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ABSTRACT Cybersecurity is important in the realization of various smart grid technologies. Several studies
have been conducted to discuss different types of cyberattacks and provide their countermeasures. The false
command injection attack (FCIA) is considered one of the most critical attacks that have been studied.
Various techniques have been proposed in the literature to detect FCIAs on different components of smart
grids. The predominant focus of current surveys lies on FCIAs and detection techniques for such attacks.
This article presents a survey of existing works on FCIAs and classifies FCIAs in smart grids according to
the targeted component. The impacts of FCIAs on smart grids are also discussed. Subsequently, this article
provides an extensive review of detection studies, categorizing them based on the type of detection technique
employed.

INDEX TERMS Artificial intelligence (AI)-based detection algorithms, command injection, cyber-physical
systems (CPSs), detection techniques, model-based detection, smart grid.

I. INTRODUCTION
The smart grid is an advanced electrical power system that
integrates modern communications and information technolo-
gies to optimize the generation, distribution, and consumption
of electricity. Integration of smart grid technology into the
power industry has revolutionized the way we generate,
transmit, and consume energy. Increasing adoption of smart
grids has brought about numerous benefits for the power
sector, such as improved efficiency, reliability, connectivity,
and integration of renewable energy sources [1]. Smart grid
technology has additional benefits such as improved demand
response, cost savings, better customer involvement, lower
CO2 emissions, and integration of renewable energy technolo-
gies and electric vehicles [2], [3]. The electricity grid is an
ideal illustration of a cyber-physical system (CPS) due to its
integration of information and communication technology [4].
Now that they are linked to the Internet, critical smart grid
components, including distribution management systems and
advanced metering infrastructure, are open to cyberattacks.
This raises questions about the capacity to safeguard private
information and guarantee power supply continuity. Hence,
a number of research studies have been conducted to study
and improve the security aspects of smart grids [5], [6].

These studies focus on identifying potential vulnerabilities
and proposing effective and dependable solutions, whether on
the cyber or physical level. These efforts have been under-
taken in response to the increasing threat of CPS attacks on
smart grids and their applications [7].

In 2013, the Presidential Policy Directive 21 (PPD-21) that
provided a consistent strategy for the protection of critical in-
frastructure across the United States was released [8]. Sixteen
critical infrastructure sectors were identified by the PPD-21
as being crucial to the safety, well-being, and economic vi-
tality of the nation. Each of these 16 critical infrastructure
sectors has been identified based on the level of impact their
failure would have on national security, public health and
safety, and economic prosperity. The PPD-21 also establishes
a framework for the identification, assessment, prioritiza-
tion, and protection of critical infrastructure. As shown in
Fig. 1, the PPD-21 includes the energy sector as one of the 16
critical infrastructure sectors and recognizes the importance
of maintaining a reliable and secure energy supply to support
all other critical infrastructure sectors [9].

The energy sector constitutes the foundational infrastruc-
ture supporting a nation’s economic activities. The potential
losses from a 6-h blackout in France that could exceed

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/VOLUME 5, 2024 75

https://orcid.org/0000-0001-9498-0377
https://orcid.org/0000-0002-4629-7589


USAMA AND AMAN: COMMAND INJECTION ATTACKS IN SMART GRIDS: A SURVEY

FIGURE 1. Critical infrastructure sectors identified by the PPD-21 [8].

EUR 1.5 billion serve as an illustration of this [10]. More-
over, the energy sector heavily depends on distributed and
complex infrastructure, thereby presenting a larger attack sur-
face for malicious threat actors. In addition, the energy sector
is perceived as a late adopter of digital transformation, indi-
cating an inherent deficiency in cybersecurity expertise and
maturity. This makes the energy sector an appealing target
for cyberattacks apparent from several cyberattacks in the
energy industry in recent years [11]. These attacks have var-
ied in their impact, with some causing minimal disruption
and others resulting in explosions, significant financial loss,
and even loss of human lives. The increasing frequency of
these incidents is a major concern. For instance, the U.S.
Energy Department recorded 362 instances of power outages
linked to CPS assaults between 2011 and 2014 [12]. A 2017
report [13] found that 54% of the organizations surveyed re-
ported having dealt with a CPS security issue in the previous
year and 21% reported dealing with two or more issues at
the same time. Governments from all around the world have
responded to these occurrences by issuing guidelines for safe-
guarding smart grids by the National Institute of Standards
and Technology (NIST) and the U.S. Executive Order 13636
to improve cybersecurity in vital infrastructure [14]. As a
result, scientists are currently striving to comprehend many
CPS attack types better and create countermeasures to lessen
their effects.

In a false command injection attack (FCIA), a malicious
actor endeavors to maliciously insert an unauthorized com-
mand into the targeted network with the intention of inducing
a malfunction in the network [15]. In the realm of a smart grid,
such adversaries may exploit vulnerabilities at the software,
communication channel, or hardware levels to introduce a
deceptive command into the system. FCIA incidents can be
highly impactful as they specifically target the commands that
execute crucial operations. These attacks are not only difficult
to detect, but they can cause significant damage before they

are detected. This is in contrast to false data injection attacks
(FDIAs), which focus on manipulating data from different
sensors and measurement nodes within a smart grid [16].
A situation in which a malicious attacker introduces false
commands into a power plant’s control system to open a relay,
disconnect the generator, and cause the plant to shut down is
an illustration of an FCIA on a smart grid. FCIAs may result in
possible safety risks for plant workers in addition to a power
outage and equipment damage. The Stuxnet worm on Iranian
nuclear power plants [17], the “Aurora” experiment [18], the
attack on the Ukrainian power system in December 2015 [19],
and the Maroochy water system attack [20] are examples of
major FCIAs on critical infrastructures. Employing the in-
jection and execution of the false command into the crucial
application, the attackers were able to seriously harm the
targeted system in these attacks. These attacks highlight the
vulnerability of critical infrastructure to FCIAs.

A. CPS SECURITY OBJECTIVES
The security of a CPS is ensured by including authenticity
in the list of security objectives, in addition to the three fun-
damental security objectives for information security defined
by NIST (confidentiality, integrity, and availability) [21], [22],
[23], [24].

