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Abstract

Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in

the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called > X
“snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K* channels. Ex- [ SR
perimentally, snorkeling activity is not mandatory for Kev,, -, ; because K29 can be replaced by most of the
natural amino acids without any corruption of function. Two similar channels, Kev , 14 and Kcvy 1,5, lack
a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To
understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simula-
tions of Kevpp -1 and N-terminally truncated mutants; the truncated mutants mimic Kev ;4 and Kevy .
Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The re-
sults indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent
on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is inde-
pendent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snor-
keling can be important for K* channels; however, its significance depends on the architecture of the entire
TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the
cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane

by other domains.

he transmembrane domains (TMDs) of many proteins con-

tain positively charged amino acids near the polar-/apolar
membrane interface.(1-5) Because of their long and flexible side
chains, these amino acids can keep their hydrocarbon part inside
the membrane while the positive charge reaches into the inter-
face region.(6, 7) This phenomenon has been termed “snorkel-
ing” and is critical for the precise positioning and orientation of
TMDs in the membrane and for the compensation of hydropho-
bic mismatches between proteins and membranes.(7, 8)

The small viral K* channel Kcv can serve as a model for
studying the relevance of Lys or Arg snorkeling in the TMDs
of K* channels. This Kir-like channel has the structural and
functional hallmarks of more complex K* channels (9, 10) but
with a monomer size of 94 amino acids consists of just the pore
module component present in all K* channels. Examination of
the Kcv structure indicates that the channel contains the basic
amino acid Lys in the outer TMD at the predicted membrane-
aqueous interface.(10, 11) Recent computational and experi-
mental studies of the role of this Lys in Kcv from virus PBCV-1
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(Kevppey.q) produced a surprising result. Molecular dynam-
ics (MD) simulations revealed that a protonated Lys exhibits
vivid snorkeling activity with the consequence that the protein
structure becomes unstable and the channel does not transport
ions.(11) In contrast, modeling the protein with a deprotonated
Lys produced a stable channel, capable of spontaneous single-
file ion transport. These results suggest that the Lys at posi-
tion 29 (K29) in Kcvpp -y, 4 could be uncharged and still form
a functional channel. This hypothesis was supported by three
site-directed mutations showing that K29 could be replaced
with Ala, Ser, or Trp without impairing channel function in
human HEK293 cells.(11) The apparent tolerance of the chan-
nel for different amino acids in position 29 is rather surpris-
ing because this equivalent position is very conserved among
other viral K* channels. Recently, more than 40 Kcv-type viral
K* channels were isolated (ref 12 and unpublished data of J. L.
Van Etten), and some were successfully tested previously for
function.(13) All of these channels have either a Lys or Arg in
the equivalent position of TMD1.
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Figure 1. Position of a conserved basic amino acid in the outer transmembrane domain of viral K* channels. (A) Alignment of different viral K* chan-
nels. Several algal viruses (names given on the left), which infect different hosts, encode K* channels (second row). Viruses PBCV-1, MA-1D, NY-2A,
and NY-2B infect Chlorella variabilis (formerly named Chlorella NC64A). Viruses MT325 and CVM-1 infect Micractinium conductrix (formerly named
Chlorella Pbi). Virus ATCV-1 infects Chlorella heliozoae (formerly named Chlorella SAG.3.83). Virus EsV infects Ectocarpus siliculosus. The canonical K*
channel selectivity filter is boxed, and the basic amino acid (K29 in Kcv from virus PBCV-1), which is conserved in all Chlorella viruses, is highlighted in
gray. The amino acids, which presumably are in the vicinity of K29 in Kcvyg, 4 in TMD2, are highlighted (yellow). The acidic and basic amino acids in
the protein are colored blue and red, respectively. Identical amino acids are denoted with asterisks, and similar and related amino acids are denoted
with colons and periods, respectively. The structural organization of Kcv from PBCV-1 with the position of the two transmembrane domains (TMD1
and TMD?2) as well as the pore helix (PH) is shown in the top panel. The amino acids at the N-terminus, which are truncated in the Kcvyg, 4-A8 and
Kcvpgey.1~A14 mutants, are denoted with blue and red bars, respectively. (B) Average structures of TMD1 from Kcv,g ., taken from MD simulations.
(11) The structures show TMD1 with the respective K29 simulated in its protonated (magenta) and deprotonated (green) forms. Snorkeling occurs
only in the protonated state. (C) Hydropathy of different TMD1s calculated with MPEx. The calculated octanol scale is a measure of the total ener-
getics of the helix stability of TMD1.(22, 23)

