrigated and dry farm land (J. Stubbendieck, S. S. Waller, J. R. Gilley)</td>
</tr>
<tr>
<td>12-135</td>
<td>Soil productivity and erosion (D. T. Lewis)</td>
</tr>
<tr>
<td>12-136</td>
<td>Mechanics of soil erosion, deposition and sediment transport on croplands (J. E. Gilley, L. N. Mielke, J. F. Power)</td>
</tr>
<tr>
<td>12-137</td>
<td>Methods to improve production of grazing livestock (B. E. Anderson)</td>
</tr>
<tr>
<td>12-138</td>
<td>Improved management practices for conservation and utilization of nitrogen (J. S. Schepers, J. F. Powers)</td>
</tr>
<tr>
<td>12-139</td>
<td>Fertilizer and crop management techniques for conservation-production systems (G. E. Varvel)</td>
</tr>
<tr>
<td>12-140</td>
<td>Mineral element uptake, use, efficiency, and tolerance in sorghum and millet (R. B. Clark, J. W. Maranville, D. Andrews, M. D. Clegg)</td>
</tr>
<tr>
<td>12-141</td>
<td>Influence of production practices on yield and grain quality of maize and winter wheat (S. C. Mason)</td>
</tr>
<tr>
<td>12-142</td>
<td>Genetic, physiological, and chemical studies of traits determining nutritional value and agronomic performance in wheat (S. L. Kuhr, C. J. Peterson)</td>
</tr>
<tr>
<td>12-144</td>
<td>Winter wheat germplasm development and evaluation (C. J. Peterson, S. L. Kuhr)</td>
</tr>
<tr>
<td>12-146</td>
<td>Gene expression and senescence in the soybean leaf (P. Staswick)</td>
</tr>
<tr>
<td>12-147</td>
<td>Microbial and nutrient factors affecting crop rotations (M. D. Jawson)</td>
</tr>
<tr>
<td>12-148</td>
<td>Morphology and physiology of selected perennial grasses (L. E. Moser)</td>
</tr>
<tr>
<td>12-149</td>
<td>Breeding sorghum and pearl millet for USA and developing countries (D. J. Andrews)</td>
</tr>
<tr>
<td>12-150</td>
<td>Water and temperature effects on sorghum and millet as related to grain production and breeding (J. D. Eastin, C. Y. Sullivan)</td>
</tr>
<tr>
<td>12-151</td>
<td>Tillage influence on crop production and physical properties of the soil surface and rhizosphere (A. J. Jones, L. N. Mielke, J. M. Norman)</td>
</tr>
<tr>
<td>12-152</td>
<td>Renovation and improvement of Nebraska range and pasture (S. Waller)</td>
</tr>
<tr>
<td>12-201</td>
<td>Maintenance, increase and distribution of elite germ plasm (R. N. Mills)</td>
</tr>
<tr>
<td>47-001</td>
<td>Soil fertility investigations related to corn, sorghum, wheat and soybeans grown in southeast Nebraska (E. J. Penas)</td>
</tr>
</tbody>
</table>

Animal Science

<table>
<thead>
<tr>
<th>Project Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-022</td>
<td>Mineral requirements of swine (E. R. Peo, Jr., A. J. Lewis)</td>
</tr>
<tr>
<td>*13-023</td>
<td>Meat manufacturing, restructuring and processing (R. W. Mandigo, C. R. Calkins)</td>
</tr>
<tr>
<td>13-029</td>
<td>Genetic improvement of efficiency in the production of quality pork (R. K. Johnson, D. R. Zimmerman, R. J. Kittok)</td>
</tr>
<tr>
<td>13-036</td>
<td>Improving dairy herd management practices (L. L. Larson, F. G. Owen)</td>
</tr>
<tr>
<td>13-041R</td>
<td>Improving dairy cattle through breeding, with special emphasis on selection (F. E. Eldridge)</td>
</tr>
<tr>
<td>13-045</td>
<td>Improvement of beef cattle through breeding methods (M. K. Nielsen)</td>
</tr>
<tr>
<td>13-050</td>
<td>Factors affecting texture of fresh and processed meat products (C. R. Calkins, R. W. Mandigo)</td>
</tr>
<tr>
<td>13-052</td>
<td>The requirements for and utilization of protein and amino acids by swine (A. J. Lewis, E. R. Peo, Jr.)</td>
</tr>
<tr>
<td>13-055</td>
<td>A systems approach to the evaluation of environmental constraints affecting poultry production (M. M. Beck)</td>
</tr>
<tr>
<td>13-056</td>
<td>Nutrient levels and sources for layers and turkeys (T. W. Sullivan)</td>
</tr>
<tr>
<td>13-058</td>
<td>Physiological mechanisms and reproductive management of the postpartum interval and puberty in the bovine female (J. E. Kinder, R. J. Kittok, G. H. Deutscher)</td>
</tr>
<tr>
<td>13-060</td>
<td>Physiological and management aspects of puberty and ovulation rate in swine (D. R. Zimmerman, R. J. Kittok)</td>
</tr>
<tr>
<td>13-061</td>
<td>Energy metabolism in avian brain (M. M. Beck)</td>
</tr>
<tr>
<td>13-063</td>
<td>Reproductive endocrinology of the bovine in the nutritionally induced state of anestrus (J. E. Kinder, R. J. Kittok, E. T. Clemens)</td>
</tr>
<tr>
<td>13-065</td>
<td>Factors affecting acidosis in ruminants (R. A. Britton, D. R. Brink, T. J. Klopfenstein, R. A. Stock)</td>
</tr>
<tr>
<td>13-066</td>
<td>Dynamics of forage production and utilization by beef cattle (T. J. Klopfenstein, J. Stubbendieck, K.</td>
</tr>
</tbody>
</table>
Redirecting the nutrient flow in cows for maximum milk production (F. G. Owen, L. L. Larson)

Integration of comfort parameters with feed intake and other physiological and productivity responses in poultry (E. W. Gleaves)

Control of gonadotropin secretion in boars (R. J. Kittok, R. K. Johnson, J. E. Kinder)

Evaluating the utilization of grain diets fed to finishing cattle (R. A. Stock, R. A. Britton, T. J. Klopfenstein, T. L. Mader)

Factors affecting rumen lactate production and effects of acidosis on nutrient metabolism and absorption (R. A. Britton)

Factors regulating protein turnover and growth in skeletal muscle (S. J. Jones, C. R. Calkins, R. A. Britton, J. E. Kinder, M. K. Nielsen, W. A. Zollinger)

Effect of energy source and feed additives on energy utilization by swine (E. R. Peo, Jr., A. J. Lewis)

Optimum use of rangeland, pasture and crop residues in beef production system (T. J. Klopfenstein)

Improving the profitability of dairy cattle production by use of DHIA records (J. F. Keown)

Meat manufacturing, restructuring and processing (R. W. Mandigo, C. R. Calkins)

VonBargen, T. L. Thompson, G. A. Helmers)

VonBargen, T. L. Thompson, G. A. Helmers)

13-067

13-068

13-070

13-071

13-072

13-073

13-074

13-075

13-076

13-077

13-078

13-079

13-080

13-081

13-082

13-083

13-084

Biometrics and Information Systems Center

23-001

Applications of statistics to research in agriculture (W. M. Schutz, R. F. Mumm, A. M. Parkhurst, S. R. Lowry, W. W. Stroup)

Statistical computing methodology for research planning and analysis (W. W. Stroup)