1) CONFIDENTIALITY
Confidentiality of a system is defined as its ability to prevent
unauthorized individuals or systems from accessing critical
information [25]. Confidentiality is crucial for maintaining
users’ privacy in CPSs, but it is not enough on its own.
Data leakage may lead to unauthorized access and misuse
of information. Maintaining confidentiality in CPSs requires
ensuring that sensitive information, including signals, com-
mands, and configurations, is only accessible to authorized
personnel.

76 VOLUME 5, 2024



TABLE 1. Security Objective Priority Comparison Between Traditional
Information Systems and CPS

2) INTEGRITY
Integrity refers to the ability to ensure that data or re-
sources cannot be modified without proper authorization [23].
Integrity is compromised when crucial information is mali-
ciously or accidentally altered or deleted, leading to recipients
accepting false data as valid. In the context of CPSs, it is
necessary to prevent unauthorized modifications to sensitive
information shared among various system components.

3) AVAILABILITY
To ensure system effectiveness, it is essential to guarantee
accessibility whenever required. This involves ensuring the
proper functioning of cyber systems responsible for informa-
tion storage and processing, physical controls for executing
physical processes, and communication channels for ac-
cessing these components [26]. In a CPS, high availability
guarantees continuous access to essential services by proac-
tively mitigating potential disruptions, such as failures, system
upgrades, power outages, and denial-of-service attacks. This
involves ensuring the resilience of computing, control, and
communication systems to maintain uninterrupted function-
ality.

4) AUTHENTICITY
The main goal of authenticity in a CPS is to achieve au-
thentication throughout the numerous components as well
as the processes of the CPS. Authenticity ensures the legiti-
macy of the data, communication, and transactions in a CPS.
Authenticity aims to validate all the parties involved in a
communication [21], [22]. In the context of CPS, achieving
authenticity across processes, such as sensing, communica-
tions, and actuation, is a primary objective.

The security priorities in CPS are different from those in
conventional information systems [27]. In CPSs, availability
is critical and has the highest priority, followed by integrity,
confidentiality, and finally authenticity, as shown in Table 1.

B. RELATED SURVEYS AND MAIN CONTRIBUTIONS
In the existing literature, several surveys have been carried out
to discuss different aspects of cyberattacks on smart grids. The
authors in [28] and [29] summarized cyberattacks, detection,
and countermeasure techniques in smart grids. A summary of
detection techniques for FDIAs using machine learning (ML)
is provided in [30]. Similarly, Sahani et al. [31] provided a sur-
vey of ML-based intrusion detection systems (IDS) for smart
grids. The authors in [16], [32], [33], and [34] focused on

TABLE 2. Comparison Between the Existing Surveys and the Proposed
Work

summarizing detection techniques specifically for FDIAs in
smart grids. The authors in [35] and [36] provided a summary
with the futuristic perspective of attacks and countermeasures
in smart grids. All these studies either provide a holistic
view of cyberattacks and detection mechanisms or focus on
a specific category of cyberattacks. To the best of the authors’
knowledge, there is no study that provides a review of FCIAs
in smart grids. Therefore, this article focuses on providing a
comprehensive survey of FCIAs in smart grids. Table 2 draws
the comparison among the techniques covered by the existing
surveys and the proposed work. It is evident from the table
that our work has clearly superior performance compared to
all the existing surveys. The main contributions of this article
are as follows.

1) We provide a classification of FCIAs in smart grids
according to the targeted component.

2) We discuss the impacts of FCIAs in smart grids.
3) We provide a summary of existing detection techniques

for FCIAs.
4) We identify the strengths and limitations of existing

techniques.

C. ARTICLE ORGANIZATION
This article is organized to provide an introduction to CPS
attacks with background, objectives, and related work in Sec-
tion I. Section II provides the literature review methodology
adopted for this survey. Section III provides the classification
of FCIAs according to the targeted components of a smart grid
and elaborates on the impacts of these attacks on smart grids.
Detailed classification of detection techniques for FCIAs is
provided in Section IV. Comparative analysis of detection
techniques with research gaps and future directions is pro-
vided in Section V. Finally, Section VI concludes this article.

II. LITERATURE REVIEW METHODOLOGY
This section provides a systematic methodology adapted for
conducting the literature review in this survey to comprehen-
sively explore and analyze the existing research on FCIAs in
smart grids. This methodology encompasses the articulation
of a research objective, formulation of a search strategy, es-
tablishment of inclusion criteria, extraction and synthesis of
information, and, ultimately, categorization and discussion of
the findings. Each of these steps is explicated as follows.
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A. RESEARCH OBJECTIVE
The main objective of this survey is to perform a comprehen-
sive review of existing studies on FCIAs in smart grids. The
purpose of the survey is to identify major themes, trends, and
research gaps in the discipline.

B. SEARCH AND STRATEGY
Various electronic databases, including IEEE Xplore, Sci-
enceDirect, Google Scholar, and the ACM Digital Library,
were used to perform a systematic search of relevant literature.
The terms “false command injection attacks,” “smart grid
security,” and other combinations of related keywords were
used in the search.

C. INCLUSION CRITERIA
Initially, studies were filtered based on titles and abstracts.
After that, suitable studies were chosen using the following
inclusion criteria:

1) studies targeting FCIAs in smart grids;
2) established journal papers, reputable conference papers,

and manuals and reports issued by regulatory bodies.

D. INFORMATION EXTRACTION AND SYNTHESIS
Each chosen study was thoroughly studied to extract rele-
vant information, including types of attacks, their impact, and
countermeasures to detect and mitigate these attacks. The
proposed technique, experimental design, and relevance to
the research problem were used to evaluate the quality of the
included studies. The findings from the chosen research were
summarized to discover common themes, trends, and gaps in
the literature.

E. FINDINGS AND DISCUSSION
The findings of the literature review were organized and
presented by categorizing the chosen studies. Attack types,
their impact, and detection techniques were used to categorize
studies. Discussion on each category highlighting the pros
and cons alongside research gaps and future directions were
presented.

III. CLASSIFICATION AND IMPACTS OF FCIAS IN SMART
GRIDS
The injection of fake commands into the smart grids as a
result of FCIA has severe consequences on both the stability
and the operation of the smart grids, where an attacker can
force the system to pursue wrong decisions. This can lead to
power outages, blackouts, hardware failures, synchronization
problems, financial loss, and other critical issues in the power
grid.