In this study, we continue to examine the functional role
of this Lys in the structure-function context of viral K* chan-
nels by both experimental and computational analyses. Exper-
imentally, we discovered that K29 in Kev,, -, 4, can be replaced
with each natural amino acid with the exception of Pro without
losing channel function. This result implies that channel func-
tion is insensitive to the nature of the amino acid at this posi-
tion. Comparison of Kcvpp -, with some other viral K* chan-
nels indicates that this position is conserved, e.g., in Kev .y 4

and Kcv,14,5. Functional studies of these two viral channels
indicate that Lys is more important in this position for func-
tion than in Kevpp ., ;. Computer simulation data shed some
light on the structural significance of the protonation state of
K29 in the context of the N-terminal length and the membrane
positioning of TMD1. Collectively, the data indicate that the
contribution of a single amino acid to the structure and func-
tion of a channel protein can only be understood in the con-
text of the entire protein.
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Materials and Methods

Constructs and Mutagenesis. Kcv genes from Chlorella vi-
ruses PBCV-1, ATCV-1, and MT325 were cloned either in the
pEGFP-N2 vector (Clontech-Takara Bio Europe, Saint-Ger-
main-en-Laye, France) for electrophysiological measurements in
HEK293 cells or in a modified pYES2 vector (Invitrogen GmbH,
Karlsruhe, Germany) for yeast complementation experiments.
(14) The genes were cloned into the BgIIl and EcoRlI site in the
PEGFP-N2 vector without their stop codons and in frame with
the downstream green fluorescent protein (EGFP). For the yeast
experiments, the genes were cloned with their stop codons into
the EcoRI and Xhol site of the pYES2 vector. For insertion of the
site-directed mutations, the QuikChange site-directed mutagen-
esis method (Stratagen) was used and the resulting constructs
were verified by DNA sequencing,.

Saccharomyces cerevisiae Complementation Assays. Yeast
complementation assays were conducted as described previ-
ously.(14) Yeast strain SGY1528 lacks an endogenous K* uptake
system and, therefore, does not grow on media with K* concen-
trations of <10 mM. Complementation assays were conducted
on agar plates either under nonselective conditions (100 mM K*
agar plates) or under selective conditions (1 or 0.5 mM K*). The
plates were incubated for 3 days at 30 °C. Experiments in lig-
uid cultures were performed in selective medium with 0.5 mM
K*, and growth was monitored by measuring the optical den-
sity at 600 nm (ODy ). The selective medium was inoculated
with a yeast suspension at a final OD, of 0.1 and incubated at
30 °C and 230 rpm. After 0 and 24 h, the OD,, was measured
in a spectrophotometer.

Electrophysiological Measurements. The electrical proper-
ties of the viral channels in HEK293 cells were recorded as re-
ported previously.(15) Different constructs of Kcvppy, ; and
its homologues Kcv 1y 4 and Kevy, 4,5 were transiently ex-
pressed as fusion proteins with GFP on the C-terminus us-
ing the liposomal transfection reagent TurboFect (Fermentas,
St. Leon Rot, France). Measurements were performed at room
temperature in a bath solution containing 1.8 mM CaCl,, 1
mM MgCl,, 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesul-
fonic acid (HEPES, pH 7.4), and either 100 mM KCl or 100 mM
NaCl; 10 mM BaCl, was added to the K*-containing medium
to block the channels. The osmolarity of all solutions was ad-
justed with mannitol to 330 milliosmolar. The pipet solution
contained 130 mM potassium d-gluconic acid, 10 mM NaCl, 5
mM HEPES, 0.1 mM guanosine triphosphate (Na salt), 0.1 uM
CaCl,, 2 mM MgCl,, 5 mM phosphocreatine, and 2 mM ade-
nosine triphosphate (Na salt, pH 7.4).