Center for Agricultural Meteorology and Climatology

Climate variability, drought and agricultural productivity in Nebraska (D. A. Willhite, R. E. Neild)

Chemistry of atmospheric deposition — effects on agriculture, forestry, surface waters and materials (S. B. Verma)

Carbon dioxide exchange and crop water use efficiency: impacts of microclimate and turbulence (S. B. Verma, N. J. Rosenberg)

Spectral radiation techniques to estimate productivity and water stress in vegetation (B. L. Blad)

A climate data base and model for estimating crop yields (K. G. Hubbard)

Consumer Science and Education

Relationship of perceptions of solar and earth sheltered systems to behavior of housing intermediaries (E. R. Combs)

Residential mobility of rural populations and relocation of the rural elderly (J. A. Memken)

Economic, social, psychological and health consequences of the housing decisions of rural families (E. R. Combs, J. A. Memken)

Entomology

Phenology and genetics as ecological bases for the management of the european corn borer (J. F. Witkowski)

Pest management strategies for leafhoppers, spittlebugs, and aphids on alfalfa (G. R. Manglitz)

Biology and integrated control of the greenbug and other arthropods on grain sorghum (S. D. Kindler)

Ecology and control of stable flies and horse flies around confined livestock (I. L. Berry, J. J. Petersen, G. D. Thomas, C. B. Gilbertson)

Insects affecting tree and shrub plantings in Nebraska (J. A. Jones)

Biology and control of corn rootworms in Nebraska (Z B Mayo, H. J. Ball)

Population ecology and management of western bean cutworms and spider mites on corn in western Nebraska (T. O. Holtzer)

(continued)
Research Projects

Entomology...

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-038</td>
<td>Integrated pest management of insects associated with the near environment of man (R. E. Gold)</td>
</tr>
<tr>
<td>17-039</td>
<td>Factors affecting the population ecology of a rangeland grasshopper, Phoebiotes nebrascensis (Thomas) (A. Joern)</td>
</tr>
<tr>
<td>17-040</td>
<td>Aquatic invertebrates as indicators of water quality in Nebraska streams (K. P. Pruess)</td>
</tr>
<tr>
<td>17-041</td>
<td>Improvement of legume and grass insect control (G. R. Manglitz)</td>
</tr>
<tr>
<td>17-042</td>
<td>Cytogenetic factors associated with the development of aphid biotypes with specific emphasis on the greenbug, Schizaphis graminum (rondani) (Z B Mayo)</td>
</tr>
</tbody>
</table>

Environmental Programs

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-001</td>
<td>Continuing participation in the national agricultural pesticide impact assessment program (R. E. Gold, S. T. Kamble)</td>
</tr>
</tbody>
</table>

Food Science and Technology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-027</td>
<td>Food quality and energy usage in food service systems microwave and convection thermal processing (R. B. Maxcy)</td>
</tr>
<tr>
<td>16-033</td>
<td>Marketing and delivery of quality cereals and oilseeds in domestic foreign markets (L. B. Bullerman, A. P. Handel)</td>
</tr>
<tr>
<td>*16-034</td>
<td>Heat stable enzymes from thermophilic microorganisms (J. H. Rupnow)</td>
</tr>
<tr>
<td>16-036</td>
<td>Utilization of Nebraska grown grains for human and industrial uses (C. E. Walker)</td>
</tr>
<tr>
<td>*16-037</td>
<td>Proteins: Alteration during processing and the products formed during digestion (L. D. Satterlee)</td>
</tr>
<tr>
<td>*16-038</td>
<td>Optimization of corn and whey cofermentation (K. M. Shahani. C. E. Walker)</td>
</tr>
<tr>
<td>16-039</td>
<td>Irradiation of meats for improving the microbial quality (R. B. Maxcy)</td>
</tr>
<tr>
<td>16-040</td>
<td>Analytical methods for food process control and measurement of processing induced changes (R. L. Wehling)</td>
</tr>
<tr>
<td>16-041</td>
<td>Factors affecting protein functional and nutritional properties (M. G. Zeece)</td>
</tr>
<tr>
<td>16-042</td>
<td>Molds and mycotoxins in foods and feeds (L. B. Bullerman)</td>
</tr>
<tr>
<td>16-043</td>
<td>Occurrence, detection, and control of pathogenic bacteria in foods (M. B. Liewen)</td>
</tr>
<tr>
<td>16-044</td>
<td>Role of cathepsins H and L in muscle protein degradation (M. G. Zeece)</td>
</tr>
<tr>
<td>16-045</td>
<td>Enzymatic modification and bioprocessing of food and food wastes (K. M. Shahani)</td>
</tr>
</tbody>
</table>

Forestry, Fisheries and Wildlife

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-023</td>
<td>Windbreak shelter effects (J. R. Brandle)</td>
</tr>
<tr>
<td>20-028</td>
<td>Forest tree improvement — selection, breeding, and seed production (D. F. VanHaverbeke)</td>
</tr>
<tr>
<td>20-041</td>
<td>Vegetation selection and prescribed burning for fire prevention along railroad rights-of-way (J. R. Brandle)</td>
</tr>
<tr>
<td>26-001</td>
<td>Impact of erosion silt and sedimentation on fish populations (E. J. Peters)</td>
</tr>
</tbody>
</table>

Horticulture

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-036</td>
<td>Genetics, breeding and cultural interactions of dry edible beans (Phaseolus vulgaris L.) (D. P. Coyne, J. R. Steadman, A. K. Vidaver, D. S. Nuland)</td>
</tr>
<tr>
<td>*20-037</td>
<td>Assessment of impact of climate on agriculture in Nebraska and the North Central Region (R. E. Neild, D. A. Willhite)</td>
</tr>
<tr>
<td>20-037R</td>
<td>Weather and climate research for agricultural decision making in the North Central Region (R. E. Neild)</td>
</tr>
<tr>
<td>20-039</td>
<td>Improvement, propagation and culture of selected Nebraska wildflowers (S. S. Salac, J. B. Fitzgerald)</td>
</tr>
<tr>
<td>20-040</td>
<td>Genetic improvement of beans (Phaseolus vulgaris L.) for yield, pest resistance and nutritional value (D. P. Coyne, M. L. Schuster, J. R. Steadman)</td>
</tr>
<tr>
<td>20-044</td>
<td>Breeding turfgrasses for the Central Great Plains (T. P. Riordan)</td>
</tr>
<tr>
<td>20-045</td>
<td>Cold hardiness evaluation, selection, propagation and...</td>
</tr>
</tbody>
</table>
production of woody plants for Nebraska (W. A. Gustafson, Jr.)