A. CLASSIFICATION OF FCIAS
Cyberattacks against CPSs exploit vulnerabilities in physical
systems, cyber systems, and the interfaces between the two.
To comprehend and protect against these risks, it is crucial to
classify these attacks. This is because it enables researchers
and practitioners to distinguish among various attack types

and create efficient solutions. Attacks in smart grids have been
categorized using a variety of parameters, such as security
needs, the design of the grid, the kind of cyberattack, and the
target of the attacker. Cyberattacks were categorized by the
authors in [37] and [38] using the CIA Triad, which is a set of
security requirements based on confidentiality, integrity, and
availability. Sakhnini et al. [39] categorized attacks according
to three types of attacks: network-based, spoofing, and data
injection. The authors in [9] and [35] used the attacking cy-
cle to classify cyberattacks, which includes reconnaissance
and scanning. The authors in [40] and [41] classified cy-
berattacks into topology-, component-, and protocol-based
categories. This classification does not include some pas-
sive and active attacks, such as eavesdropping and replay
attacks. The authors in [38] and [42] also classified cyberat-
tacks based on the type of network, i.e., wide area network,
neighborhood area network, personal area network, and field
area network. This classification only includes attacks on the
network and excludes attacks on other components of the
smart grid. Musleh et al. [32] classified cyberattacks based
on the delivery method of attacks, including cyber-, network-,
communication-, and physical-based attacks. Khoei et al. [28]
classified cyberattacks based on the target layer in the open
systems interconnection (OSI) model. This classification pro-
vides a detailed account of numerous types of cyberattacks on
each layer of the OSI model.

While the aforementioned schemes cover a wide range of
cyberattacks or concentrate on specific categories, there is
currently no specific study dedicated to classifying FCIAs.
Thus, it is important to classify FCIAs based on a scheme that
helps in analyzing these attacks and their detection schemes.
Smart grids, being CPSs, have physical, software, and com-
munication components as their basic ingredients, as shown
in Fig. 2. Fig. 3 gives a classification of FCIAs according to
these three components. This classification also maps attacks
on three components of smart grids to seven layers of the OSI
model.

1) HARDWARE-BASED ATTACKS
An attacker may tamper with or damage the physical infras-
tructure to disrupt or destroy power delivery by injecting false
commands into smart grids [43]. For example, an attacker
could tamper with an actuator in the control system of a
substation to cause a malfunction of the system or disrupt
the power supply. An attacker could also physically manip-
ulate the equipment in the power system, such as switchgear,
generators, or transformers, potentially causing a widespread
power outage. Power generation systems, transmission lines,
distribution systems, and energy metering systems are among
the potential targets of FCIAs on the physical layer of a smart
grid [44], [45].

2) COMMUNICATION-BASED ATTACKS
Smart grids are vulnerable to communication-based FCIAs,
which include attacks on the data link, network, and transport
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FIGURE 2. FCIAs’ target components in the smart grid.

FIGURE 3. Classification of FCIAs.

layers. By sending a false command into the communica-
tion system, an attacker could launch an attack on the smart
grid. Intercepting communication between devices, such as a
substation and a control center, and then inserting malicious
commands is an example of this attack [45], [46]. The attacker
could combine an FCIA with massive traffic flooding on a
network to disrupt legitimate communication [47], [48]. A
hacker might also target a transport layer protocol’s flaws
to sabotage or alter device-level communication. An attacker
might, for instance, use a flaw in the transmission control
protocol/Internet protocol to introduce false commands into
the communication channel, which could lead to a system
malfunction [46].

3) SOFTWARE-BASED ATTACKS
These FCIAs in smart grids are mapped onto the OSI model’s
display, application, and session layers. A smart grid could
be manipulated or have its operation disrupted by inserting a
false command into the presentation layer by an attacker [49].
Similarly, an attacker may launch a hijacking attack targeting
an already-existing session to obtain sensitive data and com-
mands. In the same way, applications and software flaws in
the smart grid might also be targeted to obtain unauthorized
access and send malicious commands that would interrupt the
power supply. For example, control system software could be
targeted by the attacker to possibly disrupt and damage the
power grid [50].

B. IMPACTS OF FCIAS ON SMART GRIDS
Numerous research works have examined the impacts of
FCIAs, which pose significant risks to the smart grid. FCIAs
have proven their ability to trigger blackouts, load shedding,
and disruptions in the wide area control system in situations
similar to those described in [51] and [52]. These events un-
derscore the disruptive impact of FCIAs on the operation of
smart grids. Successful FCIAs can cause significant harm to
critical infrastructure in addition to operational disruptions;
this has been shown in [53], [54], and [55], where attacks
on Automated Control for Parallel Generators and cascad-
ing FCIAs led to instability and possible grid failures. False
demand response commands and designed topology attacks
cause increased load, altered pricing, and significant financial
losses—up to $100 000 in a single 24-h period—due to in-
creased demand and deliberate topology attacks. These effects
have a substantial economic impact, as discussed in [51]. As
examined in [56] and [57], the economic effects also affect
locational marginal pricing in the energy markets. In smart
grids, major impacts of FCIAs include operation disruption,
damage to infrastructure, and significant financial losses.

IV. DETECTION TECHNIQUES FOR FCIAS
We propose classifying the FCIA detection methods into two
main categories: model- and artificial intelligence (AI)-based
methods. To find an FCIA, the AI-based methods employ a
variety of data mining, ML, and evolutionary algorithms. In
contrast, different mathematical models and estimate tech-
niques are used for detection in model-based approaches.
An overview of detection methods for FCIAs is presented in
Fig. 4.

A. AI-BASED TECHNIQUES
AI-based FCIA detection methods in smart grids use AI al-
gorithms to find unusual patterns in the command flow that
governs the power grid. It is possible to train these detection
methods to identify the typical command flow pattern and
identify any deviations from it as possibly malicious com-
mands. Furthermore, AI-generated commands are hard to find
with conventional detection approaches; these can be found
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FIGURE 4. Categorization of detection techniques for FCIAs.

with AI-based detection techniques [58].These AI-based de-
tection techniques can also be employed to continuously
monitor the operation of a smart grid.