Analyses of Molecular Dynamics Simulations. Microscopic
insight was provided by atomistic MD simulations of wild-type
(Wt) Kevppey; with both protonated and deprotonated K29 side
chains as described previously (10, 11) and N-terminally trun-
cated Kevpp -y 4-A8 and Kevpp -+, 1-Al4 with corresponding de-
protonated Lys residues as described previously.(15) The trun-
cated variants represent progressively shorter “slide” helices
that align laterally with the cytosolic side of the membrane. The
shortest mutant completely lacks the slide helix. Besides the av-
erage structures generated by mean-field annealing,(10, 11) we
analyzed time series of various observables related to the posi-
tion of the channel and its components in the membrane by cal-
culating the distance of the center of mass (com) of fragments
from the extracellular lipid phosphate headgroups. In particu-
lar, we analyzed (all numbers are for Kcv,p -, ;-wt, truncated

variants were shifted accordingly) the center of mass (com) of
Lys29, the selectivity filter (residues 63-68), TMD1 (residues 15-
29), and the entire tetrameric channel protein. All simulations
include an initial ~30 ns rigid filter run, followed by a fully flex-
ible model. In total, we obtained trajectory data for 90, 74, 103,
and 100 ns for wt (deprotonated), wt (protonated), A8 (deprot-
onated), and A14 (deprotonated) variants, respectively.

Results

Status of Viral K* Channels and Snorkeling of Cationic
Amino Acids. Like many membrane proteins,(1-8) viral K* chan-
nels typically have a cationic amino acid in the TMD near the
lipid-aqueous interface. In the case of Kcvpy -y 4, the outer trans-
membrane domain (TMD1) contains a Lys (K29) facing the ex-
tracellular solution (Figure 1A,B). Previous MD simulations of
Kevppeyq indicated that this Lys behaves very differently in its
protonated or deprotonated form.(11) The average structures
in Figure 1B and the corresponding simulations by Tayefeh et
al.(11) illustrate the dynamics and show a typical snorkeling ac-
tivity for the protonated Lys.(11) The charged side chain of the
amino acid is preferentially oriented toward the aqueous inter-
face and is in contact with water. The vigorous movement of the
Lys allows water molecules to penetrate the membrane, eventu-
ally leading to a breakdown of the TMD1 helical structure.(11)
In contrast, the deprotonated form of Lys is fully desolvated
and primarily directed toward the core of the membrane. In
this configuration, the protein is stable and it is possible to ob-
serve spontaneous movement of K* ions through the channel.
Consistent with the simulation results, separate experiments es-
tablished that the channel does not require a protonated amino
acid and hence does not require snorkeling in this position to
function. For example, the channel still functions when the Lys
is replaced with Ala.(11)

Lys29 in Kcvppy, , Tolerates Mutations. We replaced Lys29
with each of the natural amino acids to determine if Kcvppey 4
function was altered; function was monitored by yeast comple-
mentation. The yeast mutant SGY1528 lacks endogenous K* up-
take systems and consequently grows only in media with a high
K* concentration. Yeast SGY1528 growth can be rescued in low-
K* media (1 or 0.5 mM K*) if the cells are supplied with a func-
tional K* channel such as Kcvpp -y, (Figure 2A).

All of the mutants grew on a medium with 100 mM K* (Fig-
ure 2A); i.e., none of the mutations prevented SGY1528 growth.
Surprisingly, all of the mutants also grew on the selective me-
dium (1 or 0.5 mM K*) with one exception, the substitution of
Pro for Lys (Kcvppey 1-K29P) (Figure 2A). These results indi-
cate that Kcvpp -, tolerates 19 amino acids at position 29 with-
out losing function; only Pro is not tolerated. Because Pro is
the amino acid with the strongest propensity for terminating
a-helices(16, 17) and an amino acid that produces kinks in pro-
teins,(18) we assume that the function of this position is to guar-
antee a proper a-helix and/or nonbent connection.

