2013

Current-Based Fault Detection for Wind Turbine Systems via Hilbert-Huang Transform

Dingguo Lu
University of Nebraska-Lincoln, stan1860@huskers.unl.edu

Wei Qiao
University of Nebraska-Lincoln, wqiao@engr.unl.edu

Xiang Gong
University of Nebraska–Lincoln, xiang.gong@huskers.unl.edu

Liyan Qu
University of Nebraska-Lincoln, lqu2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Lu, Dingguo; Qiao, Wei; Gong, Xiang; and Qu, Liyan, "Current-Based Fault Detection for Wind Turbine Systems via Hilbert-Huang Transform" (2013). Faculty Publications from the Department of Electrical and Computer Engineering. 367.
http://digitalcommons.unl.edu/electricalengineeringfacpub/367

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Current-Based Fault Detection for Wind Turbine Systems via Hilbert-Huang Transform

Dingguo Lu, Student Member, IEEE, Wei Qiao, Member, IEEE, Xiang Gong, Student Member, IEEE, and Liyan Qu, Member, IEEE

Abstract—Mechanical failures of wind turbines represent a significant cost in both repairs and downtime. Detecting incipient faults of wind turbine components permits maintenance to be scheduled and failed parts to be repaired or replaced before causing failures of other components or catastrophic failure of the system. This paper proposes a Hilbert-Huang transform (HHT)-based algorithm to effectively extract fault signatures in generator current signals for wind turbine fault diagnosis by using the HHT’s capability of accurately representing the instantaneous amplitude and frequency of nonlinear and nonstationary signals. A phase-lock-loop (PLL) method is integrated to estimate wind turbine rotating speed, which is then used to facilitate the fault detection. The proposed method is validated by a real direct-drive wind turbine with different types of faults. The experimental results demonstrate that the proposed method is effective to detect various faults in wind turbine systems as well as to reveal the severities of the faults.

Index Terms—Condition monitoring, current, fault detection, Hilbert-Huang transform (HHT), wind turbine.

I. INTRODUCTION

The continuously growing number of wind turbine systems has increased the need to maintain and repair the wind turbines as they age and begin to fail. The cost of maintaining wind turbines shares a significant proportion of the total operational costs, often accounting for 10-15% and 25-30% of the energy generation costs for onshore and offshore wind turbines, respectively [1]-[3]. A considerable percentage of the maintenance cost is caused by unexpected drivetrain failures. These malfunctions also result in extended downtime as both maintenance cost is caused by unexpected drivetrain failures. The experimental results demonstrate that the proposed method is effective to detect various faults in wind turbine systems as well as to reveal the severities of the faults.

Unlike wavelet transforms, the HHT is based on an adaptive algorithm. Therefore, no prior knowledge of the signal is required to perform the HHT [14]. As a differentiation-based method, there is no uncertainty principle limitation in the result as that in the convolution-based wavelet and Fourier transforms. The HHT has been found powerful and successful in condition monitoring of electric machines using vibration data [7], and in detection of rotor bar failures of induction machines using stator current data [15].

This work investigates the application of the HHT to detect mechanical failures in wind turbines using generator stator current signals. Successful utilization of stator currents represents a cost-effective, nonintrusive CMFD technique for retrofitting existing condition monitoring methods for wind turbines. The proposed method is testified for a real direct-drive wind turbine with blade imbalance, blade misalignment and bearing inner-race faults. The experimental results lucidly prove the effectiveness of the proposed HHT-based algorithm for CMFD of wind turbine systems.
II. HILBERT-HUANG TRANSFORM-BASED CMFD ALGORITHM

The HHT was initially developed by Norden E. Huang to analyze the nonlinear and nonstationary nature of complex waves [13]. The HHT integrates the Hilbert transform spectrum analysis with Empirical Model Decomposition (EMD) to produce an experience-based method for generating time-frequency spectra of a variety of nonlinear and nonstationary signals.

