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Abstract.  

The degree, mechanisms, and kinetics of phosphorus (P) sorption onto soils can have a significant influence 
on leaching losses of P from soil.  The objectives of this study were to measure the impact of retention time 
(RT) on P sorption in a flow-through system intended to simulate downward movement of a P solution through 
two different riparian soils, and determine if isothermal titration calorimetry (ITC) can provide useful information 
reflective of flow-through results. Topsoil from two riparian/alluvial soils was sampled and characterized for P 
concentrations and parameters related to P sorption.  Flow-through P sorption experiments were conducted in 
order to examine the effect of RT and inflow P concentration on P sorption; this was compared to results of ITC 
experiments where the heat of reaction was measured with the addition of P to soils.  Results of ITC 
experiments were reflective of both soil characterization and flow-through sorption in that the Barren Fork soil 
sorbed less P, but at a faster rate, compared to Clear Creek.  Based on thermograms, the dominant P sorption 
reaction was ligand exchange onto Al/Fe oxides/hydroxides, with a lesser degree of precipitation.  Phosphorus 
removal for both soils was limited by physical nonequilibrium instead of chemical nonequilibrium (sorption 
kinetics). For the Clear Creek soil, the ITC analysis illustrated that P sorption was limited more by physical 
diffusion of P through micropores to sorption sites rather than chemical kinetics. For the Barren Fork soil, 
results indicated that the limiting process was pore scale transport from bulk flow to sorption sites, which was a 
function of flow rate. The calorimetry approach presented can help provide soil-specific information on the risk 
of P inputs to leaching (degree of P sorption) under different conditions (flow rate or RT), and potential for 
desorption (P sorption mechanisms).         

 

Keywords. Calorimetry, leaching, phosphorus sorption, flow-through.   
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Introduction 

Phosphorus (P) transport from soils to surface waters is an important contributor to eutrophication (Ryther and 
Dunstan, 1971).  Phosphorus losses from soils occur in both the particulate and dissolved forms.  Particulate P 
consists of sediment that has P sorbed on it, and is typically transported in runoff.  Dissolved P is simply P that 
is already in solution, free from the solid phase.  Most best management practices (BMPs) focus on reducing 
particulate P that is transported in runoff through erosion control and capturing sediment prior to runoff exiting a 
field or entering a water body (Rao et al., 2009).  Such practices include no-till management, grassed 
waterways, vegetated buffer strips (VBS), and contour farming.  Among floodplains, use of VBS along the 
riparian areas of the surface water is common (Osborne and Kovacic, 1993).  However, while effective at 
reducing particulate P, VBS and other traditional BMPs are less effective at reducing dissolved P transport 
among soils recently amended with P and soils that have become excessive with regard to soil P 
concentrations (Owens and Shipitalo, 2006).  In addition, most BMPs have little impact on reducing P leaching 
under such scenarios. 

In general, P will leach mostly in the dissolved form, except in cases of excessive preferential flow (Djodjic et 
al, 2004; Simard, et al., 2000).  As dissolved P leaches downward from the high P topsoil or applied P 
amendment, the lower soil horizons can sorb P through several reactions depending on soil properties.  
Factors that control the quantity of P leaching are mostly related to soil chemical properties which dictate the 
capacity and kinetics of the soil to sorb P (Maguire and Sims, 2002), and physical properties that impact the 
rate of water movement through the soil profile (Fuchs et al., 2009) which can also impact the rate of P 
sorption.  The kinetics of P sorption is critical to the P leaching process since the soil will have limited contact 
time (i.e. retention time) with the moving P-rich solution.  Simply put, if the contact time required for adequate P 
sorption is greater than the contact time of the moving P solution, then limited P sorption will occur resulting in 
greater transport of P to the subsurface.   

Movement of P downward is especially important in the riparian floodplains of northeastern Oklahoma and 
northwestern Arkansas since these alluvial soils possess a relatively shallow topsoil with underlying gravelly silt 
loam to gravelly loam.  Common soil series in the Ozark valleys of northeastern Oklahoma and northwestern 
Arkansas include Elsah (frequently flooded, 0-3% slopes) in floodplains; Healing (occasionally flooded, 0-1% 
slopes) and Razort (occasionally flooded, 0-3% slopes) in floodplains and low stream terraces; Britwater (0-8 % 
slopes) on high stream terraces; and Clarksville (1-50%) on bluffs.  Not only do these gravelly subsoils have an 
extremely high hydraulic conductivity (Sauer and Logsdon, 2002; Sauer et al., 2005) that range from 0.2 to 844 
m d-1, but they have also been shown to be directly hydrologically connected to adjacent streams via the gravel 
subsurface behaving as a stage-dependent storage zone (Hereen et al., 2011; Hereen et al., 2010; Fuchs et 
al., 2009).  Therefore, sorption of a leaching P solution by the thin topsoil is especially critical to preventing 
transport of dissolved P to surface waters.                

Several tools exist for studying P leaching and quantifying risk which include direct field measurements, 
leaching columns, and laboratory soil analysis.  The most common of these tools is soil analysis due to labor, 
time, logistical, and economic constraints.  Soil analyses used to quantify risk of P leaching include standard 
agronomic soil tests such as Mehlich-3, and environmental tests such as water extractions and degree of P 
saturation as estimated by ammonium oxalate extractions (Sims et al., 2002).  Results from soil analyses 
quantify the source of potential P leaching (i.e. topsoil) and also the potential to sorb added P amendments and 
leached P that has moved downward through the profile (Beauchemin and Simard, 1999).  Another typical soil 
analysis for this purpose is the batch sorption isotherm (Akhtar et al., 2003; Villapando and Graetz, 2001).   