While the results in Figure 2A indicate that all amino acids
except Pro can substitute for K29 in Kevp -, 4, the amino ac-
ids differ in their ability to rescue growth. To quantify these
differences in rescue efficiency, we performed liquid growth
experiments with the different mutants. The rescue efficiency
was estimated from the optical density of the cultures after 24
h. The results were similar to those obtained with agar plates
(Figure 2B). All mutants, except for K29P, rescued yeast growth
under selective conditions; however, some amino acids were
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Figure 2. Most amino acid substitutions for K29 in Kcvg,_, allow growth
of K* uptake deficient yeast. (A) Growth of yeast mutants that express
KcVpgey.q Wild-type channel or channel mutants in which K29 was re-
placed with each natural amino acid. The growth assay was performed
on agar plates under nonselective (100 mM KCI) and selective (1 and 0.5
mM KCI) conditions. The yeast mutants expressing channels or empty
vector (pYes2) were spotted in different dilutions: 1 (undiluted), 1:10 (10),
and 1:100 (100). (B) Quantification of yeast growth with cells expressing
empty vector or the aforementioned channels under selective conditions
with 0.5 mM K* in liquid medium. Growth is shown as the increase in op-
tical density at 600 nm (ODg) 24 h after inoculation. Data are means +
the standard deviation of at least five independent experiments. With
the exception of K29P, all mutants rescue yeast growth.

more effective in stimulating growth than others. Collectively,
the data imply that the chemical properties of the amino acid at
position of Kev,,, ; have a structural impact on channel func-
tion; channel activity can be increased and decreased by amino
acid substitutions with respect to the wt channel. In general, hy-
drophobic amino acids stimulate and polar amino acids inhibit
channel function. However, similar amino acids such as Asp
and Glu have very different effects on channel function; there-
fore, it is obvious that the yeast rescue data cannot simply be
explained on the basis of a single property of the amino acid in
this position. To explain the different results based on the phys-
icochemical properties of the amino acids such as hydrophobic-
ity, volume, etc., we tried to correlate yeast growth with several
amino acid descriptors. However, none of the physicochemical
parameters of the amino acids provided an obvious explanation
for the yeast growth data (data not shown).

Chlorella Virus-Encoded Kcvs Typically Have a Lys or Arg
in the Same Position in TMDI. The finding that Kcvpp, 4 tol-
erates replacement of Lys with almost any amino acid contrasts
with the high degree of conservation of basic amino acids in this
position. An alignment of some viral Kcv-type channels (Fig-
ure 1A) shows that all but one of them has a Lys or an Arg in
this position. (Note that K19 is equivalent to K29 of Kevppy 4
in some of the Chlorella virus channel proteins.) Only channel
Kesv, a K* channel from a distantly related algal virus, lacks a
basic amino acid in or near this critical position. The conserva-
tion of a basic amino acid at this position suggests that a charge
at this site is more important than expected from the experi-
ments shown in Figure 2. In fact, channels from 40 additional
Chlorella viruses homologous to Kcv 1y 4 (1 = 14), Kevy 1555,
(12) and Kevpp -y, 4(14) have recently been sequenced, and all of
them have a Lys or Arg in this position (ref 12 and unpublished
results of J. L. Van Etten).