20-046 Growth and development of ornamental plants as influenced by nutritional factors (E. T. Paparozzi)

20-047 Turfgrass ET rates, canopy resistance, and drought avoidance mechanisms (R. C. Shearman, E. J. Kinbacher)

Human Development and the Family

93-015 Independent living rehabilitation/habilitation for persons with severe disabilities (L. O. Schwab)

93-016 Stress, coping and adaptation in the middle years of the family life cycle (J. D. DeFrain)

93-017 Cognitive development and cognitive style within cross cultural perspective (V. Kalyan-Masih)

93-018 Farm wives external employment, family economic productivity and family functioning (P. Knaub)

93-019 Strengths and stresses of rural and urban Nebraska families (J. D. DeFrain, N. Stinnett)

93-020 Rural families and loneliness-incidence, extent, factorial relationship and coping strengths (J. C. Woodward)

93-021 Work and the family: perceptions of rural families and families of remarriage (P. Knaub)

93-022 Familial and environmental support for persons with severe disabilities in non-metropolitan areas of the midwest (L. Schwab)

Human Nutrition and Food Service Management

91-020 Nutrient bioavailability — a key to human nutrition (C. V. Kies, H. M. Fox)

91-025 Modification of human diets designed to affect lipid metabolism (C. V. Kies)

91-026 Communication strategies to improve nutritional practices of adolescents (H. M. Fox)

91-027 Nutrition problems of the elderly in southeast Nebraska and methods of changing food behavior (N. M. Betts, H. M. Fox)

91-028 Changes in dietary intake produced by social environment (H. M. Fox, N. M. Betts)

91-029 Palatability, acceptability and safety of food products and techniques used to prepare and preserve (P. Staats, A. Brenner)

91-030 Development of educational models focusing on the changing management skills needed by practicing dietitians (A. L. Hay, A. M. Brenner)

91-031 Utilization of nutrients in humans as influenced by current and projected dietary practices (C. V. Kies)

Northeast Research and Extension Center

42-003 Biology and control of the European corn borer and other selected insects of agronomic crops (J. F. Witkowski)

42-004 Management practices for renovation and/or improvement of pastures in northeast and eastern Nebraska (R. S. Moomaw, B. E. Anderson, C. A. Shapiro)

42-005 Influence of certain management regimens on performance of newly purchased feeder pigs (M. C. Brumm, E. R. Peo, Jr.)

42-006 Influence of housing and management regimes on nursery energy utilization and performance of early weaned pigs (M. C. Brumm, D. P. Shelton)

42-007 Beef production alternatives for the farmer-feeder (T. L. Mader, R. A. Britton, H. D. Jose)

42-008 Irrigation management of sloping loess soils (T. W. Dorn)

42-009 Impact of integrated crop management practices on European corn borer and related stalk boring insects (J. F. Witkowski)

Panhandle Research and Extension Center

*20-010 Improvement of potatoes as a food and energy resource (R. B. O’Keefe)

20-034 Quality and nutritive value of processed potatoes (R. B. O’Keefe)

44-004 Fertilizer and manure application for production of continuous corn (F. N. Anderson)

44-005 Testing hybrids and varieties of small grains, corn, sorghum, and other crops as needed for adaptation to western Nebraska (L. A. Nelson)

44-011 Development of dryland cropping systems for western Nebraska (J. L. Havlin)

44-012 Improvement of millet, corn and sorghum production by breeding and cultural studies (L. A. Nelson)

44-016 Weed control for western Nebraska irrigated crops and rangelands (R. G. Wilson, Jr.)

44-020 Efficient use of limited water supplies (C. D. Yonts, J. A. Smith, D. S. Nuland, L. A. Nelson)

*44-023 Supplementation and utilization of forage and grain resources in the High Plains Region (I. G. Rush, T. J. Klopfenstein)

44-024 Bionomics and management of selected insect pests in the Nebraska Panhandle (A. F. Hagen)

44-025 Biology and control of nematodal and fungal plant diseases in the Nebraska Panhandle (E. D. Kerr)

(continued)
Research Projects

(Panhandle Research and Extension Center,...)

44-026 Vegetation and animal response to a nonselective grazing system on native range in western Nebraska (P. E. Reece)

44-027 Cultural and nutrient investigations for crops of western Nebraska (F. N. Anderson)

44-028 Reduction of corn losses caused by nematodes in the North Central Region (E. D. Kerr, D. S. Wysong)

44-029 Machinery requirements and water management of conservation tillage for irrigated row crops in the Nebraska Panhandle (J. A. Smith, C. D. Yonts)

44-030 The effect of microclimate on plant pests in a semiarid environment (A. Weiss)

44-031 Transplanting sugar beets and other vegetable crops (J. A. Smith, C. D. Yonts, R. G. Wilson, E. D. Kerr, J. G. Robb)

Plant Pathology

21-001 Plant disease survey and special investigations (M. G. Boosalis, D. S. Wysong, J. E. Watkins)

21-003 Detection and control of virus diseases in Nebraska (L. C. Lane)

21-005 Control of cephalosporium stripe of wheat, *rhizoctonia solani* of sugar beets and soilborne diseases (M. G. Boosalis, J. E. Watkins, B. L. Doupink, G. A. Wicks, D. H. Yocom, E. D. Kerr)

21-006 Determine etiology of stem diseases of cottonwood, honeylocust, and pines (M. G. Boosalis, G. W. Peterson, J. W. Riffle)

21-010 Plant pathology outstate testing (M. G. Boosalis, D. S. Wysong, J. E. Watkins)

21-012 Electron microscopy in agricultural research (W. G. Langenberg, M. K. Brakke, E. M. Ball)

21-015 Epidemiology of diseases of bean and other vegetables in Nebraska (J. R. Steadman)

21-021 Characterization and genetics of bacterial plant pathogens and related bacteria (A. K. Vidaver)

21-022 Biological control of soil-borne plant pathogens in integrated crop management systems (M. G. Boosalis, G. Wicks, D. H. Yocom)

21-023 Detection, survival, and control of plant pathogenic bacteria on seeds and other plant parts (A. K. Vidaver)

21-030 Evaluation of grain sorghum protoplasts as tools for disease resistance against specific toxins (J. E. Partridge)

21-032 Genetics of stalk rot disease complex in corn and sorghum (G. S. Sidhu)

21-033 Identification of genes controlling reaction of sorghum to MDMV (S. G. Jensen)

21-034 Genetics and genome of a eukaryotic algal virus (J. L. VanEtten)

21-035 Corynebacterium pathogens of corn and wheat: serology and genetics (A. K. Vidaver)

21-036 Host-parasite interactions between fungal pathogens and their hosts (J. E. Partridge)

21-037 Fungicide management strategies for control of rusts, leaf spots, and blights of grass hosts (J. E. Watkins)

Roman L. Hruska U.S. Meat Animal Research Center

46-001 Development and operation of the U.S. Meat Animal Research Center (R. R. Oltjen)

46-002 Improvement of beef cattle through breeding methods (R. M. Koch, L. V. Cundiff, K. E. Gregory)

46-004 Improvement of beef cattle through breeding methods (germ plasm evaluation) (L. V. Cundiff, R. M. Koch)

46-007 Improvement of beef cattle through breeding methods (K. E. Gregory, L. V. Cundiff, R. M. Koch)

46-008 Limiting stress of food producing animals to increase efficiency (G. L. Hahn, J. A. Nienaber)

46-009 Genetic improvement of efficiency in the production of quality pork (L. D. Young, G. E. Dickerson, K. A. Leymaster, R. M. Koch)

46-010 Increased efficiency of lamb production (K. A. Leymaster, L. D. Young, G. E. Dickerson, R. M. Koch)

South Central Research and Extension Center

48-003 Field crop arthropod distribution and control in South Central Nebraska (L. L. Peters)

48-004 Occurrence of mycotoxins in feeds and foods and their effects on animal and human health (B. L. Doupink, N. R. Schneider)

48-005 Biology and control of troublesome weeds in South Central Nebraska (F. W. Roeth)

48-006 Management of water and energy on irrigated farms in South Central Nebraska (D. E. Eisenhauer)