Phosphorus transport requires both a P source and physical connectivity (Nelson and Shober, 2012).  It is clear 
that as soils increase in P concentration, particularly as they become more saturated with P, the risk for P 
leaching increases if the hydraulic conditions are appropriate.  Such information is easily obtained through soil 
testing previously mentioned.  However, there are factors that influence the “gap” between P source and the 
physical transport of P, including P sorption mechanisms and kinetics of sorption.  In regard to mechanisms, 
not only is the degree of P sorption important to potential P leaching, but the mechanism in which P is sorbed 
will dictate how strongly the P is held and under what conditions.  For example, P bound with Ca typically 

The authors are solely responsible for the content of this meeting presentation. The presentation does not necessarily reflect the official
position of the American Society of Agricultural and Biological Engineers (ASABE), and its printing and distribution does not constitute an 
endorsement of views which may be expressed. Meeting presentations are not subject to the formal peer review process by ASABE
editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an 
ASABE meeting paper. EXAMPLE: Author’s Last Name, Initials. 2013. Title of Presentation. ASABE Paper No. ---. St. Joseph, Mich.: 
ASABE. For information about securing permission to reprint or reproduce a meeting presentation, please contact ASABE at 
rutter@asabe.org or 269-932-7004 (2950 Niles Road, St. Joseph, MI 49085-9659 USA). 
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becomes more soluble as the pH decreases.  Kinetics can also influence P transport in the context of a moving 
solution (i.e. leaching) because of the time required for a sorption reaction to occur.  Fuchs et al. (2009) found 
that a decreased contact time (increased flow rate) of a P solution through the fine fraction of a riparian subsoil 
resulted in a decrease in P sorption and therefore increase in P leaching.   

This study proposes a new and simple tool for studying P leaching; isothermal titration calorimetry (ITC) 
measures the heat of reaction while solutions or soil suspensions are titrated with chemicals (such as P).  The 
quantity and patterns of heat measured can provide information on the degree of reaction, type of reaction, and 
kinetics (Harvey and Rhue, 2008; Rhue et al., 2002; and Kabengi et al., 2006a).  For example, Penn and 
Warren (2009) were able to distinguish between P sorbed by ligand exchange vs. surface precipitation in 
titration of kaolinite with a P solution.  Calorimetry also provided useful information on kinetics in regard to 
ammonium exchange with potassium in zeolite materials (Penn et al., 2010).  The objectives of this study were 
to measure the impact of contact (retention) time on P sorption in a flow-through system intended to simulate 
downward movement of a P solution through two different riparian soils, and determine whether ITC can 
provide useful information reflective of flow-through results. 

 

Materials and Methods 

Soils 

Two floodplain soils from within the Illinois River watershed were sampled for use in this study. The Barren 
Fork Creek site (latitude: 35.90°, longitude: -94.85°) is a fourth order stream with a historical median discharge 
of 3.6 m3 s-1. The study area at the Barren Fork Creek was located on the outside of a meander bend which 
was being actively eroded by the stream. The soils were classified as Razort gravelly loam underlain with 
alluvial gravel deposits. Thickness of the loam ranged from 0.3 to 2.0 m, with dry bulk densities ranging from 
1.3 to 1.7 g cm-3. The Clear Creek alluvial floodplain site flows into the Illinois River (latitude: 36.13°, longitude: 
-94.24°). Soils were loamy and silty, deep, moderately well drained to well drained. Thickness of the top loam 
layer ranged from 0.3 to 2.0 m, with dry bulk densities ranging from 1.5 to 1.7 g cm-3. The land use in the study 
area was pasture and consisted of Razort gravelly loam soils.  Both soils were sampled at a depth of 0 to 10 
cm.  Soils were air-dried and sieved to 2 mm for extraction and use in ITC experiments. 

Soil characterization 

All analyses were conducted in duplicate.  Soil characterization consisted of (i) pH and electrical conductivity 
(EC; 1:1 soil:solution ratio); organic matter by combustion; (iii) sand, silt, and clay by the hydrometer method 
(Day, 1965); (iv) water soluble (WS) P, Al, Fe, and Ca (1:10 soil:deionized water, 1 h reaction time, filtration 
with 0.45 m Millipore membrane [Kuo, 1996]); (v) oxalate extractable P, Al, and Fe (Pox, Alox, Feox; 1:40 soil: 
0.2M acid ammonium oxalate (pH 3), 2 h reaction time in the dark; McKeague and Day, 1966); and (vi) 
Mehlich-3 P, Al, and Fe (M3-P, M3-Al, and M3-Fe: 1:10 soil:0.2 M CH3COOH + 0.25 M NH4NO3 + 0.015 M 
NH4F + 0.13 M HNO3 + 0.001 M EDTA, 5 min reaction time, filtration with Whatman #42 paper [Kuo, 1996]); 
Extracted P, Ca, Al, and Fe were analyzed by ICP-AES.  The ratio of Mehlich 3 and ammonium oxalate 
extractable P to (Al + Fe) (all values in mmol kg-1) was expressed as:  

 [P  (Al + Fe)] * 100  (1) 

and will be referred to as M3 degree of P saturation (DPSM3) and ammonium oxalate degree of P saturation  
(DPSox).  Note that this is exactly the same as the traditional soil degree of phosphorus saturation (DPS) 
calculations (Pautler and Sims, 2000) except without the empirical constant  which is used to relate soil P 
sorption capacity to Alox and Feox and the denominator acts to express the effective total soil P sorption 
maximum.  The  value was unknown, so no  value was used.  Beauchemin and Simard (1999) noted that 
various studies have applied an  value of 0.5 to all soils, regardless of soil properties.  The authors claimed 
that the  value is empirical and needs to be determined for each soil type and experimental conditions.  In 
addition, Beck et al. (2004) recommended that the alpha value be omitted from the DPS calculation.   

Flow-through phosphorus sorption experiments 

In order to test the effect of retention time (RT) and P concentration on P sorption in a flow-through setting, 
flow-through cells (high density polyethylene) were constructed as described in Stoner et al. (2012).  A diagram 
of the setup is found in Penn and McGrath (2011). Depending on the P concentration and RT utilized, some 
soils were mixed with acid washed, lab-grade sand (pure Si sand, 14808-60-7; Acros organics, Morris Plains, 
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New Jersey) in order to achieve a total pore volume of 1.26 cm3 (5 g of sand + soil; 50% porosity).  Soils were 
then placed in a flow-through cell.  The proportion of soil to sand varied depending on how P sorptive the 
material was.  Less soil mass was used for more sorptive soils tested under low P inflow concentrations.  The 
mass of soil material used in a flow through cell varied from 1 to 5 g.  A suitable amount that would not result in 
100 or 0% P removal for the duration of the entire experiment was typically determined by trial and error.  The 
purpose of this was to allow a more complete picture of P breakthrough (i.e. P sorption curve).  A 0.45 µm filter 
was placed beneath the materials and the bottom of the cell was connected to a single channel peristaltic 
pump (VWR variable rate “low flow” and “ultra low flow”, 61161-354 and 54856-070) using plastic tubing.  The 
desired RT (RT [min] = pore volume [mL] / flow rate [mL min-1]) was achieved by varying the pump flow rate 
which pulled solution through the cell.  Flow rates required to achieve the desired RTs of 3 and 10 min were 
0.75 and 0.22 mL min-1, respectively.  Essentially, the RT is the amount of time required for the solution to pass 
through the cell.  A constant head Mariotte bottle apparatus was used to maintain a constant volume of P 
solution on the soils.  Materials were subjected to flow for 5 h in which the “outflow” from the cells was sampled 
at 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, and 300 min.  Solutions were analyzed for P by the Murphy-
Riley molybdate blue method (Murphy and Riley, 1962).  Discrete P sorption onto materials was calculated at 
each sampling time as a percentage decrease in outflow relative to inflow P concentration (i.e. source bottle). 
Results are presented as cumulative P sorption as a function of cumulative P addition (both in units of mg P 
kg-1 soil) 