Neutralization of Lys in Two Additional Virus-Encoded K*
Channel Proteins Inhibits Channel Function. Because of the
conserved nature of basic amino acids in the Kcv channels, we
conducted a similar series of amino acid replacements in the
82-amino acid Kcv , 1y, and the 95-amino acid Kcv,,p5,5. Pre-
vious experiments demonstrated that Kev , 4 and Kevy 1,2
function when expressed in Xenopus oocytes. Kev 1y 4 is also
functional in the yeast rescue assay.(20) Figure 3A shows yeast
rescue experiments with K to A mutants in TMD1 of Kcv -y 4
and Kcvy 155

Yeast cells expressing Kcv , 1y 1-K19A and Kev,14,--K19A
grow on media with a high K* concentration, meaning that
the channel is not deleterious for the cells. In contrast, growth
tests on selective media indicate that neither of the mutants res-
cues the K* uptake deficient yeast mutants to the same extent
as Kevppoy1-K29A (Figure 3A). However, a small amount of
growth occurred under these conditions for both yeast mutants.
To further examine this phenomenon, growth was tested with a
higher yeast concentration and longer growth incubations. The
results of these experiments indicate that the Kev , ;- -K19A
and Kcv,;14,5-K19A mutants exhibit some rescue capability and
that neutralization of the charge does not render the channels
completely inactive (Figure 3B). However, neutralization of this
critical amino acid in these latter two channels has a more severe
negative impact on channel function than it does for Kcvpp.y 4.

The results described above suggest that Kcv,,, -, , tolerates
neutralization of the charged amino acid in TMD1 while the func-
tion of the other two Kcv channels is inhibited. To examine this
observation, we measured the activity of a chimera of GFP with
Kev 1oy or its mutants in HEK293 cells. The data in Figure 4
show a representative recording of mock-transfected HEK293
cells and a cell transfected with Kcv , 1y 1::GFP. Like untrans-
fected cells, the mock-transfected cells have the typical low con-
ductance over a wide range of negative voltages. Cells transfected
with Kev , 1y 4-Wt respond differently to the standard voltage
protocol. These cells have an elevated quasi-linear conductance
at voltages between ~80 and +80 mV. At more hyperpolarized
voltages, the current-voltage (I-V) relation shows a pronounced
negative slope conductance. In this respect, the I-V relation of
Kev ey is similar to that measured in Xenopus oocytes and the
negative slope can be attributed to a fast gating of the channel
at negative voltages.(20) The typical Kcv 1y 4-type -V relation
was seen in 6 of 13 cells, revealing positive expression of the chan-
nel. A similar fraction (~60%) of HEK293 cells transfected with
Kevpgey4::GFP had characteristic Kev channel activity.(15)
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Figure 3. Replacement of Lys19 with Ala19 in Kcvyyr3,5 and Kevgey 4
does not rescue yeast growth. (A) Data show a complementation as-
say of a K* uptake deficient yeast expressing Kcvpg,_-wt and mutants
Kevpgey.1~K29A, Kevyyr305-K19A, and Kevype,.-K19A with the empty vec-
tor as a control. (B) When the Kcv;c,.,-K19A and Kcv, 13,6 mutants are
tested undiluted, some growth is detected under selected conditions.
The yeast complementation assay was conducted as described in the
legend of Figure 2.

To test the relevance of the charged amino acid at the lipid-
aqueous interface, we expressed Kcv , 1y 1-K19A in HEK293
cells. In the cells that expressed the mutant channel (n = 14), as
judged by the GFP fluorescence, the current voltage relations
were similar to those of nontransfected cells (Figure 4A-E).
However, close scrutiny reveals that the Kcv , 1.~y ;-K19A mutant
generates a small characteristic current in addition to the back-
ground current of the mock-transfected cells. In the example of
I-V relations shown in Figure 4E, a distinct difference occurs
in the voltage window between 0 and —80 mV. This Kcv 1.
1-K19A specific current is also evident when we compare a large
number of [-V relations from mock- and Kcv , 1y 4-K19A-trans-
fected cells (Figure 4G). Figure 4F shows the mean I-V curves
of mock- and Kev , - 1-K19A-transfected cells. The AI-V rela-
tion (Figure 4F, inset) reveals features of the Kcv , 1y ;-wt cur-
rent with its negative slope conductance at negative voltages.
The results of these experiments confirm the data from the yeast
rescue experiments (Figure 3) in that the crucial Lys can be neu-
tralized without completely abolishing channel activity. How-
ever, unlike the Kcv, -, ,-K29A situation, this neutralization has
a strong negative effect on channel activity. This interpretation
is consistent with the finding that transfection of HEK293 cells
with the mutant Kev , 1, ;-K19R, which conserves the positive
charge, produced larger currents. The currents recorded from

