
190 °C LHW condition, and it likely indicates the formation of
larger porous regions with increased H2O2 loading rather than
the formation of more porous regions in the cell wall as
observed in the AHP-only conditions. Smaller probe (<136 Å)
accessible volumes were also considerably lower in the 190 °C
LHW two-stage pretreatments compared to the 160 °C LHW
conditions and support the previously proposed mechanism of
either a collapse of interlamellar layers within the cell wall at
high overall pretreatment severity, or through cellulose
aggregation reducing cell wall porosity due to the lack of
xylan to act as a spacer.30 On the basis of results from
enzymatic hydrolysis, WRV, and solute exclusion, the following
model (Figure 5) was derived for cell wall changes resulting
from pretreatment. Figure 5 displays compositional changes
resulting from pretreatment in the form of xylan and lignin
abundance and location within the cell wall, as well as xylan-
lignin ferulate ester cross-links abundance. Structural changes to
the secondary cell wall are reflected by increases in fibril bundle
spacing demonstrating interlamellar nanoscale porosity and
intralamellar microfibril spacing, with both reflecting nanoscale
porosity and accessible surface areas.
Impact of Drying-Induced Pore Collapse on Cell Wall

Properties and Enzymatic Hydrolysis. Drying-induced
hornification was investigated for select pretreatment con-
ditions to determine the impact that changes in higher-order
structure of pretreatment-modified cell walls have on cell wall
swelling, accessible volumes, and enzymatic hydrolysis yields in
compositionally diverse samples. The results show that oven-
drying resulted in significant changes in accessible volume
distributions (Figure 6A), with decreases in accessible volume
observed to some extent for all samples relative to the never-
dried samples. There was, however, a stark contrast in how
significantly accessible volumes decreased, with samples
subjected to AHP delignification demonstrating highly altered
accessible volumes, compared to 0 g H2O2/g biomass AHP and
190 °C LHW only pretreated biomass, which demonstrated
only minimal loss of accessible volumes.42 Furthermore, there

was a noted decrease in volumes accessible to larger probes in
samples subjected to AHP delignification. These results can be
related to the structural model presented in Figure 5, with
drying resulting in the collapse of larger porous regions within
the cell wall (Figure 5B), while samples containing higher
fractions of lignin (Figure 5C) maintained their ability to sorb
water within nanoscale pores.43

WRVs were also observed to substantially decrease (Figure
6B), with all samples experiencing at least a 40% decrease in
WRV after drying and exhibited a closer distribution of WRV
between pretreated biomass compared to the never-dried WRV.
Hornification has been demonstrated to reduce accessible
internal surface area within delignified wood fibers that limits
water sorption.44,45 This can be visualized in Figure 5D, with
oven-drying removing water and resulting in the irreversible
coalescence of some cell wall components.46 For the enzymatic
hydrolysis yields after oven-drying, the biomass delignified at
high H2O2 loadings demonstrated the largest decrease in 6-h
hydrolysis yields (Figure 6C), followed by less significant
decreases for the other pretreated samples. The 72-h hydrolysis
yields were only significantly lower in the 0.25 g/g H2O2 AHP-
only pretreated biomass. As the AHP-delignified biomass is the
sample most impacted by drying-induced hornification, this
indicates that the hydrated spaces within the cell wall of these
samples, presumably containing mostly xylan, are most
susceptible to irreversible coalescence. Interestingly, prior
work using 0.50 g/g H2O2 AHP-delignification followed by
lyophilization resulted in no differences in final hydrolysis
yields.32 Different methods of drying have been shown to
influence extent of hornification and have been explored in the
context of altered cell wall properties.47

Enzyme Binding. As noted earlier, the commercial cellulase
cocktail contains a number of accessory enzyme activities other
than cellulase. As a result, the observed bound protein curves
represent general protein binding rather than for binding of a
specific cellulase. In addition, contributions from cell wall
biopolymers other than cellulose (i.e., hemicellulose and lignin)

Figure 6. Impact of oven drying on cell wall properties and enzymatic hydrolysis. (A) Accessible volumes of oven-dried and rehydrated corn stover
were performed similarly to Figure 4. (B) Water retention value (WRV) of oven-dried corn stover at varying pretreatments. (C) Hydrolysis yields for
never-dried (ND) samples with 6-h total hydrolysis time are plotted in blue, and 72-h total hydrolysis time are plotted in orange. Comparative
hydrolysis yields for oven-dried (OD) 6-h and 72-h total hydrolysis time from Figure 2 are shown as green dotted and yellow striped bars,
respectively. Hydrolysis conditions used 20 mg protein/g glucan CTec3 and 10 mg protein/g glucan HTec3 loading. Experiments were all
performed in technical triplicate, with standard deviations shown on each figure. * in (B) indicates statistical significance between 0 M NaCl and 1 M
NaCl for individual pretreatment conditions, while * in (C) indicates statistical significance between 72-h OD and 72-h ND yields (Student’s t test
95% confidence).
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can contribute to the observed adsorption behavior through
nonspecific or nonproductive binding.48 However, binding
isotherms are useful for assessing the impact of pretreatment on
enzyme-accessible surfaces. The results in Figure 7 show the