1) ML-BASED TECHNIQUES
ML is one of the most fundamental and important fields in
the area of AI. Researchers are increasingly focusing their
attention on the utilization of ML-based algorithms for de-
tecting cyberattacks. ML models are trained to learn patterns
in past data. Trained models are then used to make a decision
based on observed samples without human intervention [59].
A well-trained ML model can perform complex challenging
tasks, such as identifying FCIAs in smart grids. ML algo-
rithms can be further categorized into three subcategories: 1)
supervised learning; 2) unsupervised learning; and 3) rein-
forcement learning [60]. In supervised learning, the training
data consist of input–output pairs, with the model adjusting
parameters to minimize differences between predictions and
true values. In unsupervised learning, training lacks output
labels, aiming to identify patterns or structures within data
for further analysis [61]. Reinforcement learning involves an
agent learning decision making through interaction with an
environment, utilizing trial and error, feedback in rewards
or penalties, and refining its policy to maximize cumulative
reward [60]. Various ML algorithms used for FCIA in the
literature are discussed in this section [60].

Upadhyay et al. [62] combined the gradient boosting fea-
ture selection, a feature selection framework, with the decision
tree (DT) algorithm to detect FCIAs on relays in a power
system. The proposed prepossessing of data and selection of
the most promising features improve the performance of the
DT model. Kumar et al. [63] used minority oversampling
and feature selection to improve the detection of FCIAs on
power systems using ML. Kumar et al. [64] showed that the
performance of various ML models to detect FCIAs is de-
pendent on preprocessing and feature selection. Various ML
models analyzed include random forest (RF), support vector
machine (SVM), Naive Bayes (NB), etc. Sahu et al. [65]
demonstrated the application of the data fusion approach on
multisource and multidomain data to reduce the false positive

rate in intrusion detection. Numerous supervised classifica-
tion techniques, such as linear regression, NB, RF, and DT,
are compared with semisupervised based co-training. They
demonstrated the superiority of semisupervised co-training
over conventional classification methods.

2) DEEP-LEARNING-BASED TECHNIQUES
Artificial neural networks, the basis for deep learning (DL),
are a branch of ML that employs algorithms designed to
mimic the structure and operations of the human brain. It
is employed in many different applications, including audio
and picture identification, natural language processing, and
decision making. Convolutional neural networks (CNNs), au-
toencoders, long short-term memory (LSTM), and deep belief
networks (DBNs) are the most widely used DL models. The
backpropagation algorithm, a DL approach, was utilized by
Gao et al. [66] to identify FCIAs in smart grids. To cre-
ate an IDS for command and response injection attacks on
supervisory control and data acquisition (SCADA) systems,
a three-layer neural network is designed. For feature ex-
traction, Potluri and Diedrich [67] employed both the DBN
and the stacked autoencoder (SAE). Combining feature ex-
traction from the SAE and the DBN with the SVM and
Softmax regression (SMR)-based classification methods is
another method. The various assessment metrics for FCIA
detection are compared using all four combinations, namely,
DBN with SMR, DBN with SVM, SAE with SMR, and SAE
with SVM. Qu et al. [68] used CPS attack genes to iden-
tify FCIAs in power systems, which is a similar method. Qi
et al. [69] suggested combining a number of semisupervised
anomaly detection techniques with a deep autoencoder. One
kind of neural network that permits the use of prior outputs
as inputs for the current task is the recurrent neural net-
work (RNN). This makes it possible for the RNN to process
input sequences, such a time series or a text. Natural lan-
guage processing and speech recognition frequently employ
RNNs [70]. Eke et al. [71] used deep ensemble RNNs and
CNN to identify response injection and command injection
threats in SCADA systems. A DL-based hybrid technique
was presented by Bitirgen and Filik [72] to identify command
injection attacks that cause remote tripping on relay systems
inside a smart grid. Particle swarm optimization is used to
optimize CNN–LSTM, a CNN–LSTM combination. The pro-
posed approach has been verified for systems with two, three,
and more classes. It makes a clear distinction between cyber-
attacks and physical disruptions.

3) DATA MINING
Identifying trends and information from vast volumes of data
is called data mining. It entails removing meaningless data
from raw data by applying statistical models and algorithms
to reveal insights. Creating actionable knowledge from data
to help with decision making is the aim of data mining. Data
exploration, data modeling, data preparation, and result inter-
pretation are some of the processes in the data mining process.
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Researchers, scientists, and engineers now use data mining as
an essential tool because of the growing availability of vast
amounts of data and advancements in processing power. Be-
cause it has such a narrow range of applications, data mining
for cyberattack detection is regarded as unsophisticated. To
identify a remote tripping command injection attack in power
systems, Pan et al. [73] employed a data mining approach
known as common path mining (CPM). The primary objec-
tive of CPM is to identify recurring patterns in the data and
comprehend the connections among various data items. After
patterns are found, anomaly detection is carried out using the
patterns. Intriago and Zhang [74] used a semisupervised learn-
ing method and a data mining classifier called the Hoeffding
adaptive tree to find the difference between cyberattacks and
normal system changes.

B. MODEL-BASED DETECTION
Mathematical models are used in model-based detection of
FCIAs in CPSs to find and identify abnormal parameter be-
havior. This method is predicated on the notion that a system’s
typical behavior can be described by a collection of mathe-
matical models, and that any departure from the norm can be
interpreted as an attack. This method looks for differences in
the system’s behavior by comparing it with the models while
the system is being observed in real time. The system can
then issue a warning or take other remedial action to stop the
attack from succeeding if a disparity is found. One can obtain
the mathematical models required for model-based detection
by either simulating the system or by monitoring its typical
behavior. The models may be built in control theory, math-
ematics, or physical laws. A model may recognize various
kinds of FCIAs once it is established. One important factor
in preventing damage in CPSs is real-time attack detection.
This approach could be employed to detect real-time attacks.

A strong tool for simulating and examining distributed and
concurrent systems is the Petri net. They have been applied
extensively across numerous domains and have shown to be
useful instruments for comprehending intricate systems and
enhancing their behavior. Mathematically, a bipartite-directed
graph with two sets of elements—places and transitions—is
referred to as a Petri net model. In a system, the places stand
for the buffer storage or resources, and the transitions stand
for the actions or occasions that use, create, or consume those
resources. To mimic more complicated systems, Petri nets can
be modified by adding further components [75]. In [76], one
such version known as stochastic Petri net is given to dis-
cover the malicious FCIAs on substation automation systems
in smart grids. Li et al. [77] proposed a second stochastic
Petri-net-based hybrid detection approach for insider com-
mand injection risks in smart grids.