Two different P concentrations were tested: 1 and 10 mg L-1 using solutions made from potassium phosphate.   
These P concentrations correspond with the range measured in studies of runoff from high P soils (> 300 mg 
kg-1 Mehlich 3-P) or soils to which manure or chemical fertilizer P have been recently applied to the surface 
(Vadas et al., 2007; Edwards and Daniel, 1993).  The matrix of the solution consisted of 5.6, 132, 110, 10, and 
17 mg L-1 of Mg, Ca, S, Na, and K, respectively, using chloride and sulfate salts, followed by adjustment to pH 
7.  Note that ionic strength only slightly varied due to differences in P concentrations only.  This matrix was 
chosen as it was found to be representative of agricultural runoff measured in a previous study.  All flow-
through RT * P concentration combinations were duplicated for each material.      

 

Isothermal titration calorimetry experiments 

All ITC experiments were conducted on a CSC 4200 Isothermal Titration Calorimeter (CSC Inc., Lindon, UT) at 
25ºC.  The ITC had a sensitivity of 0.418 µJ detectable heat effect and a “noise level” of +/- 0.0418 µJ sec-1 
(deconvoluted signal). For all soil ITC experiments, 100 mg of soil sample were placed in a 1.3 mL reaction 
vessel and suspended in 0.75 mL of de-ionized (DI) water.  Soil titrations were replicated three times.  For each 
experiment, a blank was determined by titration of a 0.01 M NaH2PO4 solution into de-ionized (DI) water under 
the same conditions employed for the actual experiment.  Data produced from the blank titrations were 
subtracted from the sample titrations.  

Two different types of titrations were conducted; 25 consecutive 10 µL titrations (300 second intervals) of P 
solution into the suspended soil sample, and a “single shot” titration consisting of all 250 µL of P solution.     
For both experiments, a 0.01 M NaH2PO4 solution was used as the titrant and soil suspensions were stirred in 
the reaction vessel throughout the duration of the experiment.  With regard to the single shot test, after titration, 
∆heat was monitored for 5 h.     

Statistical analysis 

All values were averaged over replication. The log of the relationship between cumulative P added to soil and 
cumulative P sorption was tested among each set of conditions (i.e. inflow P concentration and RT) to 
determine whether the relationships (slope and intercept) were significantly different from each other.  The null 
hypothesis was that one equation could be used to describe cumulative P sorption vs cumulative P addition for 
both soils.  This was tested by using a series of “contrast” statements in SAS (SAS, 2003) to determine 
whether the slope and intercept were significantly different based on soil sample. 
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Results and Discussion 
 

Soil properties 

General soil properties important to P retention are shown in Table 1.  Soil from the Barren Fork site was more 
acidic, and as a result, contained more water soluble Al and Fe than the Clear Creek soil.  The Barren Fork soil 
also contained more water soluble Ca.  This is expected since Al, Fe, and Ca containing minerals tend to be 
more soluble in water as pH decreases below 7.  However, ammonium oxalate extractable Al and Fe (Alox and 
Feox) were greater in the Clear Creek soil.  Soil Al and Fe that is extractable with ammonium oxalate is 
considered to represent amorphous Al and Fe minerals, which typically sorb and retain the majority of soil P 
among near neutral and acid soils (Schoumans, 2000; Sakadevan and Bavor, 1998; McKeague and Day, 
1966).  The greater value for DPSox for the Barren fork soils suggests that the main P sorption sites (Alox and 
Feox) are more saturated with P than Clear Creek soils (Penn et al., 2006).  Generally, as P DPSox increases 
for soils, their capacity to further sorb additional P decreases, and the potential to release P to solution 
increases (Pautler and Sims, 2000).  Evidence for this is clearly seen by the fact that the Barren Fork soils 
possessed greater water soluble P concentrations (Table 1).  However, the water soluble P concentrations are 
below the threshold for increased P leaching (8.6 mg kg-1) as proposed by Maguire and Sims (2002).   

Table 1.  Characterization of the soils collected from two different riparian sites that were used in the flow-through sorption and 
calorimetry studies.  All values in mg kg-1 unless shown otherwise. 

 

Site Clear Creek Barren Fork 

   

pH 6.3 5.8 

EC (uS cm-1) 68 132 

Organic matter (%) 1.73 1.58 

Sand (%) 16.3 41.3 

Silt (%) 61.3 37.5 

Clay (%) 22.5 21.3 
†WS Ca  55 115 

WS Fe  127 209 

WS Al  238 370 

WS P  2.6 7.1 
‡Alox  904 707 

Feox  2033 1955 

Pox  92 170 
§DPSox (%) 4.25 8.96 
¶M3-Ca  1804 1698 

M3-Fe  161 163 

M3-Al  824 688 

M3-P 2.5 49 
#DPSM3 (%) 0.46 3.1 
††PSI1ppm 44 32 
‡‡PSI10ppm 114 68 

† water soluble 
‡ ammonium oxalate extractable 
§ Degree of phosphorus saturation. Pox/(Alox+Feox); calculated on a molar basis 
¶ Mehlich-3 extractable 
# Degree of phosphorus saturation. M3-P/(M3-Al+M3-Fe); calculated on a molar basis 
†† P sorption in a batch 1 mg L-1 P solution 
‡‡ P sorption in a batch 10 mg L-1 P solution 

 

Although the soils contained appreciable amounts of Ca as indicated by the Mehlich-3 (M3) extraction, it was 
not very soluble based on the water extraction (Table 1).  Only about 3 and 7% of M3 extractable Ca was 
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soluble in water for the Clear Creek and Barren Fork samples, respectively.  Mehlich-3 extractable Fe and Al 
was reflective of ammonium oxalate Al and Fe, except that ammonium oxalate extracted more than M3 
solution.  Sims et al. (2002) suggested values of 10 to 15% DPSM3 as a threshold to identify soils with 
increased risk as P sources for non-point P transport.  In addition, Maguire and Sims (2002) found that there 
was a “break-point” value of 20% for the relationship between DPSM3 and dissolved P in leachate.  Above this 
20% level, the concentration of dissolved P in leached increased rapidly with increases in DPSM3.  