48-009 Soybean cultural practices and cropping systems for South Central Nebraska (R. W. Elmore)

48-010 Neuroendocrine and environmental influences on sexual behavior in male pigs (D. G. Levis, J. J. Ford, R. K. Christenson)

48-011 Water conservation practices for irrigated agriculture in South Central Nebraska (D. E. Eisenhauer)

34
Textiles, Clothing and Design

94-011 Effects of functional textile finishes on comfort and protection of consumers (J. M. Laughlin)
94-012 Limiting pesticide exposure through textile cleaning procedures and selection (J. M. Laughlin, R. E. Gold)
94-013 The study of clothing as a contributor to the self-esteem of individuals with special needs (R. Kean, A. Newton)

Veterinary Science

14-001 Diagnostic surveillance of livestock and poultry health problems in Nebraska (E. D. Erickson, A. R. Doster, C. L. Kelling, N. R. Schneider)
14-009 Prevention and control of enteric diseases of swine (R. Moxey, E. O. Dickinson)
14-014 Bovine respiratory disease (M. L. Frey, M. B. Rhodes, E. O. Dickinson)
14-018 Integrated methods of parasite control for improved livestock production (M. B. Rhodes, D. L. Ferguson, E. O. Dickinson)
14-019 Respiratory diseases of swine (M. B. Rhodes, C. L. Kelling, E. O. Dickinson)
14-020 Infectious diseases of young calves (M. L. Frey, E. O. Dickinson)
14-021 Mycotoxins of swine in Nebraska (N. R. Schneider, A. Hogg, B. L. Doupin, E. R. Peo, Jr., S. R. Lowry)
14-022 Bovine respiratory syncytial virus: pathogenesis and immune response (M. L. Frey, G. A. Anderson)
14-027 Pathophysiology of the porcine stress syndrome: hormonal response to stress (E. T. Clemens, R. W. Mandigo)
14-028 Bovine viral diarrhea virus and reproduction in cattle (C. L. Kelling, M. L. Frey, A. R. Doster, M. B. Rhodes, S. R. Lowry)
14-029 Antigens of Ascaris suum which stimulate antibody production in swine (M. B. Rhodes)
14-030 Perinatal immune responses during infectious diseases in the bovine (G. A. Anderson)
14-031 Genetic resistance of pigs and cattle to infectious diseases with special consideration of lysozyme (E. O. Dickinson)
14-032 Monoclonal antibodies for characterization of bovine respiratory syncytial virus infections (G. A. Anderson)
14-033 Nutritional impact on colonic structure and function (E. T. Clemens)
14-034 Immunoperoxidase and monoclonal antibodies: diagnosis of bluetongue virus-induced fetal disease (G. A. Anderson)

Research Projects

14-035 Detection of viruses in bovine semen by nucleic acid hybridization (F. A. Osorio)
14-036 Immunity to infectious bovine rhinotracheitis (S. Srikumaran)
14-037 Lymphokine regulation of antibody production in bovine respiratory infections (S. Srikumaran)
14-038 Nebraska SPF swine laboratory (J. A. Schmitz, G. A. Anderson, A. Hogg, T. E. Socha)
14-039 Occurrence of mycotoxins in feed and foods and their effects on animal and human health (N. R. Schneider)
14-040 Development of rapid diagnostic techniques for virus diseases of livestock (F. A. Osorio)

West Central Research and Extension Center

43-007 Sorghum breeding and cultural research under reduced tillage (P. T. Nordquist)
43-020 Animal disease surveillance in western Nebraska (J. L. Johnson)
43-024 Biology, ecology and control of major insects affecting livestock (primarily bovine) in Nebraska (J. B. Campbell)
43-028 Development and culture of herbaceous ornamental plants (D. T. Lindgren)
43-031 Optimization of the use of range and complementary forages for red meat production (D. C. Clanton, J. T. Nichols)
43-032 Utilization of high fiber feedstuffs in pork production (D. M. Danielson)
43-033 Bionomics, vector capabilities and management strategies for face flies (J. B. Campbell)
43-034 Weed control in reduced tillage systems in West Central Nebraska (G. A. Wicks)
43-035 Evaluation of management practices to improve reproductive efficiency of beef cattle (G. H. Deutscher, D. C. Clanton)
43-036 Analysis of production systems and IPM research needs in the North Central Region (J. B. Campbell)
43-037 Characteristics and feed value of barley and western protein supplements for swine (D. M. Danielson)
43-038 Nutrition and management of cattle on range and in the feedlot (D. C. Clanton, G. H. Deutscher, I. G. Rush, C. R. Calkins)
43-039 Soil evaporation and plant transpiration from irrigated row crops (N. L. Klodze)
43-040 Increasing fertilizer nitrogen use efficiency in West Central Nebraska (G. W. Hergert)
43-041 Methods of processing differing sources and combinations of fiber and energy for swine (D. M. Danielson)
100th Annual Report

University of Nebraska
Agricultural Research Division
Agricultural Biochemistry

Journal Articles

M.S. Theses

Ernst, S. M. Partial Purification and Characterization of Pyruvate, Orthophosphate Dikinase from Rhodopseudomonas rubrum, May 1985. (R. Chollet, Advisor)

Yang, C. Evidence for Multiple Acid Phosphatase Activities in Wheat Thylakoids, October 1985. (J. P. Markwell, Advisor)

Ph.D. Theses

Budde, R. J. A. Regulation of Maize Leaf Pyruvate, Orthophosphate Dikinase by Reversible Phosphorylation, December 1985. (R. Chollet, Advisor)

Franzen, K. A. The Binding of The Host-Specific Toxins from Helminthosporium maydis Race T and Phyllosticta maydis to Mitochondria Isolated from Zea Mays, December 1985. (J. M. Daly, Advisor)
Publications

Agricultural Economics

Journal Articles

Research Bulletin

M.S. Theses

Al-Dimashki, O. S. Quarterly Estimation of Regional Ending Commercial Corn Stocks. (D. Linsenmeyer, Advisor)

Dearmont, D. An Economic and Perceptual Analysis of Field Windbreaks in Eastern Nebraska. (B. Johnson, Advisor)

Frank, S. Soybean Marketing Options, An Analysis of Contemporary Marketing Strategies in Developing Efficient Marketing Portfolios. (G. Pfeiffer, Advisor)

Hess, G. Calculating Truck Operating Costs in Nebraska — A Comparison of Speed, Commodity, Truck Size, and Road Surface Influences. (D. Linsenmeyer, Advisor)

Rempe, D. A. A Survey of Irrigation Practices in Nebraska. (G. Helmers, Advisor)

Sahs, R. Risk Analysis of Alternative Dryland Crop Rental Arrangements in East Central Nebraska. (G. Helmers, Advisor)

Sovboda, J. An Analysis of the Effects of Farm Debt Restructuring Alternatives on the Financial Liquidity and Loan Repayability for a Higher Leveraged Southeastern Nebraska Farm. (R. Hanson, Advisor)

Ph.D. Theses

Mulhim, F. Household Consumption Patterns of Beef Products: A Disaggregated Cross-Sectional Analysis. (J. Hassler, Advisor)

Schale, G. Economic Impacts from Weather Variability in Nebraska. (R. Supalla, Advisor)

Agricultural Engineering Department

Journal Articles

M.S. Theses

Li, Y. Electrical load management in conjunction with alternative energy sources on a swine farm. (T. L. Thompson, Advisor).

(continued)
Publications

(Agricultural Engineering Department….)