percent of bound enzyme measured as a fraction of total
enzyme in solution for a linear range of enzyme loadings
representing the linear, low-concentration region of the binding
isotherm. The percentage of bound enzyme increased with
increasing H2O2 loading for AHP-only pretreated biomass,
comparable to results published in our prior work.12 The LHW-
only pretreated biomass had a lower percentage of bound
enzyme compared to the higher severity AHP-only pretreated

biomass, indicating that structural changes induced by LHW
pretreatment alone do not impact enzyme adsorption the same
extent as AHP-delignification. The two-stage pretreatments
showed increases in the fraction of bound enzyme with both
H2O2 loading and to a lesser extent with LHW pretreatment
severity; however, low H2O2 loadings were still comparable or
higher than all but the highest H2O2 loading AHP-only
pretreated biomass.

Correlation of Properties. By correlating compositional
and structural properties of pretreatment-modified plant cell
walls to hydrolysis yields, a number of important trends can be
identified that provide insight into cell wall matrix changes. The
first major trend that can be observed is that comparing 72-h
glucose hydrolysis yields to lignin content (Figure 8A) shows
three distinct linear relationships between AHP-only and each
LHW condition. From this, lignin content can be shown to be
correlated with hydrolysis in the context of increased H2O2
loading, and therefore, extent of delignification resulting in
increased enzymatic hydrolysis yields. The other major
compositional difference between each grouping in Figure 8A
is the amount of xylan present (shown as a range for each
grouping on Figure 8A), which can be taken as a proxy for the
extent of cell wall modification during LHW pretreatment.
Next it was observed that glucose hydrolysis yields were

positively correlated with 90 Å probe accessible volumes
(Figure 8B). Cell wall volumes accessible to the 90 Å dextran
probe were selected to correlate with hydrolysis yields, as 90 Å
corresponds to a slightly larger probe size than necessary for
reasonable estimation of typical cellulase (e.g., TrCel7A).49

Notably, as the accessible volumes increased, the 72-h
hydrolysis yields were observed to approach saturation. This
trend is reasonable, because although accessible volumes may
indicate increased accessibility within the cell wall for cellulases,
there is likely a limit to the extent accessibility plays in
increased enzymatic hydrolysis relative to other intrinsic
factors.50 Interestingly, for this data set the accessible volumes

Figure 7. Bound enzyme fractions of CTec3 on pretreated biomass.
Bound enzyme fractions are shown as a percent of bound enzyme to
total enzyme loading. Binding concentrations were performed in
technical duplicate, with the slope of the binding curve determined
using linear regression. Error associated with regression fit is shown in
the figure.

Figure 8. Comparisons between glucose hydrolysis yields, solute exclusion, and lignin content. Glucose hydrolysis yields taken from Figure 2A,B
were from 72-h total hydrolysis time using an enzyme solution of CTec3 and HTec3. Xylan content is displayed as a range for each linear trend in
orange in panel A. Accessible volume distributions (C,D) were used from Figure 4, and lignin content was taken from Figure 1.
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across multiple probe sizes were shown to directly correlate to
lignin content, with AHP-delignified biomass exhibiting a
strong negative correlation with accessible volumes at 39, 90,
and 136 Å probe sizes (Figure 8C), while LHW-only and two-
stage pretreated biomass accessible volumes correlated only to
the 136 Å probe size (Figure 8D). These correlations indicate
that for biomass subjected to AHP delignification, increases in
the nanoscale probe-accessible volumes can be directly related
to the extent of delignification as proposed in the schematic in
Figure 5B. Accessible volumes observed in AHP-delignified
biomass also likely contribute to enzyme penetration within the
cell wall, with prior correlations between enzyme binding and
accessible pore volumes shown in sulfite-pretreated hard-
woods50 and alkali-delignified hardwoods.51