Phosphorus sorption under flow-through conditions 

Under flow-through conditions of constant addition of 1 mg P L-1 inflow solution, the longer retention time (RT), 
or slower flow rate, appeared to reduce P sorption for the Barren Fork soil (Fig. 1a).  However, this decrease in 
P removal with increase of RT from 3 to 10 min was not statistically significant with regard to the slope and 
intercept for the relationship shown in Fig. 1.  Note that the relationship between cumulative P added and 
cumulative P sorbed was nearly exactly the same for the 3 and 10 min RT for the Clear Creek soil (Fig. 1b).  
Similar results were obtained when an inflow P concentration of 10 mg P L-1 was used (Fig. 2a and 2b), except 
that the slope and intercept were statistically different between the 3 and 10 min RT for the Barren Fork soil.  
After application of the P sorption data set to equations developed by Stoner et al. (2012) for estimating 
maximum P sorption under flow-through conditions, it was apparent that the Clear Creek soil was able to sorb 
more P under certain flow-through conditions compared to the Barren Fork soil.   

 
Figure 1. Cumulative phosphorus (P) sorption onto soils in a flow-through setting with an inflow P concentration of 1 mg L-1 

using two different retention times (RT).  Soils tested were sampled from the Barren Fork (a) and Clear Creek (b) sites 

 

Under inflow conditions of 10 mg P L-1, maximum P sorption by the Clear Creek soil was 214 and 284 mg kg-1 
(not significantly different) at a RT of 3 and 10 min, respectively, while Barren Fork could only remove a 
maximum of 165 and 127 mg kg-1 (significantly different) at a RT of 3 and 10 min, respectively.  However, 
under inflow conditions of 1 mg P L-1, the soils would remove similar maximum amounts of P; 103 and 101 mg 
kg-1 at a RT of 3 and 10 min, respectively for Clear Creek compared to 100 and 88 mg kg-1 at a RT of 3 and 10, 
respectively for Barren Fork.  Note that there was no significant difference in P removal at a 1 mg P L-1 inflow 
concentration between a 3 min and 10 min RT.  An increase in maximum P sorption with higher input P 
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concentrations is expected since higher P concentrations possess greater chemical potential with regard to 
sorption reactions such as anion exchange, ligand exchange, and precipitation.  This is why traditional batch P 
sorption isotherms always indicate increased surface P concentrations with increased solution equilibrium P 
concentrations.  The higher amount of P sorption for the Clear Creek soil is not a surprise since it possessed a 
lower DPSox and DPSM3, meaning that it contained a greater number of “unused” P sorption sites than the 
Barren Fork soil.  In other words, the Barren Fork soil was more saturated with P compared to Clear Creek. 
Hooda et al. (2000) noted that the amount of P leached was dominantly a function of the soil P saturation. 
Again, note that the difference in P maximum sorption between the 3 and 10 min RT was statistically significant 
for the Barren Fork soil, but not for Clear Creek (Fig. 2a and 2b).        

 
Figure 2. Cumulative phosphorus (P) sorption onto soils in a flow-through setting with an inflow P concentration of 10 mg L-1 

using two different retention times (RT).  Soils tested were sampled from the Barren Fork (a) and Clear Creek (b) sites 

 

The increase in P sorption for the Barren Fork soil at the lower RT compared to the higher RT (i.e. lower flow 
rate) may seem counter intuitive at first.  However, it does suggest that P sorption kinetics were relatively fast 
for this soil.  While increased RT can increase P sorption in some cases, this is less likely for a scenario with 
fast kinetics since little time would be required for sorption to take place.  The overall P removal process 
consists of both physical and chemical processes.  As P is sorbed by the soil through precipitation, anion 
exchange, or ligand exchange reactions, the reactants (solution P and available sorption surfaces or ions) are 
“used up” (decrease) and the products (sorbed P and any resulting ions) increase.  The combination of the 
reduction of reactants and increase in products decreases the chemical potential for further sorption reactions 
to occur.  Simply put, a faster flow rate (lower RT) removes solution reaction products and replenishes the 
depleted solution reactants (i.e. inflow P) more efficiently than a slow flow rate (higher RT), thereby resulting in 
a greater chemical potential for further P sorption at any given point (Penn and McGrath, 2011).  A similar 
observation was made by Stoner et al. (2012) in examination of P removal by industrial by-products under flow-
through conditions.   

One hypothesis to explain this phenomenon would be that at an increased flow rate, the flow in the pore space 
would be more turbulent, which would reduce the thickness of the low velocity boundary layer of fluid near the 
mineral surface. More turbulent mixing would increase the transport within the pore, i.e. from the bulk flow, 
through a smaller boundary layer via diffusion, and to the surface where sorption can occur. However, 
Reynolds numbers calculated from specific discharge during the flow through experiments and a characteristic 
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grain size (d50) (following Chin et al., 2009, and Bear, 1972) ranged from 2*10-5 to 2*10-4. These are well below 
the critical Reynolds number (typically ranging from 1 to 10 for flow in porous media) where flow changes from 
Darcian/linear flow to transitional flow, and a Reynolds number of 100 where flow has become fully turbulent. 
Although flow conditions in the flow cells were laminar according to this analysis, it should be remembered that 
this is not flow through a straight conduit but through a pore space with tortuosity, dead-end pores, and a wide 
range of pore sizes. These flow cell data for the Barren Fork site indicate that, even under laminar flow, higher 
flow rates result in faster transport of reactants from the bulk flow to the mineral surface, and/or faster transport 
of reaction products away from the mineral surface into the bulk flow. Either way, it forces the sorption reaction 
to come to a relatively "pre-mature chemical equilibrium," i.e. chemical equilibrium has been reached, but only 
because of limitations of the physical process.  Increasing the flow rate reduces the physical limitation which 
allows the rate of P sorption to increase.  Analogous to this is the observation that volatilization of a gas (a 
chemical process) can be prevented by imposing increased pressure (a physical process) on a system.   