Meng, J.
A simulation model to predict spring field working time for crop production systems management in Nebraska. (K. Von Bargen, Advisor).

Shi, X.
Peak summer electrical demand characteristics of some Nebraska farmsteads. (L. E. Stetson, Advisor).

Vacha, K. L.
Floor heating for nursery pigs. (J. A. DeShazer, Advisor).

Xin, H.
Poultry energetics as influenced by atmospheric ammonia and temperature. (J. A. DeShazer, Advisor).

Ms. Moomaw.

Ph.D. Theses

Al-Kahtani, H. A. M.
Some biochemical and microbiological changes in proso millet flour during storage. (M. Hanna, Advisor).

Burnside, M. W.
Computer simulation and control of small scale ethanol distillation systems. (L. L. Bashford, Advisor).

Agronomy

Journal Articles

Burnside, O. C. and R. S. Moomaw.

Busse, M. D., and J. R. Ellis.

Ellis, J. R., H. L. Larsen, and M. Boosalis.

Gerik, T. J. and J. D. Eastin.

Hart, M., S. W. Waller, S. R. Lowry, and R. N. Gates.

Hergert, G. W.

Jones, P., and W. A. Compton.

Lueking, M. A., and J. S. Schepers.

Mielke, L. N.

Moomaw, R. S.

Moomaw, R. S. and A. R. Martin.

Moomaw, R. S. and A. R. Martin.

Petersen, P. J. and B. A. Swisher.

Pomeranz, Y., C. J. Peterson, and P. J. Mattern.

Skopp, J.

Specht, J. E., J. H. Williams and D. R. Pearson.

Wicks, G. A.

M.S. Theses

Ali, A. S. I.
Use of Infiltration Equation Parameters to Assess Crop Effects on Water Infiltration into Soil. (D. Swartzendruber, Advisor)

Dkhili, M.
Salt Effects on Seed Germination and Seedling Growth of Selected Perennial Grasses. (B. E. Anderson, Advisor)

Gebhart, D. L.
Fire, Fertilizer, and Herbicidal Manipulation of Mixed Prairie Vegetation. (J. L. Stub bendieck, Advisor)

Hayden, T. A.
Effect of Herbicide Incorporation Methods on Shattercane Control in Corn. (A. R. Martin, Advisor)

Lyon, D. J.
Response of Fieldbeans (Phaseolus vulgaris) to Reduced Rates of 2,4-D and Dicamba. (R. G. Wilson, Advisor)

Mesarch, M. A.
Reduction of Heat and Moisture Stress by Scheduled Irrigation in Corn. (J. M. Norman, Advisor)

Nielson, C. A.
Yield and Quality of Four Warm-season Grasses. (J. L. Stub bendieck, Advisor)

Odhiambo, M. O.
Response to Divergent Mass Selection for Seed Size in Maize (Zea mays L.). (W. A. Compton, Advisor)

Petersen, B. B.
Influence of Wheat Stubble Residue on the Activity and Dissipation of Three Acetanilide Herbicides. (P. J. Shea, Advisor)

Raju, P. S.
Differential Phosphorus Nutrition in Sorghum Genotypes. (R. B. Clark, Advisor)

Roder, W.
Factors Influencing Grass Seeding Success on a Sandy Soil. (S. S. Waller, Advisor)

Sander, K. W.
Herbicide Compatibility and Phytotoxicity When Mixed with Liquid Fertilizers. (O. C. Burnside, Advisor)

Stecker, J. A.

Stevens, S. J. R.

Stuefer-Powell, C. L.
Root Bud Development and Glyphosate Activity in Canada Thistle. (B. A. Swisher, Advisor)

TiradoSoto, C. S.
Heritability and Genetic Correlation Estimates in the Supergold Popcorn Variety. (W. A. Compton, Advisor)

Zaarawi, W. K.
Chromosomal Locations of Genes for Traits Associated with Lodging and Yield in Winter Wheat Using Reciprocal Substitution Lines. (M. R. Morris, Advisor)

Zachariassen, J. A.
Growth, Nitrogen Uptake, and Water Use by Eight Legume and Three Nonnodulated Species at Three Soil Temperatures. (J. F. Power, Advisor)

Zuris, N. K.
Translocation of Foliar and Soil Applied 14C-Chlorsulfuron and the Effect of Plot Growth Stage and Rate of 14C-Chlorsulfuron on Canada Thistle. (R. G. Wilson, Advisor)

Ph.D. Theses

Abdelrahman, M. E.
Selection for Grain Yields Under Water Stress in Sorghum (Sorghum bicolore (L.) Moench). (J. D. Eastin, Advisor)

Alvarado, L. R.
Gene Effects Controlling Grain Yield and Nitrogen Use Efficiency Traits in Maize. (C. O. Gardner, Advisor)

Elliott, M. D.
Chromosomal Locations of Genes for Aluminum Tolerance, Leaf Rust, and High Protein in the Wheat Cultivar "Atlas 66". (M. R. Morris, Advisor)

Gates, R. N.
Influence of Thermo-ammoniation on Forage Quality and Utilization of Warmseason Grass Hay. (S. S. Waller, Advisor)

Gatliff, E.
The Effects of Tillage, Residue Placement, Nitrogen Rate and Application Method on Production, Soil N and Fertilizer N Uptake of Irrigated Corn. (R. A. Olson, Advisor)

Lamb, J. F. S.
Inheritance of Seedling Hydrocyanic Acid Potential and Other Traits in Sorghum-sudangrass Crosses. (F. A. Haskins, Advisor)

Livera-Munoz, C.
Effects of Suboptimal Temperatures on Development II Measuring Conductance and Water Vapor and CO2 Exchange in Canopies. (J. D. Eastin, Advisor)

Odo, P. E.
Evaluation of Mixed Crop of Sorghum (Sorghum bicolore (L.) Moench) and Legumes. (J. W. Maranville, Advisor)

Raun, W. R.
Placement of Phosphorus and Nitrogen Fertilizers for Minimum Till Corn Under Sprinkler Irrigation. (R. A. Olson, Advisor)

Santos, J. R. A.
Assessing the Effects of Long-term Sorghum-soybean Rotation Given Four Fertilizer Treatments. (M. D. Clegg, Advisor)

Stevens, E. J.

Sutton, P. J.
Feasibility of Using Iron and Aluminum Phosphates as Phosphatic Fertilizer Sources on Calcareous Soils. (G. A. Peterson, Advisor)

Tiffany, G. D.
Gridded Mass Selection for Seed Number and Seed Weight in Grain Sorghum Population NP21R. (W. M. Ross, Advisor)

Traore, M.

Animal Science

Journal Articles

Abawi, F. G., S. E. Scheideler and T. W. Sullivan.

(continued)
Publications

(Animal Science...)

Al-Mashhadani, E. H. and M. M. Beck.

Brown, W. F., L. E. Moser and T. J. Klopfenstein.

Brumm, M. C. and E. R. Peo, Jr.

Brumm, M. C., D. P. Shelton and R. K. Johnson.

Chiba, L. I., R. E. Peo, Jr., A. J. Lewis, M. C. Brumm, R. D. Fritschen and J. D. Crenshaw.

Clark, A. K., J. L. Albright, L. D. Muller and F. G. Owen.

Crenshaw, M. A. and D. M. Danielson.

Crenshaw, M. A. and D. M. Danielson.

Danielson, D. M.