A. Empirical Mode Decomposition

In order to use the properties of the Hilbert transform to determine the instantaneous amplitude and frequency of a signal, the signal must meet the requirements of an Individual Model Function (IMF). An IMF can be defined as a class of functions satisfying the following conditions [13]:

1) In the whole dataset, the number of extrema and the number of zero-crossings must either equal or differ at most by one;

2) At any point, the mean value of the envelopes defined by the local maxima and minima is zero.

Using the definition of IMF, any signal can be decomposed into a set of IMFs. The EMD method is employed to obtain the IMFs of the signal by implementing a sifting process. The process starts by identifying all local extrema of the signal, and then a cubic spline is used to connect all the local maxima, which is defined as the upper envelope. A similar process is then executed to generate a spline connecting the local minima to create the lower envelope. The upper and lower envelopes should contain all points in the original signal \(x(t) \).

The mean value of the two envelopes is denoted as \(m_t \), and the difference between the original signal \(x(t) \) and \(m_t \) is defined as \(h_t \),

\[
h_1(t) = x(t) - m_1(t) \quad (1)
\]

The sifting operation in (1) yields \(h_1 \) from \(x(t) \). Normally \(h_1 \) will not yet satisfy the requirements of an IMF after the first round of sifting [13]. Therefore, the process is repeated using \(h_1 \) as the original data and the result is \(h_{11} \),

\[
h_{11}(t) = h_1(t) - m_{11}(t) \quad (2)
\]

where \(m_{11} \) is the mean value of upper and lower envelopes in \(h_1 \). After repeating the process \(k \) times, \(h_{1k} \) will satisfy the requirements of an IMF,

\[
h_{1k}(t) = h_{1(k-1)}(t) - m_{1k}(t) \quad (3)
\]

The resulting time series is redefined as the first IMF, or designated as \(c_1(t) = h_{1k}(t) \).

Checking must be performed on whether the number of zero crossings equals the number of extrema after each sifting step. A point where further sifting will no longer result in significant changes to the signal usually determines the stopping criterion for the sifting process. After the first IMF is found, it must be subtracted from the original data so that the difference can be further sifted to generate other IMFs. This new signal, called \(r_1 \), is the residue of the original signal with \(c_1 \) removed,

\[
r_1(t) = x(t) - c_1(t) \quad (4)
\]

If the original data contains more than one IMF, the same sifting procedure as for \(x(t) \) can be applied to the residue \(r_1 \). This process is repeated for each subsequent residue until the residue becomes a monotonic function from which no further IMFs can be extracted. The final set of IMFs and the last residue will contain all the components of the original signal such that

\[
x(t) = \sum_{i=1}^{n} c_i(t) + r_n(t) \quad (5)
\]

B. Hilbert Transform

Once the signal has been completely decomposed into a set of IMFs, the instantaneous amplitude and frequency of each IMF can be found by using the Hilbert transform. The Hilbert transform is used to find the complex conjugate \(H[c_i(t)] \) for each of the real-valued IMFs extracted from \(x(t) \):

\[
H[c_i(t)] = \frac{1}{\pi} PV \int_{-\infty}^{\infty} \frac{c_i(\tau)}{t-\tau} d\tau \quad (6)
\]

where \(PV \) the principal value of the singular integral. With this definition, an analytic signal \(Z_i(t) \) consisting of \(c_i(t) \) and \(H[c_i(t)] \) is formed as

\[
Z_i(t) = c_i(t) + jH[c_i(t)] = a_i(t)\exp[j\theta_i(t)] \quad (7)
\]

where \(a_i(t) \) and \(\theta_i(t) \) the instantaneous amplitude and phase angle of the IMF, respectively. Both of them can be individually defined as

\[
a_i(t) = \sqrt{c_i(t)^2 + [H[c_i(t)]]^2} \quad (8)
\]

\[
\theta_i(t) = \arctan \left(\frac{H[c_i(t)]}{c_i(t)} \right) \quad (9)
\]

Utilizing the instantaneous phase angle, the instantaneous frequency is then calculated as

\[
\omega_i(t) = \frac{d\theta_i(t)}{dt} \quad (10)
\]

Thus, the original signal can be expressed in (11),

\[
x(t) = \Re \left(\sum_{i=1}^{n} a_i(t)\exp[j\int \omega_i(t) dt] \right) \quad (11)
\]

where the residue \(r_n(t) \) has been left over; and \(\Re(\cdot) \) denotes the real part of a complex quantity.