HEK293 cells expressing the Kcv , 1~y.1-K19R mutant are sim-
ilar to those measured with Kcv ;1 ;-wt; only the mean cur-
rent amplitudes of the mutant currents are smaller than those
of the wild type (Figure 4E,G). In this case, the bulky, positively
charged guanidino group of Arg may be less favorable than the
terminal amino group on Lys.

Extracellular Snorkeling and Cytosolic Anchoring. Channels,
which do or do not require a basic amino acid in TMD1, differ
in their cytosolic N-termini (Figure 1). Those that require a basic
amino acid in TMD1 (Kcv 1y 4 and Kev,14,-) lack a cytosolic
N-terminus. (19, 20) Kcvpp - 4 in contrast, which does not require
a charged amino acid in this position, has a short cytoplasmic
12-amino acid N-terminus.(11) A reasonable assumption is that
this cytosolic domain serves as an anchor for Kev,,, ;, which
supports the positioning of TMD1 in the membrane. Because of
this additional support, a charged and snorkeling amino acid
may not be required to maintain channel function.

To test this hypothesis, we analyzed the dynamics of
Kevppeyq with Lys29 in a deprotonated and protonated form
in its full-length form and in mutants in which the N-termi-
nus was truncated. The truncated proteins resemble the struc-
tures of full-length Kev , 1y, and Kev, 14,5 channels. Rele-
vant observables for characterizing the membrane position of
various fragments are shown in Figure 5 and typical simula-
tion snapshots in Figure 6. In all simulations, the initial set-
ups of the mutants and the protonated wt channels were con-
structed by aligning the filter residues with the deprotonated
wt model, which is perfectly centered in the 1, 2-dimyristoyl-
sn-glycero-3-phosphocholine (DMPC) membrane. The shorter
channels should therefore have a measurable drift toward the
membrane center during the 100 ns simulation times unless
specific sequence and structural features counteract this ten-
dency. An important result of the simulations is that all the
constructs, irrespective of the protonation state of Lys29 and
irrespective of the length of the N-terminus, remain stable in-
side the membrane; the relative differences in their total cen-
ter of mass position are very small (Figure 5D). Therefore, the
truncation effect manifests itself predominantly in the form of
internal protein distortions.

Notably, a slight drift of the filter region toward the mem-
brane center occurs with the truncated models (Figure 5B), but
not with the full-length, protonated form even though the cru-
cial Lys residues snorkel, as expected, only in the latter case (Fig-
ure 1 and Figure 5A, gray line). In the wt and truncated mutants,
all deprotonated Lys residues penetrate the membrane down to
roughly the same depth (Figure 5A, red, green, and blue lines),
indicating a strong localization force. A visible difference be-
tween full-length and truncated mutants that shows up early
in the simulations concerns the center of mass of TMD1 (Figure
5C). Here, the shortest mutant (blue line), which lacks the en-
tire cytosolic slide helix, shows a stretch toward the membrane
center, while the Lys residues apparently stabilize the outer pro-
tein region relative to the lipid headgroups, as seen in Figure 5A.
This process occurs irrespective of their protonation states be-
cause the Lys29 (or equivalent) residues maintain their relative
membrane penetration depth. Both the deprotonated Lys and
the protonated Lys take very distinct positions and are therefore
both relevant for understanding the overall protein location. Ap-
parently, the hinge that connects the Lys29 residue with the pro-
tein backbone represents a stable, protonation- and truncation-
independent position, which controls the penetration depth of
the protein region encompassing the filter. Hence, in response
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Figure 4. Electrophysiological measurements of HEK293 cells transfected with wt and mutant Kcv ,,_4:GFP. (A-D) Current responses of HEK293 cells
expressing Kcv e ;-WtiGFP (A), Kcvypoy1-K19A:GFP (B), Kcvyrcy.1-KT9R:GFP (C), or only GFP (D) to standard pulse protocol. (E) Corresponding cur-
rent-voltage relationships. The symbols of the /-V relationships cross-reference with the symbols in the current traces. (F) Mean current-voltage re-
lations of mock-transfected (e) and Kcv yc,.-K19A::GFP-transfected cells (O) normalized to voltage at —~140 mV. Data are means * the standard de-
viation of at least 14 measurements. The inset shows the A/l-V curve of mean data. (G) Mean currents at a reference voltage of —140 mV from at least
five measurements. Currents were measured in a whole cell configuration with 100 mM K* in the bath by stepping cells from a holding voltage (0