Firman, J. D. and M. M. Beck.

Fogerty, N. M., G. E. Dickerson and L. D. Young.

effects of various infestation levels of cattle lice (Mallophage: Trichodectidae and Anoplura: Haematopinae) on feed efficiency and weight gains of beef heifers. J. Econ. Entomol. 78:1304-1307. 1985.

Grosbach, D. A., A. J. Lewis and E. R. Peo, Jr.

Klopfenstein, T., R. Stock and R. A. Britton.

Koch, R. M., G. E. Dickerson, L. V. Cundiff and K. E. Gregory.

Mader, T. L., R. A. Britton, D. E. Pankaskie and V. Krause.

Miller, H. L. and G. H. Deutscher.

Petersen, M. K., D. C. Clanton and R. A. Britton.

Poos-Floyd, M., T. Klopfenstein and R. A. Britton.

Taher, A. I., E. W. Gleaves and F. B. Mather.

Umunna, N. N., R. R. Bartling and T. J. Klopfenstein.

M.S. Theses

Burnell, T. W.
Effects of Dietary Fluoride on Growth, and Blood and Bone Characteristics of Growing-Finishing Swine. (E. R. Peo, Jr., Advisor)

Huang, Y.
Effect of Unilateral Hysterectomy-Ovariectomy on Uterine Growth. (R. K. Johnson, Advisor)

Nunez, R. D.
Heterosis of Lifetime Productivity and Dentition in Beef Cattle. (G. E. Dickerson and L. V. Cundiff, Advisors)

Ward, M. G.
Grazed Switchgrass and Ammoniated Switchgrass or Big Bluestem Hay for Beef Cattle. (J. K. Ward, Advisor)

Wimer, S. K.
Meffridle's Effects on Smooth Brome Quality, Leaf-Stem Composition, and Grazing Cow-Calf Performance. (J. K. Ward, Advisor)

Ph.D. Theses

Aines, G. E.
Effects of Alkali Source and Level of Treatment of Crop Residues on Fiber Composition and Digestibility. (R. A. Britton, Advisor)

Azzaaz, S. M.
Alternatives for Genetic Improvement of Reproductive Efficiency in Beef Cattle. (M. K. Nielsen, Advisor)

Brendemuhl, J. H.
Effect of Protein and Energy Intake by Primiparous Sows During Lactation on Cow Reproductive Performance and Body Composition, and Sow and Litter Performance. (A. J. Lewis, Advisor)

Buckley, B. A.
Relationship of Body Composition and Fasting Heat Production in Three Biological Types of Growing Beef Heifers. (G. E. Dickerson and L. V. Cundiff, Advisors)

Crenshaw, J. D.
The Use of Mold Inhibitors in Dry and High Moisture Grain Diets for Swine. (E. R. Peo, Jr., Advisor)

Day, M. L.
Endocrine Mechanisms of Puberty in Heifers. (D. R. Zimmerman and J. E. Kinder, Advisors)

Othhoff, J. C.
Relationships Among Feed Intake, Body Composition and Fasting Heat Production in Mature Ewes. (G. E. Dickerson, Advisor)

Taher, A. I.
Special Calcium Appetite and the Effect of Estradiol-17B on Calcium Metabolism in the Laying Hen. (E. W. Gleaves and M. M. Beck, Advisors)

Whitler, J. C.
Effect of Varying Time of Nutrient Intake During Two Production Stages on Productivity of Two-Year-Old Beef Heifers. (D. C. Clanton, Advisor)

Worrell, M. C.
Effect of Meadow Hay Quality on Voluntary Intake, Rate of Passage and Rate of Structural Degradation in Growing Cattle. (D. C. Clanton, Advisor)

Biometrics and Information Systems Center

Journal Articles

Exact confidence intervals for heritability on a progeny mean basis. Crop Sci. 25:192-194.

Koebler, A. E., R. J. Johnson, O. C. Burnside, and S. R. Lowry.

Rauscher, J. D., R. E. Gold, and W. W. Stroup.

Modified Williams' sticky traps used to measure activity of adult stable flies, Stomoxys Calcitrans (L.) in eastern Nebraska. The Southwestern Entomol. 10(1):32-38. 1985.

Center for Agricultural Meteorology and Climatology

Journal Articles

(continued)
Publications

(Center for Agricultural Meteorology and Climatology....)

Wilhite, D. A. and M. H. Glantz.

Ph.D. Theses

Graser, E. A.

Ramana Rao, T. V.

Consumer Science and Education

Journal Articles

M.S. Theses

Baumert, M.
Adolescent Wellness Lifestyle and Self Concept. (G. Newkirk, Advisor)

Hansen, S.
The Relative Impact of Attitudes, Behavior, and Housing Characteristics on Energy Use in Subsidized Housing. (R. Combs, Advisor)

Hatter, S. D.
Impact of a Financial Management Workshop on Establishing Written Family Goals. (G. Newkirk, Advisor)

Minch, B.
Perceptions of the Concepts Vocational Home Economics Teachers are Qualified to Teach. (G. Newkirk, Advisor)

Myers, S.
Factors Influencing Relative Contribution of Husbands and Wives in the Performance of Household Tasks. (R. Combs, Advisor)

Shommo, M.
Developing Critical Thinking in the Secondary Home Economics Classroom. (G. Newkirk, Advisor)

Stalnaker, A. J.
Factors Related to Farm Families' Use and Satisfaction with the Microcomputer. (R. Combs, Advisor)

Waller, B.
Should Millard South High School Offer a Cooperative Child Care Training Program. (G. Newkirk, Advisor)

Entomology

Journal Articles

Boos, J. and B. C. Ratcliffe.

Dix, M. E. and R. E. Doolittle.

Gold, R. E. and T. Holcaw.

Kindler, S. D. and S. M. Spomer.

Kindler, S. D. and S. M. Spomer.

Improvements in laboratory rearing of the southern corn rootworm, Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae), on an artificial diet and corn. J. Econ. Entomol. 78:290-293. 1985.

Meinke, L. J. and J. E. Slosser.

Monke, B. J., Z. B Mayo, and H. J. Ball.
Bioassay rating system for predicting mortality of moribund corn rootworm (Coleoptera: Chrysomelidae) larvae following exposure to insecticide treated soil. J. Econ. Entomol. 78:467-470. 1985.

Penny, N. D. and B. C. Ratcliffe.

Yearley, M.
Skoda, C.
Coffelt, O.
Ogbonnaya, A.
Rethwisch, M.
Weiss, M. J. K.
Villani, M. G.
Abid, Hameed
Andersen, and R. Kozub.
Stamm, D. E., Z B Mayo, J. B.
Rauscher, J. D., R. E. Gold, and W. W. Stroup.
Ratcliffe, B.

Nosema apid (Zander): its effects on the honeybee, *Apis mellifera* (Linnæus) and the effect of wintering bumblebees on the survival of N. apis infected colonies. (H. J. Ball, Advisor).

M.S. Theses

Abid, Hameed S.

Coffelt, M. A.
The biology of a honeyysucke aphid *Hyadaphis tataricae* (Aizenberg) in Nebraska. (J. A. Jones, Advisor).

Currier, D.
Application of Chlorpyrifos 4E through center pivot irrigation systems for control of larvae of the European corn borer *Ostrinia nubilalis* (Hubner). (J. F. Witkowski, Advisor).

Rethwisch, M.