The fraction of bound enzyme was demonstrated to exhibit a
strong positive correlation to glucose hydrolysis yields
irrespective of pretreatment conditions or composition (Figure
9A). This result is not surprising as cellulase binding and
glucose hydrolysis yields are well-known to be correlated in
diverse feedstocks subjected to diverse compositional changes
resulting from pretreatment.12,33 Correlation plots of WRV
versus 72-h hydrolysis yields two distinct trends (Figure 9B),
with the AHP-only pretreatment resulting in a clear linear trend
between WRV and hydrolysis yields as demonstrated in our
prior work,12,35 while a second trend with a different slope was
observed for the two-stage 160 °C LHW-pretreated biomass.
No trend was observed for the two-stage 190 °C LHW-
pretreated biomass followed by AHP delignification (Figure
9B), and based upon these results, there appears to be some
relationship between glucose hydrolysis yields with water-
accessible surface area in pretreated biomass not exhibiting cell
wall coalescence due to significant noncellulosic component
removal. In addition, these distinct, pretreatment-dependent
trends are comparable to what we identified in our prior work
with AFEX-pretreated corn stover or switchgrass exhibiting
distinct trends for at different ammonia loadings.35

As a final correlation between properties, WRV has also been
proposed as a proxy for measuring fiber saturation point
(FSP),52 which is generally defined as the total inaccessible
volume at 560 Å.16 Additionally, WRV and FSP are
hypothesized to measure similar properties in pulps.53 Linear
comparisons between the WRVs and FSPs for never-dried and
oven-dried pretreated biomass measured show distinct linear
trends (Figure 10). In the never-dried samples, the slope of the
linear relationship was less than one, indicating WRV
measurements were higher than the equivalent inaccessible
volume measurement. This is important, because one of the
limitations of the solute exclusion method resides in the

inability for water in porous regions with nonuniform or narrow
openings to interact with the dextran probes during the solute-
exclusion technique,18 while WRV accounts for water localized
within porous regions of irregular geometries.26 After oven
drying, the slope between inaccessible volume and WRV was
effectively unity, indicating that the solute exclusion and WRV
techniques quantify similar cell wall properties after oven
drying. The substantial drop in these properties is clearly
attributed to hornification, resulting in the collapse of certain
cell wall porous regions and reductions in accessible surfaces
shown previously (Figure 6). Based upon this comparison,
WRV likely overmeasures total accessible surface area
compared to the FSP in the never-dried case, which may be
due to WRV also incorporating water−cell wall binding in the
form of intralamellar water association within cellulose
microfibrils or between microfibrils not be quantified by the
FSP. Based upon the two-stage LHW pretreated biomass
exhibiting higher WRV relative to FSP (Figure 10) compared
to the AHP-delignified only biomass, this may be an
appropriate evaluation, as xylan removal could increase
water−cellulose microfibril interactions,54 while still being
inaccessible to quantification by the solute exclusion method.
The results and correlations presented in this study provide an
avenue of feedstock tailoring within grasses to promote cell wall
nanoscale properties conducive to improved enzymatic
hydrolysis yields. Specifically, increases in accessible nanoscale
surfaces promote high enzymatic hydrolysis yields and depend
primarily on cell wall changes induced by AHP pretreatment
(Figure 5). It is reasonable to hypothesize that other
pretreatments resulting in similar cell wall properties such as
increased nanoscale accessible volumes, WRV, and cell wall
swelling would also demonstrate high enzymatic hydrolysis

Figure 9. Comparisons between glucose hydrolysis yields and (A) bound enzyme fractions and (B) water retention value. Glucose hydrolysis yields
taken from Figure 2 were from 72-h total hydrolysis time using an enzyme solution of CTec3 and HTec3. WRV were taken from Figure 3, and
bound enzyme fractions were taken from Figure 7.

Figure 10. Comparison of inaccessible pore volume to water retention
value. Total inaccessible pore volume was determined using solute
exclusion at the effective pore size of 560 Å and compared to WRV (0
M NaCl) from Figure 3.
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yields comparable to the 0.25 g/g H2O2 AHP-only pretreat-
ment.
In summary, AHP delignification and LHW pretreatment of

corn stover in this study yielded a series of compositionally
diverse feedstocks exhibiting significantly different cell wall
properties, that were used to assess how both compositional
and structural features impact cell wall recalcitrance to
enzymatic hydrolysis. Specifically, we were clearly able to
demonstrate that, while the mechanisms by which AHP and
LHW pretreatment improve cellulose accessibility are dramat-
ically different, both pretreatment types were shown to increase
hydrolysis yields, enzyme sorption, and WRV. AHP delignifi-
cation was shown to result in a substantial increase in accessible
volumes to a series dextran probes, while LHW pretreatment
resulted in only changes to smaller accessible probe
distributions. Solute-induced cell wall swelling measured by
WRV showed AHP-delignified pretreatments displayed partial
loss of cell wall rigidity, which may explain in part larger
accessible volume distributions and increased porosity in AHP-
delignified biomass. Overall, this study highlights the
importance that cell wall organization and modification during
processing during biorefining processing can have on feedstock
response to enzymatic hydrolysis.
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