Plans for Crash-Tested Bridge Railings for Longitudinal Wood Decks on Low-Volume Roads

Michael A. Ritter
USDA Forest Service

Ronald K. Faller
University of Nebraska - Lincoln, rfaller1@unl.edu

David B. Bunnell
U.S. Geological Survey, dbunnell@usgs.gov

Paula D. Hilbrich Lee
USDA Forest Service

Barry Thomas Rosson
University of Nebraska - Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/usdafsfacpub

Part of the Forest Biology Commons, Forest Management Commons, Other Forestry and Forest Sciences Commons, and the Plant Sciences Commons


This Article is brought to you for free and open access by the U.S. Department of Agriculture: Forest Service -- National Agroforestry Center at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA Forest Service / UNL Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Plans for Crash-Tested Bridge Railings for Longitudinal Wood Decks on Low-Volume Roads

Michael A. Ritter
Ronald K. Faller
Steve Bunnell
Paula D. Hilbrich Lee
Barry T. Rosson
Abstract

The plans for crashworthy bridge railings for low-volume roads were developed through a cooperative research program involving the USDA Forest Service, Forest Products Laboratory (FPL); the Midwest Roadside Safety Facility, University of Nebraska-Lincoln (MWRSP); and the Forest Service, National Forest System, Engineering. Three railings were developed and successfully tested in accordance with National Cooperative Highway Research Program (NCHRP) Report 350 Test Level 1 requirements. The fourth system was developed for a lower test level based on criteria developed by the Forest Service for single-lane bridges on very low-volume roads. For the convenience of the user, full drawing sets are provided in customary U.S. and S.I. units.

August 1998


A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705–2398. Laboratory publications are sent to hundreds of libraries in the United States and elsewhere.

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin.

The use of trade or firm names is for information only and does not imply endorsement by the U.S. Department of Agriculture of any product or service.

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, or marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (braille, large print, audiotape, etc.) should contact the USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250–9410, or call (202) 720–5964 (voice and TDD). USDA is an equal employment opportunity employer.
Plans for Crash-Tested Bridge Railings for Longitudinal Wood Decks on Low-Volume Roads

Michael A. Ritter, Research Engineer¹
Ronald K. Faller, Research Engineer²
Steve Bunnell, Civil Engineer (retired)³
Paula D. Hilbrich Lee, General Engineer¹
Barry T. Rosson, Associate Professor²

¹USDA Forest Service, Forest Products Laboratory
²Midwest Roadside Safety Facility, University of Nebraska-Lincoln
³USDA Forest Service, National Forest System, Engineering

Introduction
Since 1989, the USDA Forest Service, Forest Products Laboratory (FPL), and the Midwest Roadside Safety Facility, University of Nebraska-Lincoln (MwRSF) have worked in cooperation to develop crash-tested bridge railings for timber bridge decks. This research originally focused on Performance Level 1 (PL-1) and Performance Level 2 (PL-2) railings as outlined in the AASHTO Guide Specifications for Bridge Railings (AASHTO 1989), but was expanded as a cooperative effort with the Federal Highway Administration (FHWA) to include Test Level 2 (TL-2) and Test Level 4 (TL-4) railings in accordance with Recommended Procedures for the Safety Performance Evaluation of Highway Features (NCHRP Report 350) (Ross and others 1993). Although this research resulted in numerous railing systems for bridges on primary or secondary highways, there were no railings developed specifically for low-volume roads (Ritter and others 1995). Since most timber bridges are located on low-volume roads, the Forest Service, National Forest System, Engineering identified a need to develop crushworthy timber bridge railings designed specifically for low-volume applications.

These plans reflect the results of a cooperative research project between FPL, MwRSF, and the Forest Service, National Forest System, Engineering, to develop four crushworthy bridge railing designs for low-volume applications. Three of the railings were developed and successfully tested in accordance with NCHRP 350 TL-1 requirements (Ross and others 1993). The fourth system was developed for a lower test level based on criteria developed by the Forest Service for single-lane bridges on very low-volume roads. For the convenience of the user, full drawing sets are provided in customary U.S. and S.I. units.

The USDA Forest Service hereby gives notice that the information herein contained shall not create any warranty, express or implied. The person or organization using this information waives and relinquishes any and all claims against the United States of America, its officers, employees, and project cooperators, for any loss, damage, personal injury, or death incident to, or occurring as a consequence of, the use thereof.

Acknowledgments
We express sincere appreciation to Brent Prauner, Keith Robertson, and Eric Keller of the Midwest Roadside Safety Facility, University of Nebraska-Lincoln, and the FPL Specifications Service Team for assistance in preparing this publication.

Specifications


A36 Standard Specification for Structural Steel
A47 Standard Specification for Ferritic Malleable Iron Castings
A307 Standard Specification for Carbon Steel Bolts and Studs, 60,000 lbs/in² Tensile Strength
A325 Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 kips/in² Minimum Tensile Strength
A722 Standard Specification for Uncoated, High-Strength Steel Bar for Prestressing Concrete


References


Address comments on these drawings to the Wood Transportation Structures Team, USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705-2398. http://www.fpl.fs.fed.us/wt/

Contents
Rail Drawings in Customary U.S. Units
Rail Drawings in S.I. Units
Rail Drawings In Customary U.S. Units
The bridge railings depicted on these drawings were developed and crash tested under a cooperative research agreement between the Midwest Roadside Safety Facility of the University of Nebraska and the USDA Forest Service, Forest Products Laboratory.

Crash-Tested Bridge Rails for Longitudinal Wood Decks on Low-Volume Roads

Curb Railing
NCHRP 350 Test Level (TL-1) August 1998
Sheet 1 of 1
Rail Drawings In S.I. Units
The bridge railings depicted on these drawings were developed and crash tested under a cooperative research agreement between the Midwest Roadway Safety Research Center of the University of Nebraska-Lincoln and the USDA Forest Service, Forest Products Laboratory.

Crash-Tested Bridge Rails for Longitudinal Wood Decks on Low-Volume Roads

Curb Railings
NCHRP 350 Test Level 1 (TL-1)
August 1998
Sheet 1 of 1