In other words, for the Barren Fork site it appears that P removal was limited by physical nonequilibrium at the 
pore scale. It should be noted that this process (transport from bulk flow to the mineral surface as a function of 
flow rate) is different than mechanical dispersion, which by definition occurs at a large enough scale to 
integrate the effects of many pores (Fetter, 1999).  

Calorimetry as an indicator of phosphorus sorption 

Phosphorus can sorb to soils by several mechanisms: anion exchange, ligand exchange (adsorption), and 
precipitation.  Soils with elevated pH (> 8) and high soluble Ca concentrations are able to precipitate P as Ca 
phosphate minerals.  However, this precipitation reaction occurs much more slowly at low pH levels compared 
to high pH.  For soils at or below a pH of 7, P sorption dominantly occurs via ligand exchange mechanisms on 
the surface of amorphous Al and Fe oxide and hydroxide minerals.  If there is Al and Fe in the soil solution, 
added P can also precipitate as Al and Fe phosphates.  Under certain conditions, continued P loading to the 
surface of a Fe or Al oxy/hydroxide mineral can result in P removal by precipitation of Al or Fe phosphate at the 
surface of the Al or Fe source mineral.  Essentially, with continued P loading, the ligand exchange process can 
change over to Al and Fe phosphate precipitation at the surface (Kim and Kirkpatrick, 2004; Ler and Stanforth, 
2003).  Isothermal titration calorimetry data can be used to somewhat distinguish between these mechanisms.  
For example, exothermic (producing heat) reactions regarding P sorption in neutral and acid soils indicate 
ligand exchange mechanisms onto Al and Fe minerals and kaolinite (Penn and Zhang, 2010; Rhue et al., 2002; 
Harvey and Rhue, 2008).  On the other hand, endothermic (absorbing heat) reactions indicate precipitation of 
Al and Fe phosphates (Penn and Warren, 2009; Rhue et al., 2002).   

Figures 3 and 4 show that the heat of reaction decreases with each successive titration of P solution; this is 
expected since the P sorption sites are becoming saturated with each P addition.  Examination of the 25 
titrations of a P solution to the soils, and considering the near-neutral to acid pH of the soils, it appears that P 
sorption onto the Barren Fork (Figure 3a) and Clear Creek (Figure 4a) soils occurred by both ligand exchange 
and Al/Fe phosphate precipitation.  Note that there are 25 sets of peaks; one set for each P titration.  In fact, 
Figures 3a and 4a show that for each P addition, both an exothermic and endothermic reaction occurred.  It is 
common for soils with pH 7 or less to display an initial exotherm immediately after titration of P, followed by a 
smaller endothermic peak (Penn and Zhang, 2010).  However, notice that integration of each of the 25 titration 
peaks reveals that the net heat release for each additional titration becomes less exothermic and more 
endothermic (Fig. 3b and 4b).  This indicates two processes.  First, ligand exchange sites (i.e. terminal 
hydroxyls on the edges of Al/Fe oxhy/hydroxides) are becoming filled up or “saturated” with P, which decreases 
the chemical potential for further ligand exchange reactions; this decreases the exotherms.  Second, the 
source Al and Fe minerals are able to slightly dissolve and produce Al and Fe for precipitation with P on the 
surface of the minerals; this increases the endotherms.  The use of calorimetry to detect simultaneous ligand 
exchange and precipitation reactions and general changes in mechanisms is also found in previous studies 
(Penn and Warren, 2009; Kabengi et al., 2006a; Partyka et al., 1989; Machesky et al., 1989; Imai et al., 1981). 

Penn and Zhang (2010) developed 3 categories of P sorption onto soils using ITC based on the relative 
amount of endothermic vs. exothermic heat production: “low”, “medium”, and “high” endotherm categories.  
Based on that characterization, both the Clear Creek and Barren Fork soils are considered to be in the “high” 
endotherm category because they both displayed titrations that were net endothermic (Figs. 3b and 4b).  Soils 
characterized as “high” in endotherm category tend to be neutral or acidic in pH, contain higher concentrations 
of exchangeable Al, and less M3-Ca, which explains why soils in the high endotherm category display the 
greatest degree of Al and Fe phosphate precipitation compared to soils in the “low” and “medium” categories.  
Previously analyzed soil series from Eastern Oklahoma and Western Arkansas (Clarksville, Benrow, 
Carnasaw, and Sallisaw) were also classified in the “high” endotherm category and displayed similar behavior 
(Penn and Zhang, 2010). 
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Figure 3. Thermogram (a) for the titration of the Barren Fork soil with 0.01 mol L-1 NaH2PO4 using an isothermal titration 

calorimeter; and (b) the heat curve produced by integration of the thermogram.  

 

A multiple linear regression equation was developed by Penn and Zhang (2010) to relate soil Alox and the heat 
of the first titration to P sorption in a batch isotherm which added 500 mg P kg-1 soil.  Application of the heat of 
the first titration (Figs. 3 and 4) and Alox (Table 1) into this equation yielded a prediction of P sorption of 167 
and 177 mg P kg-1 for the Barren Fork and Clear Creek soils, respectively.  Note that these predicted P 
sorption values are similar to cumulative P sorption values under flow-through conditions at P loading values 
approaching 500 mg kg-1 (Fig. 2).  In addition, a relationship was developed to predict the percentage of P held 
against five consecutive desorptions after the previous addition of 500 mg P kg-1 soil; percent P retention was 
calculated as a function of Pox and M3-Fe.  From this, 57 and 61 percent of previously sorbed P is expected to 
be retained after addition of 500 mg P kg-1 soil followed by desorption with low P water, by the Barren Fork and 
Clear Creek samples, respectively.  Based on the previously estimated amounts of P sorbed onto each of 
these samples, such P retention would result in potential loss of 72 and 69 mg P kg-1 topsoil for the Barren 
Fork and Clear Creek samples, respectively. 