Skoda, S. R.
Wide area treatment of horn and face flies in south central Nebraska: with observations on parasites of face flies. (J. B. Campbell, Advisor).

Yearley, M.

Nosema api (Zander): its effects on the honeybee, *Apis mellifera* (Linnæus) and the effect of wintering bumblebees on the survival of *N. apis* infected colonies. (H. J. Ball, Advisor).

Ph.D. Thesis

Ogbonnaya, A. C.

Influence of biotype E greenbugs on biochemical properties of sorghum. (S. D. Kindler, Advisor)

Environmental Programs

Journal Articles

Gold, R. E. and T. Holcslaw.

Rauscher, J. D., R. E. Gold and W. W. Stroup.

Food Science And Technology

Journal Articles

Ananthawarman, R. C., M. R. McElhan, and M. C. Bourne.

Armstrong, S. J., Rupnow, J. H., Walker, C. E.and Davis, A.

Bullerman, L. B.

Bullerman, L. B.

Dickson, J. S. and R. B. Maxcy.

Dickson, J. S. and R. B. Maxcy.

Fernandes, C. F., Dubash, P. J. and Walker, C. E.

Friend, B. A. and K. M. Shahani.

Froning, G. W. and B. Sackett.
Effect of tumbling turkey breast muscle in the presence of salt (continued)
Publications

/(Food Science and Technology....) /

M.S. Theses

Fletcher, A. L. The impact of repeated freeze-thaw in the microenvironment involving surface contaminants. (R. B. Maxcy, Advisor)

Jones, G. Hypocholesteremic and hypoglycemic effect of acidophilus yogurt. (K. M. Shahani, Advisor)

Krueger, R. R. Evaluation of processing and plant growth regulation effects on the physical and chemical properties of corn starch. (C. E. Walker, Advisor)

Marshall, D. L. An evaluation of sucrose fatty acid ester emulsifiers as potential antimicrobial agents. (L. B. Bullerman, Advisor)

Rayas, P. Peptide, methionine, and cysteine release from dry beans undergoing proteolysis following various treatments. (L. D. Satterlee, Advisor)

Ph.D. Theses

Al-Kahtani, H. A. Some biochemical and microbiological changes in proso millet flour during storage. (M. A. Hanna, Advisor)

Glover, J. M. The functionality of soybean components as compared to those of a wheat in a high ratio cake. (C. E. Walker, Advisor)

Mahjoub, A. Mold growth and aflatoxin production on olives and olive products. (L. B. Bullerman, Advisor)

Forestry, Fisheries and Wildlife

Journal Articles

M.S. Theses

Angle, K. J.
Variation in Drought Resistance of Four Provenances of Bur Oak. (James R. Brandle, Advisor).

Holm, B. A.
Thiram and Methiocarb as Rodent Repellents and Agents for Conditioned Aversion. (Ron J. Johnson, Advisor).

Riggs, G. A. Jr.

Schleiger, S.

Troelstrup, N. H. Jr.
Macroinvertebrate colonization and consumer food habits in the Missouri River at Northeastern Nebraska. (Gary L. Hergetrader, Advisor).

Horticulture

Journal Articles

Beaver, J., C. Paniagua, D. P. Coyne and G. Freytag.

Coyne, D. P.

Shearman, R. C. and J. E. Watkins.

M.S. Theses

Arnaud-Santana, E.
Genetic variations, inheritance and relationship of the reaction to common blight (*Xanthomonas campestris* p.v. *phaseoli*) and number of days to flowering in dry beans (*Phaseolus vulgaris* L.). (D. P. Coyne, Advisor)

Fech, John C.
Buffalograss responses to preemergency herbicides. (E. J. Kinbacher and R. C. Shearman, Advisors)

Finke, M. L.
The inheritance and association of resistance to rust (*Uromyces phaseoli*) and number of days to flowering in dry beans (*Phaseolus vulgaris* L.). (D. P. Coyne, Advisor)

Finke, R. W.
Growth responses of woody plant seedlings to four levels of nitrogen applied through drip irrigation. (E. T. Paparozzi, Advisor)

Hatterman, H. M.
Cultural practices for field grown static (*Limonium sinuatum*). (E. T. Paparozzi, Advisor)

Peterson, M. P.
Evapotranspiration rates of cool-season turfgrass species. (E. J. Kinbacher and R. C. Shearman, Advisors)

Ph.D. Thesis

Aceves-Navarro, L. A.
Agroclimatology of sorghum in different regions of Mexico. (Ralph Nield, Advisor)

Human Development and The Family

Journal Articles

Rowe, G., R. Williams, P. Lee, and S. Johnson.

Kalyan-Masih, V.

Knaub, P. K.

M.S. Thesis

Peetz, E. S.

Human Nutrition and Food Service Management

Journal Articles

Anderson, K. and C. Kies.

Anderson, K. and C. Kies.

Betts, N. M.

Betts, N. M. and D. Foote.

Betts, N. M. and V. M. Vivian.

Clarke, J. F. and C. Kies.

Cooke, L. R., M. A. Mitchell, C. R. Angle and S. J. Stohs.

Crumley, W. B., H. M. Fox, G. K. Newell and N. E. Johnson.

(continued)
Publications

(Human Nutrition and Food Service Management....)

Kies, C.

Kies, C.

Kies, C.

Kneip, J. K., H. M. Fox and J. K. Fruehling.

McShane, C. and H. M. Fox.

Newell, G. K., H. M. Fox, W. D. Brewer and N. E. Johnson.

Nnakwe, N. and C. Kies.

Nnakwe, N. and C. Kies.

Nnakwe, N. and C. Kies.

Worman, P. E. and P. A. Staats.

M.S. Theses

Alvarado, L. V.
Effects of Arginine and Lysine Supplements on Protein Nutritional Status of Healthy Adult. (C. Kies, Advisor)

Brennan, M. A.
Phosphorus Utilization as Affected by Ascorbic Acid-Mineral Interactions. (C. Kies, Advisor)

Buonomo, G. M.
Effect of Tryptophan, Arginine and Lysine Supplements on Mineral Status of Human Adults. (C. Kies, Advisor)

Campbell, C. A.
Cost Analysis of Storing and Transporting Foods for the Nebraska Commodity Supplemental Food Program. (P. Staats, Advisor)

Chao, P. Y.
Potassium and Sodium Utilization as Affected by Level and Source of Dietary Fat. (C. Kies, Advisor)

Chao, P. S.
Labor Cost and Productivity Analyses of Two Residence Hall Foodservices at the University of Nebraska. (A. Brenner, Advisor)

Chuang, J. H.
Iron, Copper, Zinc and Lead Status as Affected by Arginine, Lysine and Tryptophan. (C. Kies, Advisor)

D’Souza, J. M.
Panthenolic Acid and Copper Intake and Utilization of Pantothenic Acid, Niacin and Vitamin B-6. (C. Kies, Advisor)

Edmonds-Umekunne, K. E.
Effects of Graded Levels of Potassium Gluconate on the Excretion of Potassium and Other Nutrients. (C. Kies, Advisor)

Hackett, P. J.
Nutrition Knowledge and Food Intake of Adults As Influenced by a Red Cross Nutrition Course. (H. Fox, Advisor)

Ip, S. W.
Lead and Copper Utilization as Influenced by Level and Source of Dietary Fat. (C. Kies, Advisor)

Jankovich, J. L.