Ontology is a method in AI that formally defines concepts
and relationships within a specific domain. This technique
provides a way to control the level of detail in information
and enables the automatic extraction, improvement, and anal-
ysis of large amounts of data. Recently, the application of
ontology in the electric power sector has become a growing

area of research. Numerous ontology-based techniques were
seen in various applications of power systems [78], [79], [80].
An ontology-based detection of cyberattacks in SCADA sys-
tems is presented in [81]. Albalushi et al. [82] proposed an
ontology-based scheme on synchrophasor communication to
detect malicious command injection in the smart grid.

Estimation techniques are also used for the detection of
cyberattacks in smart grids. In estimation-based techniques,
various measurement sets and system parameters are utilized
to estimate the required variables. Estimation techniques such
as weighted least squares and Kalman filter are used in [83]
and [84], respectively. A current-to-voltage ratio index is de-
veloped in [15] to detect malicious command injection in
the phase-shift control of a transformer. A similar detection
scheme is used to detect malicious command injection at-
tacks on the tap of a transformer in transmission lines by
Chakrabarty and Sikdar [85]. A detection scheme based on the
changes in the covariance matrix of measurement is presented
to detect the attack on both phase-shift control and tap change
control in [86]. A rule-based scheme is presented in [87] to
detect a command injection attack on the SCADA system in
a smart grid. The system-model-based rules are designed to
detect known as well as unknown attacks.

Synchrophasor technology is playing an important role in
advancing monitoring and control systems in smart grids
by enabling real-time tracking of system dynamics. Khan
et al. [88] proposed the model-based design of synchrophasor
specific intrusion detection system (SS-IDS) for command
injection attacks. The proposed SS-IDS utilized the model-
based rules to detect all the cyberattacks including FCIAs.

V. COMPARATIVE ANALYSIS, RESEARCH GAPS, AND
FUTURE DIRECTIONS
It is very important to comparatively analyze the pros and
cons of existing detection techniques for FCIAs. This section
provides a comparison between the two detection techniques
by highlighting the advantages and disadvantages of each of
them, as summarized in Table 3. Moreover, based on the
limitations of the existing work, future research directions are
also provided in this section.

A. COMPARATIVE ANALYSIS
AI-based detection algorithms are quick to detect FCIAs once
accurately trained. They also offer a low false alarm rate and
high detection rate as they only need real data and do not
require highly accurate system parameters to run the detection
process. Not requiring the system parameters and the sys-
tem model is one of the most important advantages of these
algorithms as it eliminates the requirement for a complete un-
derstanding of the complex physical processes in the system.
The scalability of a model refers to its ability to accommodate
expansion without compromising performance. AI-based al-
gorithms are highly scalable as they can be easily expanded
to process a larger volume of data. On the other hand, AI-
based algorithms are merely dependent on historical datasets,
as models are trained on these datasets. The availability of
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high-quality historical data is one of the major limitations
of AI-based detection algorithms. Most of these algorithms
are iterative in nature and require advanced hardware to meet
the demand for high computational power and large memory
space. The privacy of datasets in critical applications is also
an important concern.

Model-based detection algorithms, on the other hand, use
the system model and parameters to identify FCIAs in the
system. Model-based detection algorithms have the signifi-
cant benefit of being free from dependence on historical data.
Thus, these algorithms do not demand additional memory
storage for a very large dataset to train the system model.
Moreover, because model-based algorithms employ the actual
physical processes of the system, these algorithms based on
an accurate physical model are more robust as compared with
AI-based algorithms. In contrast, the primary disadvantages
of model-based algorithms are their reliance on system pa-
rameters and the complexity of modeling physical processes.
The process of creating accurate models and determining
the correct parameters can be time consuming and require
specialized knowledge and skills. The system’s models or
parameters may have mistakes or inaccuracies that lead to
inaccurate or untrustworthy results. The accuracy of the un-
derlying mathematical model that is used to represent the
system determines the precision of a model-based detection
procedure. An overly simplistic model that fails to accurately
represent the behavior of the system could cause the algorithm
to overlook anomalies or generate false-positive alerts. Fur-
thermore, the model-based detection algorithms may struggle
with detecting anomalies that are caused by external factors
or events that are not accounted for in the model. Scalability
can be limited by the complexity of the model used and the

ability to keep it up-to-date with changes in the system. As
the system grows in complexity or changes over time, the
model may need to be updated or modified, which can be
time consuming and require specialized knowledge and skills.
Therefore, model-based algorithms are both complex to create
and incur higher computational complexity.

B. RESEARCH GAPS AND FUTURE DIRECTIONS
This section discusses the limitations of the existing tech-
niques and research gaps in the area of detecting FCIAs in
smart grids and provides future directions to fill these existing
gaps.

1) DEVELOPING COMPREHENSIVE FRAMEWORKS FOR
MULTIDIMENSIONAL ATTACK DETECTION
Current detection methods primarily concentrate on recogniz-
ing isolated attack types like communication-, software-, or
hardware-based attacks. However, real-world situations often
witness coordinated attacks across various entry points, en-
compassing various layers and physical devices. Adversaries
frequently exploit complex attack vectors, for example, com-
bining a denial-of-service attack with a stealthy command
injection later on. Comprehensive detection requires connect-
ing these events in both the cyber and physical realms to
uncover larger malicious plans.

Researchers could explore architectural frameworks that
integrate domain knowledge with enriched telemetry data us-
ing graphs and ontologies. These frameworks can facilitate
reasoning across interdependent grid components, enabling
the identification of sophisticated distributed attacks. The
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development of integrated environments tying together vari-
ous grid data facets remains an ongoing challenge.

2) CREATING AUTHENTIC DATASETS FOR TRAINING AND
EVALUATION
The absence of public datasets tailored to FCIAs poses a
challenge for standardized benchmarking of emerging tech-
niques. Models are frequently showcased using private utility
data or synthetic grids that may not fully capture real-world
intricacies.

Constructing open yet realistic datasets could significantly
enhance the rigor of evaluations. A coordinated initiative to re-
lease anonymized intrusion captures or high-fidelity grid em-
ulations can contribute to reproducibility. Managing privacy
and security concerns linked to sharing such data is crucial
for progressing research. Moreover, advanced platforms that
can combine real-world systems with attack behaviors could
help in providing diverse databases.