Examination of the single P titration to the soils provided valuable information regarding the degree of, and 
kinetics of P sorption.  Figure 5 indicates that the degree of P sorption for the Clear Creek soil was greater than 
the Barren Fork soil as evidenced by the area under the peak.  Several studies have related total heat release 
to the degree of P sorption (Harvey and Rhue, 2008; Miltenburg and Golterman, 1998; Imai et al., 1981).  The 
greater heat release from P titration of Clear Creek compared to Barren Fork soil is supported by the larger 
amount of P sorption measured in the flow-through experiments (Figs. 1 and 2). Note that overall P sorption 
was net exothermic even though both exothermic and endothermic reactions were occurring, suggesting that 
ligand exchange was the most dominant P removal mechanism as supported by Figs. 3 and 4. Observation of 
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the single titration peaks also showed that P removal reactions by the Barren Fork soil were faster than Clear 
Creek (Fig. 5). 

 
Figure 4. Thermogram (a) for the titration of the Clear Creek soil with 0.01 mol L-1 NaH2PO4 using an isothermal titration 

calorimeter; and (b) the heat curve produced by integration of the thermogram.  

 

For example, the heat production rate after P addition to the Barren Fork soil returned to equilibrium in 
approximately 4 minutes (Fig. 5a).  However, the broad peak for the Clear Creek soil suggests that P sorption 
was not completed until at least 50 minutes, although much of the reaction occurred within 10 minutes (Fig. 
5b).  While P sorption reactions (chemical process) indeed require time to occur, transport kinetics for sorbate 
from liquid to solid (soil) must also be considered.  For example, Aharoni and Sparks (1991) describe sorbate 
transport processes in a solid-liquid system with several scenarios: transport of sorbate in the soil solution, 
transport across a liquid film at the solid-liquid interface, transport in a liquid-filled micropore, and diffusion of a 
sorbate at the soil surface or into a micropore. The “slow burn” (Rhue et al., 2002) displayed by the Clear 
Creek soil has been observed in other studies (Kabengi et al., 2006b; Harvey and Rhue, 2008).  Since both 
soils were dominated by ligand exchange chemical mechanisms which are extremely fast (Sposito, 1994), a 
possible explanation for the long “slow burn” for P sorption in the Clear Creek soil is that after the initial P 
sorption reactions occurred on the surfaces of minerals, further P sorption occurred only after the slow physical 
transport and diffusion of P into micropores (micropore scale physical nonequilibrium). This suggests that for 
Clear Creek, the overall P removal process was appreciably limited by the kinetics of a physical process 
(transport of sorbate from liquid to solid) rather than a chemical process.  It is typical for removal of a sorbate 
by soil to be limited by physical processes due to the presence of a porous solid phase (Sparks, 1989).  
Essentially, P sorption reactions were able to occur much faster than the physical processes which deliver 
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phosphate to the soil surface.  A possible explanation for why this “slow burn” was observed in the Clear Creek 
sample and not the Barren Fork might be that either the Barren Fork soils did not possess the same type of 
inner-porosity, or such zones were already occupied with P due to the higher initial soil P concentrations (Table 
1).  Similarly, Penn et al. (2010) observed an initial fast endothermic reaction (cation exchange; 100 seconds) 
between ammonium and potassium when titrated into zeolite, followed by a slower reaction that occurred for 
nearly 50 min.  Zeolites possess an extensive network of internal pore space; therefore the authors speculated 
that the slower reaction was due to the diffusion of ammonium into the pore space.  The calorimetry results 
corresponded well with actual batch and flow-through kinetics experiments.  

 

   

 
Figure 5. Thermogram for a single titration of 250 µL of  0.01 mol L-1 NaH2PO4 into 0.1 g of soil sampled from the Barren Fork (a) 

and Clear Creek (b) sites.  Peaks above zero indicate exothermic reactions.  Titration made at 100 s.   

 

The difference between P sorption kinetics becomes more apparent when comparing the distribution of the 
area under the peaks of Fig. 5.  For Barren Fork, nearly 100% of the reaction occurred within 3 min.  Contrast 
this to the Clear Creek sample in which only 50% of the 10 min reaction was completed within 3 min.  In 
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addition, about 31% of the total reaction occurred after 10 minutes, which suggests that additional retention 
time beyond 10 minutes for the Clear Creek soil will improve P sorption.  This supports the results of the flow-
through P sorption experiments that suggested that the Barren Fork soil sorbed P faster than the Clear Creek 
soil. 

Summary and Implications 
Isothermal titration calorimetry provided valuable information with regard to the degree of, mechanisms, and 
kinetics of P sorption onto soils when evaluated based on characterization data and flow-through P sorption 
experiments.  Both single titrations and 25 consecutive titration calorimetry experiments predicted the greater P 
sorption capacity of the Clear Creek compared to Barren Fork soil.  In fact, P sorption under flow-through 
conditions was well predicted using an equation previously developed by Penn and Zhang (2010), which 
utilized heat values from calorimetry and soil Alox concentrations.   

Calorimetry data also provided information on P sorption mechanisms.  Both soils in this study displayed 
thermal patterns typical of P sorption by ligand exchange mechanisms onto Al and Fe oxides and hydroxides, 
followed by a lesser degree of Al and Fe phosphate precipitation.  Knowledge of these mechanisms is 
important since the manner in which P is held has an impact on the resistance to P desorption.  The impact of 
chemical conditions on P desorption will also vary depending on the mechanism in which P is held.  For 
example, P bound onto Fe and Al is typically more stable than P bound onto Ca (McDowell et al., 2002; Penn 
et al., 2011), and sorption of P by Ca phosphate precipitation is usually more sensitive to RT than removal by 
ligand exchange reactions (Sposito, 1994). 

Perhaps most important, calorimetry proved to be a useful tool in regard to assessing kinetics and therefore the 
impact of RT on P removal.  In contrast to a batch isotherm, the rate of P sorption in a flow through system 
depends on transport of products and reactants as well as the kinetics of sorption. Key processes include 
advective/dispersive transport in the bulk flow through the pore space, diffusion through the boundary layer or 
immobile pore space (e.g. dead end pores), and the chemical process of sorption to the mineral surface. How 
the system as a whole performs depends on the interaction of these three, and any one of these three to can 
be the rate limiting process. In this research, neither soil was limited by sorption kinetics (chemical 
nonequilibrium). Although the Clear Creek soil sorbed more P as indicated by the flow-through and calorimetry 
analysis, it sorbed P at a slower rate compared to the Barren Fork soil.  Phosphorus sorption by the Clear 
Creek soil appeared more limited by the kinetics of solution P transport, specifically diffusion into micropores 
(physical nonequilibrium), than chemical kinetics, based on the results of the single P titration calorimetry 
experiment which suggested that an increase in RT beyond 10 min should increase P sorption.  Gleaning 
information on kinetics is especially useful because it provides insight into how RT will affect P sorption in a 
system where P-rich water is flowing through soil with limited contact time (i.e. leaching).  