Kohns, K. J.
Effect of Purified Amino Acids Arginine, Lysine and Tryptophan on Nutrition Status of Human Adults: Effect on Blood Serum Lipid Levels. (C. Kies, Advisor)

Marvin, P. G.
Patient Education at Midlands Diabetes Center. (N. Betts, Advisor)

Repennings, K. A.
A Comparison of Two Methods of Presenting Nutrition Information to the Elderly. (N. Betts, Advisor)

Ricketts, C. D.
Magnesium and Manganese Utilization as Affected by Level and Source of Dietary Fat. (C. Kies, Advisor)

Wang, R. S.
Chromium Utilization as Affected by Level and Source of Dietary Fat. (C. Kies, Advisor)

Weber, L. A.
Sodium Utilization of Human Adults as Affected by Ascorbic Acid and Selected Mineral Interactions. (C. Kies, Advisor)

Wey, S. P. H.
Hypercaloric Enteral Diets: Impact on Selected Mineral Utilization by Humans. (C. Kies, Advisor)

Yokomizo, L. G.
Fecal Fat Excretion Levels of Omnivores and Lacto-Vegetarian and Vegetarians Fed Omnivore, Lacto-Vegetarian and Vegetarian Diets Supplemented with Wheat Bran. (C. Kies, Advisor)

Zancerella, J. A.
Infant Feeding and Weaning Practices of Families in Lincoln, Nebraska. (H. Fox, Advisor)

Ph.D. Theses

Bizem, H. R.
Chromium Status: Effect of Demographic Characteristics, Oral Contraceptive Agents and Chromium Supplements. (C. Kies, Advisor)

Lewis, N. F.
Current Nutrition Issues: Effect of Bran or Multivitamin-mineral Supplements on Vitamin B12 Status, Counseling Skills of Nutrition Students and Breastfeeding Duration of WIC Mothers. (H. Fox, Advisor)

Misner, S.
Obstetric Nutrition: Studies on Meeting Nutritional Needs of Pregnant Women. (H. Fox, Advisor)

Northeast Research And Extension Center

Journal Articles

Brumm, M. C. and E. R. Peo, Jr.
Brumm, M. C., D. P. Shelton and R. K. Johnson.

Burnside, O. C. and R. S. Moomaw.

Mader, T. L., R. A. Britton, D. E. Pankaskie and V. Krause.

Moomaw, R. S.

Moomaw, R. S. and A. R. Martin.

Moomaw, R. S. and A. R. Martin.

Samson. (continued)
Publications

(Plant Pathology....)

Sidhu, G. S.

Yonker, C. R., K. D. Caldwell, J. C. Giddings, and J. L. Van Etten.

Watkins, J. E.

M.S. Theses

Goldberg, K. B.
Concentrations of Maize Chlorotic Mottle Virus and Maize Dwarf Mosaic Virus in Single and Mixed Infections. (M. K. Brakke, Advisor)

Fujimoto, D. K.
Analysis of Strain Variation in Xanthomonas Campestris Pathovar (Phaseoll (Smith) Dye. (A. K. Vidaver, Advisor)

Ph.D. Thesis

Xia, Y.
Studies of a Restriction and Modification System Induced by PBCV-1 Virus Infection of a Chlorella-like Green Alga. (J. L. Van Etten, Advisor)

South Central Research and Extension Center

Journal Articles

Textiles, Clothing and Design

Journal Articles

Camacho, J. M. and J. Laughlin.

Khan, R. C.

Laughlin, J., A. M. Parkhurst, B. M. Reagan, C. M. Janecek.

Laughlin, J., C. Easley, and R. E. Gold.

Newton, A.

Veterinary Science

Journal Articles

Cheeke, P. R., J. A. Schmitz, E. D. Lassen, and E. G. Pearson.

Fariss, M. W., M. K. Brown, J. A. Schmitz, and D. J. Reed.

Harrison, J., C. Abildgaard, J. Lazerson, R. Culbertson, and G. Anderson.

Kobel, W., J. B. Campbell, D. B. Hudson, J. L. Johnson, and D. D. Sumner.

Kobel, W., J. B. Campbell, D. B. Hudson, J. L. Johnson, and D. D. Sumner.

Lilley, C. W., D. W. Hamar, M. Gerlach, and J. L. Johnson.

M.S. Theses

Brown, T. L. Virus Concentration Procedures for Assay of Run-Off Water from Farms with Pseudorabies Infected Swine. (C. L. Kelling and M. L. Frey, Advisors)

Jewett, C. J. Characterization of Selected Bovine Viral Diarrhea Virus Isolates in Gnotobiotic Lambs (C. L. Kelling and M. L. Frey, Advisors)

Lin, B. C. Detection of Mycoplasma Hyopneumoniae in Formalin-Fixed, Paraffin-Embedded Porcine Lung by Use of the Immunoperoxidase Method, and a Failure to Induce Pulmonary Lesions in Rats Inoculated with Mycoplasma Hyopneumoniae (A. R. Doster, Advisor)

Schultz, B. D. Effect of Epinephrine and/or Pentagastrin on Canine Secretion and Blood Chemistry. (E. T. Clemens, Advisor)

Ph.D. Thesis

Nichelson, R. L. Colloid osmotic pressure in the bovine species. (J.F. Amend, Advisor)

Publications

Western corn rootworm (Coleoptera: chrysomelidae) beetle counts as a means of making larval control recommendations in Nebraska. J. Econ. Entomol. 78:794-798. 1985.

Ph.D. Theses

Whittier, J. C. Effect of Varying Time of Nutrient Intake During Two Production Stages on Productivity of Two-year Old Beef Heifers. (D. Clanton and G. Deutscher, Advisors)

Worrell, M. A. Effect of Meadow Hay Quality on Voluntary Intake, Rate of Passage and Rate of Structural Degradation in Growing Cattle. (D. Clanton, Advisor)

West Central Research and Extension Center

Journal Articles

AGRICULTURAL RESEARCH SITES

- Panhandle Research and Extension Center, Scottsbluff
- Gudmunsen Sandhills Laboratory
- Northwest Agricultural Laboratory, Alliance
- Northeast Research and Extension Center, Concord
- Genoa Farm (Foundation Seed), Genoa
- Agricultural Research and Development Center, Mead
- Horning State Farm (Forestry), Plattsmouth
- University of Nebraska East Campus, Lincoln
- Southeast Research and Extension Center, Lincoln
- Dalbey-Halleck Farm, Virginia
- High Plains Agricultural Laboratory, Sidney
- West Central Research and Extension Center, North Platte
- South Central Research and Extension Center, Clay Center
REPORT OF RESEARCH EXPENDITURES
THE UNIVERSITY OF NEBRASKA
AGRICULTURAL EXPERIMENT STATION
(July 1, 1985 through June 30, 1986)

FEDERAL FORMULA FUNDS:

Hatch Formula .. $2,018,807
Regional Research .. 744,000
McIntire-Stennis ... 102,212
Animal Health .. 170,282
Total Federal Formula Funds ... $3,035,301

STATE APPROPRIATED FUNDS ... $12,610,563

CONTRACTS AND GRANTS:

USDA Coop Agreements ... $2,509,390
USDA Special & Competitive .. 446,307
Federal Grants - NSF, NIH, HEW, AID 1,740,861
Industry Grants .. 2,180,724
Total Contracts and Grants ... $6,877,282

Sub-Total .. $22,523,146

PRODUCT SALES: ... $4,418,118

TOTAL EXPENDITURES: ... $26,941,264