mV) to test voltages between 60 and —160 mV.

to the strong localization forces acting on the extracellular re-
gion exhibited by Lys residues, the lack of a cytosolic anchor
(provided by the laterally aligned slide helix in Kevpp -y, ,-wt)
leads to a significant distortion of the overall protein architec-
ture. Distant protein regions apparently react and correspond-
ingly rearrange. In the case of a drastic cytosolic truncation, a
substantial stretch of TMD1 and a slight inward shift of the fil-
ter region are the obvious consequences.

On the other hand, the Lys-protonated full-length channel
shows the most stable (i.e., only marginally drifting) set of all
observables examined here, even in comparison with those of
the deprotonated wt. Despite the stable Lys backbone position-
ing in the membrane for both the protonated and the deproton-
ated variants, the deprotonated form shows greater structural

variability for Kevpp 4, although it conducts ions in contrast to
the protonated structure because of a disintegrating TMD1(11)
(note that we cannot rule out the possibility that even the pro-
tonated variant would conduct ions over longer simulation time
scales). One can therefore expect that a snorkeling, protonated
Lys is required in a situation where the lack of a cytosolic an-
chor would otherwise lead to potentially inactivating protein
distortions, for example, Kcv y .y 4

Discussion
Kcv-type channel proteins have a conserved Lys or Arg at

the membrane-aqueous interface in the outer TMD. A cationic
amino acid in this position is common in many TMDs, and it is
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Figure 5. Time series of several dynamical quantities obtained from
MD simulations. From top to bottom: z components, averaged over all
monomers, of (A) the center of mass (com) of K29 (or corresponding se-
quence index in truncated channels), (B) the selectivity filter, (C) the N-
terminal transmembrane domain, and (D) the entire channel protein, all
relative to the average com of the lipid phosphate headgroups on the
external solution-exposed side. Red denotes Kcvpg, ,-wt (deproton-
ated K29), gray Kcvpgq,.-Wt (protonated K29), green Kcvpg, 4-A8 (de-
protonated K29), and blue Kcvpg, 1-A14 (deprotonated K29). Note that
increasing numbers correspond to an inward movement of the respec-
tive entities. The negative trend of the gray trajectory in panel A for ex-
ample shows the outward movement of the protonated Lys29 for snor-
keling. This is not the case for the deprotonated Lys (red), for which the
trajectory remains stable. The seemingly drifting filter region of Kcvyge.
1-A8 (green line in the second plot) is the result of a structural break-
down of three of the four subunits; one stays at the positions of the
other mutants.