3) ENHANCING TECHNIQUE RESILIENCE AGAINST
ADVERSARIAL ATTACKS
While AI holds promise for FCIA detection, recent studies
reveal vulnerabilities in DL systems, making them suscep-
tible to subtly perturbed inputs that can mislead predic-
tions [89], [90]. Future research must focus on fortifying
techniques against adversarial false command attacks, which
could specifically target and evade learned models.

Two promising directions include adversarial retraining by
augmenting normal data with simulated attacks and lever-
aging model ensembles to mitigate individual manipulation
vulnerabilities [91], [92]. Designing systems that offer certi-
fiable robustness guarantees against bounded input perturba-
tions can help ensure worst case detection reliability. Overall,
directly incorporating adversarial threat models into FCIA
defense strategies is crucial for future advancements.

VI. CONCLUSION
The significance of smart grid network security cannot be
overstated, and it is a critical factor in the successful imple-
mentation of smart grid systems. The need to create advanced
detection algorithms to combat the increasing threat of FCIAs
is underscored by an exploration of their history, diversity,
and impact. FCIAs can be classified according to the tar-
geted component in the smart grid, i.e., hardware component,
software component, and communication component. Various
impacts of FCIAs in smart grids include disruption of oper-
ation, damage to infrastructure, and financial losses. In the
existing literature, detection techniques for FCIAs in smart
grids are either based on an AI algorithm or a model-based
approach. Each category has its advantages and disadvantages
that should be taken into consideration when employing a de-
tection mechanism for FCIAs in smart grids. When develop-
ing a detection method for FCIAs in a smart grid, parameters
that should be taken into account include detection speed,
false alarm rate, computational requirement, hardware re-
quirement, scalability, and dependence on system parameters.
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[9] Y. Yoldaş, A. önen, S. Muyeen, A. V. Vasilakos, and I. Alan, “Enhancing
smart grid with microgrids: Challenges and opportunities,” Renewable
Sustain. Energy Rev., vol. 72, pp. 205–214, 2017.

[10] L. James,“Energy sector: More cyber attacks in 2022 than ever
before.” 2023. Accessed: Dec. 15, 2023 [Online]. Available: https:
//www.power-and-beyond.com/energy-sector-more-cyber-attacks-in-
2022-than-ever-before-a-a53dfeb9e1a85d8a0710a010c7a7e7d3/

[11] T. Kovanen, V. Nuojua, and M. Lehto, “Cyber threat landscape in energy
sector,” in Proc. 13th Int. Conf. Cyber Warfare Secur., 2018, p. 353.

[12] S. Toppa, “U.S. power grid gets attacked almost every four days,” 2015.
Accessed: Dec. 20, 2023. https://time.com/3757513/electricity-power-
grid-attack-energy-security/

[13] B. Advantage, K. Lab, “The state of industrial cyber secu-
rity2017,” 2017. https://go.kaspersky.com/rs/802-IJN-240/images/
ICSWHITEPAPER.pdf

[14] J. J. Broggi, “Building on executive order 13,636 to encourage informa-
tion sharing for cybersecurity purposes,” Harvard J. Law Public Policy,
vol. 37, 2014, Art. no. 653.

[15] S. Chakrabarty and B. Sikdar, “Detection of malicious command injec-
tion attacks on phase shifter control in power systems,” IEEE Trans.
Power Syst., vol. 36, no. 1, pp. 271–280, Jan. 2021.

[16] G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review of
false data injection attacks against modern power systems,” IEEE Trans.
Smart Grid, vol. 8, no. 4, pp. 1630–1638, Jul. 2017.

[17] S. Collins and S. McCombie, “Stuxnet: The emergence of a new cyber
weapon and its implications,” J. Policing, Intell. Counter Terrorism,
vol. 7, no. 1, pp. 80–91, 2012.

[18] POWER, “What you need to know (and don’t) about the AURORA
vulnerability,” Sep. 2013. [Online]. Available: https://www.
powermag.com/what-you-need-to-know-and-dont-about-the-aurora-
vulnerability/

[19] “Cyber-attack against Ukrainian critical infrastructure CISA,”
Jul. 2021. [Online]. Available: https://www.cisa.gov/news-events/ics-
alerts/ir-alert-h-16-056-01

[20] N. Sayfayn and S. Madnick, “Cybersafety analysis of the Maroochy
shire sewage spill (preliminary draft),” 2017, pp. 1–29.

[21] Y. Ashibani and Q. H. Mahmoud, “Cyber physical systems security:
Analysis, challenges and solutions,” Comput. Secur., vol. 68, pp. 81–97,
2017.

[22] S. Ali, T. Al Balushi, Z. Nadir, and O. K. Hussain, Cyber-Physical
Systems Security. Cham, Switzerland: Springer, 2018, pp. 1–10.

[23] E. K. Wang, Y. Ye, X. Xu, S. M. Yiu, L. C. K. Hui, and K. P. Chow,
“Security issues and challenges for cyber physical system,” in Proc.
IEEE/ACM Int. Conf. Green Comput. Commun./Int. Conf. Cyber Phys.
Social Comput., 2010, pp. 733–738.

[24] T. Lu, J. Zhao, L. Zhao, Y. Li, and X. Zhang, “Security objectives of
cyber physical systems,” in Proc. 7th Int. Conf. Secur. Technol., 2014,
pp. 30–33.

VOLUME 5, 2024 83

https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
https://www.power-and-beyond.com/energy-sector-more-cyber-attacks-in-2022-than-ever-before-a-a53dfeb9e1a85d8a0710a010c7a7e7d3/
https://www.power-and-beyond.com/energy-sector-more-cyber-attacks-in-2022-than-ever-before-a-a53dfeb9e1a85d8a0710a010c7a7e7d3/
https://www.power-and-beyond.com/energy-sector-more-cyber-attacks-in-2022-than-ever-before-a-a53dfeb9e1a85d8a0710a010c7a7e7d3/
https://time.com/3757513/electricity-power-grid-attack-energy-security/
https://time.com/3757513/electricity-power-grid-attack-energy-security/
https://go.kaspersky.com/rs/802-IJN-240/images/ICSWHITEPAPER.pdf
https://go.kaspersky.com/rs/802-IJN-240/images/ICSWHITEPAPER.pdf
https://www.powermag.com/what-you-need-to-know-and-dont-about-the-aurora-vulnerability/
https://www.powermag.com/what-you-need-to-know-and-dont-about-the-aurora-vulnerability/
https://www.powermag.com/what-you-need-to-know-and-dont-about-the-aurora-vulnerability/
https://www.cisa.gov/news-events/ics-alerts/ir-alert-h-16-056-01
https://www.cisa.gov/news-events/ics-alerts/ir-alert-h-16-056-01


USAMA AND AMAN: COMMAND INJECTION ATTACKS IN SMART GRIDS: A SURVEY

[25] S. M. Dibaji, M. Pirani, D. B. Flamholz, A. M. Annaswamy, K.
H. Johansson, and A. Chakrabortty, “A systems and control per-
spective of CPS security,” Annu. Rev. Control, vol. 47, pp. 394–411,
2019.