For the Barren Fork soil, we were able to confirm through this analysis that reaction kinetics was not limiting, as 
P sorption was mostly completed within 3 minutes, indicating that an increased RT is unlikely to increase P 
sorption.  In fact, for the Barren Fork system, P sorption occurred faster than the P solution was flowing through 
it, as evident by increased P removal at a shorter RT time of 3 min compared to 10 min (i.e. more P removal at 
a faster flow rate).  This suggests that P removal was limited by physical nonequilibrium at the pore scale, 
specifically transport of sorption reactants from the bulk flow to the mineral surface and/or transport of sorption 
products away from the mineral surface into the bulk flow. This pore scale transport was observed to be a 
function of flow rate. For a P-rich solution such as runoff in a riparian zone, the hydraulic conductivity of the soil 
will somewhat dictate the RT for the downward movement of water.   

This study demonstrated that soils which appear similar based on routine characterization can differ greatly in 
regard to P sorption behavior under flow-through conditions.  Isothermal titration calorimetry was a quick and 
inexpensive method compared to flow-through sorption experiments in regard to assessment of P sorption 
behavior among different soil samples.  The calorimetry approach presented in this study can help to provide 
soil-specific information on the risk of P inputs to leaching (i.e. degree of P sorption) under different conditions 
(i.e. flow rate or RT), and potential for desorption (P sorption mechanisms).     

 

References 
Aharoni, C., and D.L. Sparks.  1991. Kinetics of soil chemical reactions-A theoretical treatment. P. 1-18. In D. Sparks and D.L. 

Suarez (ed.) Rates of soil chemical processes.  SSSA Spec. Publ. 27. SSSA, Madison, WI. 
Akhtar, M. B.K. Richards, P. A. Medrano, M. deGroot and T.S. Steenhuis. 2003. Dissolved phosphorus from undisturbed soil 



2013 ASABE Annual International Meeting Paper Page 12 

cores . Soil Sci. Soc. Am. J.  67: 2: 458-470 
Bear, J. 1972. Dynamics of Fluids in Porous Media. Dover Publications: New York, N.Y. 
Beauchemin, S., and R.R. Simard.  1999.  Soil phosphorus saturation degree: review of some indices and their suitability for P 

management in Quebec, Canada.  Can. J. Soil Sci.  79: 615-625 
Beck, M.A., L.W. Zelazny, W.L. Daniels, and G.L. Mullins.  2004.  Using the Mehlich-1 extract to estimate soil phosphorus 

saturation for environmental risk assessment.  Soil Sci. Soc. Am. J.  68:1762-1771. 
Chin, D.A., R.M. Price, V.J. DiFrenna. 2009. Nonlinear flow in karst formations. Ground Water 47(5): 669–674, doi: 

10.1111/j.1745-6584.2009.00574.x.  
Day, P.R.  1965.  Particle fractionation and particle size analysis.  p. 545-567.  In C.A. Black et al. (ed.) Methods of soil analysis.  

Part 1.  Agron. Monogr. 9. ASA, Madison, WI. 
Djodjic, F. K. Borling, and L. Bergstrom. 2004. Phosphorus leaching in relation to soil type and soil phosphorus content. J. 

Environ. Qual. 33: 678-684  
Edwards, D.R., and T.C. Daniel.  1993.  Effects of poultry litter application rate and rainfall intensity on quality of runoff from 

fescuegrass plots.  J. Environ. Qual. 22:361-365. 
Fetter, C.W. 1999. Contaminant Hydrogeology. Waveland Press: Long Grove, Ill.  
Fuchs, J.W., G.A. Fox, D.E. Storm, C. Penn, and G.O. Brown. 2009. Subsurface transport of phosphorus in riparian floodplains: 

Influence of preferential flow paths. J. Environ. Qual. 38(2): 473-484. 
Harvey, O.R., and R.D. Rhue. 2008. Kinetics and energetics of phosphate sorption in a multi-component Al(III)-Fe(III) hydr(oxide) 

sorbent system. J. Col. Int. Sci. 322:384-393. 
Hereen, D.M., R.B. Miller, G.A. Fox, D.E. Storm, T. Halihan, and C.J. Penn. 2010.  Preferential flow effects on subsurface 

contaminant transport in alluvial floodplains. Trans. ASABE. 53:127-136. 
Heeren, D.M., G.A. Fox, R.B. Miller, D.E. Storm, A.K. Fox, C.J. Penn, T. Halihan, and A.R. Mittelstet.  2011. Stage-dependent 

transient storage of phosphorus in alluvial floodplains. Hydrological Processes 25:3230-3243. 
Hooda, P.S.  2000. Relating soil phosphorus indices to potential release to water. J. Environ. Qual. 2000. 29:1166–1171 
Imai, H., K.W.T. Goulding, and O. Talibudeen. 1981. Phosphate adsorption in allophanic soils. J. of Soil Sci. 32:555-570. 
Kabengi, N.J., R.D. Rhue, and S.H. Daroub.  2006a.  Using flow calorimetry to determine the molar heats of cation and anion 

exchange and the point of zero charge on amorphous aluminum hydroxides.  Soil Sci.  171:13-21. 
Kabengi, N.J., S.H. Daroub, and R.D. Rhue.  2006b.  Energetics of arsenate sorption on amorphous aluminum hydroxides studied 

using flow adsorption calorimetery.  J. Col. Inter. Sci. 297:86-94. 
Kim, Y., and R.J. Kirkpatrick. 2004. An investigation of phosphate adsorbed on aluminium oxyhydroxide and oxide phases by 

nuclear magnetic resonance.  Eur. J. Soil Sci. 55:243-251. 
Ler, A., and R. Stanforth. 2003.  Evidence for surface precipitation of phosphate on goethite.  Environ. Sci. Technol. 37:2694-

2700. 
Machesky, M.L., B.L. Bischoff, and M.A. Anderson. 1989. Calorimetric investigation of anion adsorption onto goethite. Environ. 