By processing each IMF from the original signal as above, the full instantaneous frequency spectrum can be developed. Integrating the instantaneous amplitude and frequency calculated using the Hilbert transform, a time-frequency analysis of the signal can be accomplished.

C. Proposed HHT-Based CMFD Method

A novel algorithm is developed to employ the HHT for CMFD of a wind turbine system by using generator stator current measurements, as illustrated in Fig. 1. A PLL speed estimator is developed to estimate the shaft rotating speed of the wind turbine, which is then used for CMFD. The use of the shaft rotating speed signal simplifies the IMF extraction, as the PLL removes main harmonics from the current signal, and meanwhile increases the signal to noise ratio (SNR) of the signal to be processed [10], [11], [13].

After completing the steps to process the HHT for a fault at different severities, the results can be compared to identify the
severity of the fault. A process is developed to isolate and combine the amplitude of each IMF yielded by the HHT that falls within specific frequency ranges. Then the amplitude of the processed IMF around the frequencies of interest could then be averaged. By doing so, it is possible to create simple bar graphs comparing the average amplitudes of IMFs for the faulty wind turbine system against the healthy wind turbine. The results can be visually inspected to verify the presence of the fault in question as well as to identify its severity.

![Flowchart of the HHT-based fault detection algorithm.](image)

The proposed algorithm innovatively explores the impacts of faults on stator current signatures, in the sense of variations in time domain over a frequency range, rather than the changes at a specific frequency or several specific frequencies. The latter is a commonly used approach to diagnose mechanical defects in wind turbine systems [11], [12], [16]. The proposed algorithm is especially useful for cases when no specific frequency components are available in the vibration/current measurements, or when the characteristic frequencies are nonstationary, and thus not directly observable.

III. EXPERIMENTAL VALIDATION

A. Experimental System Setup

A 160-W Southwest Windpower Air Breeze wind turbine is deployed (Fig. 2) for experimental validation of the proposed HHT-based CMFD of wind turbine. The wind turbine is tested in an open-loop suction wind tunnel capable of providing stable and controllable wind speeds in the range of 0 to 10 m/s, and the wind turbine operates with a time-varying speed in a range of 6 to 13 Hz, accordingly. The nonstationary wind flow velocity inside the wind tunnel during experiments permits the wind turbine to operate in a situation similar to real-world conditions while still allowing for the control necessary to complete the experiments. One-phase stator current of the generator is measured via a Fluke current clamp, while the power generated by the wind turbine supplies a constant resistive load. The measurements are recorded through a National Instruments (NI) data acquisition system at a sampling rate of 10 kHz and the data are then stored by NI LabVIEW operating on a lab computer.

Blade and bearing faults constitute a considerable portion of all faults in wind turbine systems [17], [18]. A minor fault can cause significant consequences on the wind turbine systems. Due to wind turbines’ delicate structure and high repairing costs, effective fault detection of blades and bearings is of significant interest to the wind industry. A variety of blade and bearing faults, happening in real applications, are duplicated in current experiments by pre-modifying the components, i.e., the blades and bearings.

![Wind tunnel with a testing Air Breeze wind turbine.](image)

B. Blade Imbalance

To create a blade imbalance fault, additional mass is added to or subtracted from the tip of one blade (Fig. 3). The mass is adjusted multiple times to emulate a blade imbalance of +1%, 2%, 3% and 5% off the original blade mass. Therefore, the experiments will represent five different levels of imbalance, including a baseline case where the three blades are balanced.