[26] S. Parvin, F. K. Hussain, O. K. Hussain, T. Thein, and J. S. Park,
“Multi-cyber framework for availability enhancement of cyber phys-
ical systems,” Computing, vol. 95, no. 10, pp. 927–948, Oct. 2013,
doi: 10.1007/s00607-012-0227-7.

[27] M. Cheminod, L. Durante, and A. Valenzano, “Review of security
issues in industrial networks,” IEEE Trans. Ind. Informat., vol. 9,
pp. 277–293, 2013. [Online]. Available: https://api.semanticscholar.org/
CorpusID:15472749

[28] T. T. Khoei, H. O. Slimane, and N. Kaabouch, “A comprehensive survey
on the cyber-security of smart grids: Cyber-attacks, detection, counter-
measure techniques, and future directions,” 2022. [Online]. Available:
https://arxiv.org/abs/2207.07738

[29] C.-C. Sun, A. Hahn, and C.-C. Liu, “Cyber security of a power grid:
State-of-the-art,” Int. J. Elect. Power Energy Syst., vol. 99, pp. 45–56,
2018.

[30] L. Cui, Y. Qu, L. Gao, G. Xie, and S. Yu, “Detecting false data attacks
using machine learning techniques in smart grid: A survey,” J. Netw.
Comput. Appl., vol. 170, 2020, Art. no. 102808.

[31] N. Sahani, R. Zhu, J.-H. Cho, and C.-C. Liu, “Machine learning-based
intrusion detection for smart grid computing: A survey,” ACM Trans.
Cyber-Phys. Syst., vol. 7, pp. 1–31, 2023.

[32] A. S. Musleh, G. Chen, and Z. Y. Dong, “A survey on the detection
algorithms for false data injection attacks in smart grids,” IEEE Trans.
Smart Grid, vol. 11, no. 3, pp. 2218–2234, May 2020.

[33] H. T. Reda, A. Anwar, and A. Mahmood, “Comprehensive survey and
taxonomies of false data injection attacks in smart grids: Attack models,
targets, and impacts,” Renewable Sustain. Energy Rev., vol. 163, 2022,
Art. no. 112423.

[34] R. Deng, G. Xiao, R. Lu, H. Liang, and A. V. Vasilakos, “False
data injection on state estimation in power systems—Attacks, impacts,
and defense: A survey,” IEEE Trans. Ind. Informat., vol. 13, no. 2,
pp. 411–423, Apr. 2017.

[35] Z. E. Mrabet, N. Kaabouch, H. E. Ghazi, and H. E. Ghazi, “Cyber-
security in smart grid: Survey and challenges,” Comput. Elect. Eng.,
vol. 67, pp. 469–482, 2018.

[36] H. He and J. Yan, “Cyber-physical attacks and defences in the smart
grid: A survey,” IET Cyber-Phys. Syst.: Theory Appl., vol. 1, no. 1,
pp. 13–27, 2016.

[37] B. B. Gupta and T. Akhtar, “A survey on smart power grid: Frame-
works, tools, security issues, and solutions,” Ann. Telecommun., vol. 72,
pp. 517–549, 2017.

[38] D. B. Rawat and C. Bajracharya, “Cyber security for smart grid systems:
Status, challenges and perspectives,” in Proc. SoutheastCon, 2015,
pp. 1–6.

[39] J. Sakhnini, H. Karimipour, A. Dehghantanha, R. M. Parizi, and G.
Srivastava, “Security aspects of Internet of Things aided smart grids:
A bibliometric survey,” Internet Things, vol. 14, 2021, Art. no. 100111.

[40] J. Liu, Y. Xiao, and J. Gao, “Achieving accountability in smart grid,”
IEEE Syst. J., vol. 8, no. 2, pp. 493–508, Jun. 2014.

[41] F. Aloul, A. Al-Ali, R. Al-Dalky, M. Al-Mardini, and W. El-Hajj,
“Smart grid security: Threats, vulnerabilities and solutions,” Int. J.
Smart Grid Clean Energy, vol. 1, no. 1, pp. 1–6, 2012.

[42] N. Komninos, E. Philippou, and A. Pitsillides, “Survey in smart grid and
smart home security: Issues, challenges and countermeasures,” IEEE
Commun. Surv. Tuts., vol. 16, no. 4, pp. 1933–1954, Fourth Quarter
2014.

[43] A. Srivastava, T. Morris, T. Ernster, C. Vellaithurai, S. Pan, and U.
Adhikari, “Modeling cyber-physical vulnerability of the smart grid
with incomplete information,” IEEE Trans. Smart Grid, vol. 4, no. 1,
pp. 235–244, Mar. 2013.

[44] S. N. Islam, Z. Baig, and S. Zeadally, “Physical layer security for the
smart grid: Vulnerabilities, threats, and countermeasures,” IEEE Trans.
Ind. Informat., vol. 15, no. 12, pp. 6522–6530, Dec. 2019.

[45] M. S. Al-kahtani and L. Karim, “A survey on attacks and defense
mechanisms in smart grids,” Int. J. Comput. Eng. Inf. Technol., vol. 11,
no. 5, pp. 94–100, 2019.

[46] M. Z. Gunduz and R. Das, “Cyber-security on smart grid: Threats and
potential solutions,” Comput. Netw., vol. 169, 2020, Art. no. 107094.

[47] K. Ambili and J. Jose, “Trust based intrusion detection system to detect
insider attacks in IoT systems,” in Information Science and Applica-
tions. New York, NY, USA: Springer, 2019, pp. 631–638.