Sci. Technol. 23:580-587. 
Maguire, R.O., and J.T. Sims. 2002. Soil testing to predict phosphorus leaching.  J. Environ. Qual. 31:1601-1609. 
McDowell, R.W., Condron, L.M., Mahieu, N., Brookes, P.C., Poulton, P.R. & Sharpley, A.N. 2002. Analysis of potential mobile 

phosphorus in arable soils using solid state nuclear magnetic resonance. Journal of Environmental Quality, 31, 450–456. 
McKeague, J., and J.H. Day.  1966.  Dithionite and oxalate-extractable Fe and Al as aids in differentiating various classes of soils.  

Can. J. Soil Sci.  46:13-22. 
Miltenburg, J.C., and H.L. Golterman.  1998.  The energy of the adsorption of o-phosphate onto ferric hydroxide.  Hydrobiologia.  

364:93-97. 
Murphy, J., and J.R. Riley.  1962.  A modified single solution method for the determination of phosphate in natural waters.  Anal. 

Chim. Acta 27:31-36. 
Nelson, N.O. and A.L. Shober. 2012. Evaluation of phosphorus indices after twenty years of science and development. J. Environ. 

Qual. 41:1703-1710 
Osborne, L.L., and D.A. Kovacic. 2006. Riparian vegetated buffer strips in water-quality restoration and stream management. 

Fresh. Biol. 29:243-258. 
Owens, L.B., and M.J.Shipitalo. 2006. Surface and Subsurface Phosphorus Losses from Fertilized Pasture Systems in Ohio. J. 

Environ. Qual. 35:1101-1109. 
Pautler, M.C., and J.T. Sims. 2000  Relationships between soil test phosphorus, soluble phosphorus and phosphorus saturation in 

Delaware soils. Soil Sci. Soc. Am. J. 64:765–773.  
Partyka, S., W. Rudzinski, and B. Brun.  1989. Calorimetric studies of adsorption of anionic surfactants onto alumina. Langmuir. 

5:297-304. 
Penn, C.J. and J.M. McGrath.  2011. Predicting phosphorus sorption onto steel slag using a flow-through approach with 

application to a pilot scale system. J. Water Res. Protec. 3:235-244. 
Penn, C.J., R.B. Bryant, M.A. Callahan, and J.M. McGrath.  2011. Use of industrial byproducts to sorb and retain phosphorus.  

Commun. Soil. Sci. Plant Anal.  42:633-644. 
Penn, C.J., and H. Zhang.  2010. Thermodynamics of Phosphorus Sorption onto Soils: Isothermal Titration Calorimetry as an 

Indicator of Phosphorus Sorption Behavior.  Soil Sci. Soc. Am. J. 74:502-511 
Penn, C.J., J.G. Warren, and S. Smith.  2010.  Maximizing ammonium-nitrogen removal from solution using different zeolites.  J. 



2013 ASABE Annual International Meeting Paper Page 13 

Environ. Qual.  39:1478-1485. 
Penn, C.J., and J.G. Warren.  2009.  Investigating phosphorus sorption onto kaolinite using isothermal titration calorimetry.  Soil 

Sci. Soc. Am. J. 73: 560–568 
Penn, C.J., G.L. Mullins, L.W. Zelazny, and A.N. Sharpley.  2006.  Estimating dissolved phosphorus concentrations in runoff from 

three physiographic regions of Virginia.  Soil Sci. Soc. Am. J. 70:1967-1974 . 
Rao, N.S., Z.M. Easton, E.M. Schneiderman, M.S. Zion, D.R. Lee, and T.S. Steenhuis. 2009. Modeling watershed-scale 

effectiveness of agricultural best management practices to reduce phosphorus loading. J. Environ. Man. 90: 1385–1395 
Rhue, R.D., C. Appel, and N. Kabengi.  2002.  Measuring surface chemical properties of soil using flow calorimetry.  Soil Sci. 

167:782-790 
Ryther, J.H., and W.M. Dunstan. 1971. Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment. Science: 

171: 1008-1013  
Sakadevan, K., and H.J. Bavor. 1998. Phosphate adsorption characteristics of soils, slags, and zeolite to be used as substrates in 

constructed wetland systems. Wat. Res. 32:393-399. 
SAS Institute.  2003.  SAS user’s guide: Statistics.  SAS Inst., Cary, NC. 
Sauer, T. J., and S. D. Logsdon. 2002. Hydraulic and physical properties of stony soils in a small watershed. Soil Sci. Soc. Am. J. 

66: 1947–1956.  
Sauer, T.J., S.D. Logsdon, J. Van Brahana, and J.F. Murdoch. 2005. Variation in infiltration with landscape position: Implications 

for forest productivity and surface water quality. Forest Ecol. .Manag. 220: 118-127. 
Schoumans, O.F.  2000. Determination of the degree of phosphate saturation in non-calcareous soils. p. 31–34. In: Pierzynski, 

G.M. (Ed.), Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters. Southern Cooperative Series 
Bulletin No. 396. A publication of SERA-IEG 17. (A USDA-CSREES Regional committee minimizing agricultural phosphorus 
losses for protection of the water resources.). 

Simard, R.R. 2000  Potential for preferential pathways of phosphorus transport. .J. Environ. Qual.  29:97–105. 
Sparks, D.L. 1989. Kinetics of soil chemical processes. San Diego, CA,  Academic Press. 
Sposito, G. 1994. Chemical equilibria and kinetics in soils. New York, Oxford University Press.  
Stoner, D., C.J. Penn, J.M. McGrath, and J.G. Warren.  2012.  Phosphorus removal with by-products in a flow-through setting.  J. 

Environ. Qual.  41:654-663. 
Vadas, P.A., R.D. Harmel, and P.J.A. Kleinman.  2007.  Transformations of soil and manure phosphorus after surface application 

of manure to field plots. Nutr. Cycl. Agroecosyst.  77:83-99. 
Villapando, R.R., and D.A. Graetz. 2001. Phosphorus sorption and desorption properties of the Spodic horizon from selected 

Florida Spodosols. Soil Sci. Soc. Am. J. 65(2): 331-339. 
 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	7-2013

	Application of isothermal calorimetry to the study of phosphorus sorption onto soils in a flow-through system
	Chad J. Penn
	Derek M. Heeren
	Garey A. Fox

	Microsoft Word - 131621201.docx