![Depiction of imbalance fault of a wind turbine blade.](image)

The proposed method is applied to the generator stator current to obtain the IMFs of the wind turbine rotating speed, which is estimated by the PLL method. Based on the previous work using a 1P-invariant PSD method, it has already been
found that the imbalance fault introduces a change in the amplitude in the range of 6 to 13 Hz in the PSD spectrum of the shaft rotating speed estimated from the stator current [10]. Therefore, after extracting all the IMFs and calculating their respective amplitudes and frequencies, the second IMF is found to contain the majority of the 6 to 13 Hz frequency components (Fig. 4). The samples of the second IMF are then averaged in amplitude for each case, based on which a bar graph is generated in Fig. 5. From the comparison, a clear trend is evident that the average amplitude of the second IMF continuously increases because of the increasing severity of the fault. Therefore, the proposed method can not only identify but also quantify the level of blade imbalance of the wind turbine. The results corroborate with that obtained using the 1P-invariant PSD method in [10].

![Fig. 4. Hilbert transform of the second IMF for blade imbalance case.](image)

D. Inner-Race Bearing Fault

The testing bearing used in the experiments is the main bearing of the Air Breeze wind turbine located between the rotors of the turbine and the generator (Fig. 8). An artificial hole is drilled in the inner race of a testing bearing to emulate an inner-race defect (Fig. 9). The damaged bearing is then switched with the wind turbine main bearing.

![Fig. 8. Placement of the testing bearing in the Air Breeze wind turbine.](image)

![Fig. 9. Testing bearing with an inner-race fault.](image)

Prior to processing the estimated shaft rotating speed for bearing fault detection, the estimated shaft speed for the
healthy bearing is concatenated with that for the faulty bearing. The purpose of agglutinating two sets of data under different conditions prior to the EMD is to make the results directly and visually comparable without a bar graph. This is because the IMF has no specified frequency range, the same signal components may end up in different IMFs. The results are split at the point where they were combined to produce two sets of results: one for the healthy bearing and the other for the faulty bearing. A significant difference exists in the third IMF, as indicated by Fig. 10. For the fault case, the amplitude of the third IMF dramatically increases, when compared to the baseline case. Therefore, the excitations of particular frequency components induced by the bearing inner-race fault can be successfully detected using the generator stator current via the proposed HHT-based method.

![Image](image_url)

Fig. 10. Hilbert transform of the third IMF of the combined samples for bearing inner-race fault.

IV. Discussion & Conclusion

The HHT-based algorithm is capable of detecting mechanical faults based on time-frequency analysis. It can be directly applied to the nonlinear and nonstationary signals, without pre-processing to convert the characteristics frequencies to corresponding constant values. It overcomes the drawbacks of traditional frequency-based fault detection techniques that particular characteristic frequencies related to the faults should be pre-acquired. The HHT-based methods are believed to be non-frequency-based ones which require only a frequency range. Of course, using the frequency-based methods can be of great help in selection of the right IMFs that contain the objective frequency components.

An HHT-based technique has been proposed for online wind turbine CMFD using generator stator current measurements. The proposed method integrates a PLL to estimate the shaft rotating speed of the WTG from the measured stator current signal. The estimated shaft rotating speed is first processed by EMD method, which decomposes the signal into a set of IMFs. The Hilbert transform is then utilized to calculate the analytic signal for each IMF, from which the instantaneous amplitude and phase angle of each IMF can be derived and employed to generate fault signatures for wind turbine fault diagnosis.

The proposed method has been validated for the detection of various types of faults on wind turbine blade and main bearings. The experimental results have demonstrated that the proposed method has been successfully applied to the detection of blade imbalance, blade misalignment, as well as bearing inner-race fault. The successful applications of the proposed method using only the generator stator current signals can not only identify but also quantify the severity of the faults, representing a significant achievement in wind turbine CMFD.

V. References