thought that their long positively charged side chains snorkel.
Experimental and computational experiments on model pep-
tides indicate that as a consequence membrane proteins can ad-
just the orientation and positioning of their transmembrane heli-
ces in the bilayer.(4-7) These results provide information about
the structure-function correlates of such basic amino acids in
the context of small K* channel proteins. The conclusion is that
the interfacial position of a basic amino acid in a TMD helix by
itself is not sufficient for understanding their impact on struc-
ture and function. While the activity of two viral K* channels
(Kev i rey.g and Kevy1q,5) was severely inhibited by neutraliza-
tion of the critical cationic amino acid, the function of a third
channel protein, Kevpp -, 1, Was not. Hence, snorkeling activity
of the basic amino acid is required neither for Kcvpp, 4 chan-
nel function nor for K* channel function in general. This view
is supported by the fact that the structurally related algal virus-
encoded Kesv channel lacks a basic amino acid in an equiva-
lent position (Figure 1A).(14) Also, Kir channels, which have the
same overall architecture as the viral channels, have no obligate
requirement for basic amino acids in their TMD1. Only Kir2.1
from Xenopus laevis (GenBank entry ABQ44516.1) has an Arg in
TMD1 at the membrane-water interface, which could snorkel.
The high degree of positional conservation of Arg/Lys in
TMD1 of viral K* channels and the explanation for the different
dependencies of these channels on a charged amino acid in the
membrane-aqueous interface must be related to the small size
of the viral channels and systematic differences in their archi-
tecture. A comparison of Kevpp -y ; with Kev 1y 4 and Kevy oo
shows no appreciable differences in their amino acid sequences
in the vicinity of their lysines or arginines, which could explain
this difference. The amino acids that are separated from the
Lys/ Arg site by an a-helical turn have similar properties in all
three Kcv channels, and there is no evidence of a specific interac-
tion with the Lys. We recently reported that TMD1 in Kevpp -y 4
is connected with the outer TMD via a -1 interaction between
Phe30 and His83.(21) Inspection of the amino acids in TMD1,
which are presumably close to the Lys in TMD1, also reveals no
obvious differences among the three Kcv channels (Figure 1).
Collectively, these findings exclude any local interactions as an
explanation for the differential significance of the Lys in TMDI.
On a more macroscopic scale, the different TMDs are similar;
but still there are some differences in the composition of the
hydrophobic amino acids. To test if these sequence differences
have an impact on the hydrophobicity of the outer TMD, we cal-
culated their hydrophobicity using the Wimley and White hy-
drophobic scale.(22) The hydrophobicity of the three K* chan-
nels for the outer TMD is reported in Figure 1C. There is no
systematic difference between the channels, which explains their
differential requirement for a charged amino acid in the TMD.
After differences in hydrophobicity had been excluded as
an explanation, the most apparent systematic deviation in the
channel proteins is the size and nature of the cytosolic N-ter-
mini. Only channel proteins that lack charged cytoplasmic
N-terminal domains have a strong dependence on a cationic
amino acid at the lipid-aqueous interface for snorkeling. One
explanation for a stronger requirement for a charged Lys/Arg
in this position is that a short/absent cytosolic N-terminus pro-
vides no anchoring for the TMD on the cytosolic side. This hy-
pothesis is corroborated by the MD simulation data. Because
Lys is in a uniform DMPC bilayer strongly localized in both
the protonated and the deprotonated form (the former near the
interface, the latter near the membrane center), the lack of an
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Kevpgey.-Wi(deprot.)

Kcevpgey.s-Wt(prot.)

Figure 6. Cartoon representations of snapshots from MD simulations, each taken after 14.7 ns rigid filter runs for various wt and truncated mutants.
Raw data described in refs 10 and 11 were used for the images shown in the top and bottom rows, respectively. Phosphate headgroups of the lipid
molecules are represented as red balls, and the remaining species (lipid tails, water, and ions) were omitted for the sake of clarity. The individual
channel monomers are shown in different colors. The residues of K29 (and corresponding Lys residues for truncated mutants) are shown explicitly.

N-terminal, anchoring slide helix leads to protein distortion.
The membrane position of Kevpp -, ,-wt is apparently indepen-
dent of the Lys protonation state, whereas that is not the case
for the truncated, shorter forms. Therefore, it is reasonable to
conclude that shorter channels such as Kcv , 4 and Kevy 1,2
need a stabilizing force at the exterior membrane side to pen-
etrate more deeply without distortions that could potentially
lead to inactivity. One such stabilizer could be provided by a
protonated Lys equivalent in the interface regions that could
shift the channel protein inward.
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