[48] Y. Wang, T. T. Gamage, and C. H. Hauser, “Security implications
of transport layer protocols in power grid synchrophasor data com-
munication,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 807–816,
Mar. 2016.

[49] W. Yin, P. Hu, J. Wen, and H. Zhou, “ACK spoofing on MAC-layer
rate control: Attacks and defenses,” Comput. Netw., vol. 171, 2020,
Art. no. 107133.

[50] S. Wang, S. Zhu, and Y. Zhang, “Blockchain-based mutual authenti-
cation security protocol for distributed RFID systems,” in Proc. IEEE
Symp. Comput. Commun., 2018, pp. 74–77.

[51] B. Min and V. Varadharajan, “Cascading attacks against smart grid us-
ing control command disaggregation and services,” in Proc. 31st Annu.
ACM Symp. Appl. Comput., 2016, pp. 2142–2147.

[52] J. Chen et al., “Impact analysis of false data injection attacks on power
system static security assessment,” J. Modern Power Syst. Clean En-
ergy, vol. 4, no. 3, pp. 496–505, 2016.

[53] P. Wlazlo et al., “Man-in-the-middle attacks and defense in a power
system cyber-physical testbed,” IET Cyber-Phys. Syst.: Theory Appl.,
vol. 6, pp. 164–177, 2021.

[54] M. M. Roomi, S. M. S. Hussain, D. Mashima, E.-C. Chang, and T.
S. Ustun, “Analysis of false data injection attacks against automated
control for parallel generators in IEC 61850-based smart grid systems,”
IEEE Syst. J., vol. 17, no. 3, pp. 4603–4614, Sep. 2023.

[55] L. Che, X. Liu, Z. Shuai, Z. Li, and Y. Wen, “Cyber cascades screening
considering the impacts of false data injection attacks,” IEEE Trans.
Power Syst., vol. 33, no. 6, pp. 6545–6556, Nov. 2018.

[56] L. Jia, J. Kim, R. J. Thomas, and L. Tong, “Impact of data quality on
real-time locational marginal price,” IEEE Trans. Power Syst., vol. 29,
no. 2, pp. 627–636, Mar. 2014.

[57] L. Xie, Y. Mo, and B. Sinopoli, “Integrity data attacks in power mar-
ket operations,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 659–666,
Dec. 2011.

[58] K. Hasan, S. S. Shetty, and S. Ullah, “Artificial intelligence empowered
cyber threat detection and protection for power utilities,” in Proc. IEEE
5th Int. Conf. Collaboration Internet Comput., 2019, pp. 354–359.

[59] P. Kalaharsha and B. M. Mehtre, “Detecting phishing sites—An
overview,” 2021, arXiv:2103.12739.

[60] R. K. Dhanaraj, K. Rajkumar, and H. U., “Enterprise IoT modeling:
Supervised, unsupervised, and reinforcement learning,” in Business
Intelligence for Enterprise Internet of Things. Cham, Switzerland:
Springer, 2020, pp. 55–79.

[61] J. Qiu, Q. hui Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine
learning for big data processing,” EURASIP J. Adv. Signal Process.,
vol. 2016, pp. 1–16, 2016.

[62] D. Upadhyay, J. Manero, M. Zaman, and S. Sampalli, “Intrusion detec-
tion in SCADA based power grids: Recursive feature elimination model
with majority vote ensemble algorithm,” IEEE Trans. Netw. Sci. Eng.,
vol. 8, no. 3, pp. 2559–2574, Jul.–Sep. 2021.

[63] A. Kumar, N. Saxena, S. Jung, and B. J. Choi, “Improving de-
tection of false data injection attacks using machine learning with
feature selection and oversampling,” Energies, vol. 15, no. 1, 2021,
Art. no. 212.

[64] A. Kumar, N. Saxena, and B. J. Choi, “Machine learning algorithm for
detection of false data injection attack in power system,” in Proc. Int.
Conf. Inf. Netw., 2021, pp. 385–390.

[65] A. Sahu et al., “Multi-source multi-domain data fusion for cyberattack
detection in power systems,” IEEE Access, vol. 9, pp. 119118–119138,
2021.

[66] W. Gao, T. Morris, B. Reaves, and D. Richey, “On SCADA control
system command and response injection and intrusion detection,” in
Proc. eCrime Res. Summit, 2010, pp. 1–9.

[67] S. Potluri and C. Diedrich, “Deep learning based efficient anomaly
detection for securing process control systems against injection at-
tacks,” in Proc. IEEE 15th Int. Conf. Autom. Sci. Eng., 2019, pp. 854–
860.

[68] Z. Qu et al., “False data injection attack detection in power systems
based on cyber-physical attack genes,” Front. Energy Res., vol. 9, 2021,
Art. no. 644489.

[69] R. Qi, C. Rasband, J. Zheng, and R. Longoria, “Detecting cyber at-
tacks in smart grids using semi-supervised anomaly detection and
deep representation learning,” Information, vol. 12, no. 8, 2021,
Art. no. 328.

[70] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, “Recurrent neural
network based language modeling in meeting recognition.,” in Proc.
Annu. Conf. Int. Speech Commun. Assoc., 2011, pp. 2877–2880.

84 VOLUME 5, 2024

https://dx.doi.org/10.1007/s00607-012-0227-7
https://api.semanticscholar.org/CorpusID:15472749
https://api.semanticscholar.org/CorpusID:15472749
https://arxiv.org/abs/2207.07738


[71] H. Eke, A. Petrovski, and H. Ahriz, “Detection of false command
and response injection attacks for cyber physical systems security and
resilience,” in Proc. 13th Int. Conf. Secur. Inf. Netw., 2021, pp. 1–8,
doi: 10.1145/3433174.3433615.

[72] K. Bitirgen and U. B. Filik, “A hybrid deep learning model for discrimi-
nation of physical disturbance and cyber-attack detection in smart grid,”
Int. J. Crit. Infrastruct. Protection, vol. 40, 2023, Art. no. 100582.

[73] S. Pan, T. Morris, and U. Adhikari, “Developing a hybrid intrusion
detection system using data mining for power systems,” IEEE Trans.
Smart Grid, vol. 6, no. 6, pp. 3104–3113, Nov. 2015.

[74] G. Intriago and Y. Zhang, “Online dictionary learning based fault and
cyber attack detection for power systems,” in Proc. IEEE Power Energy
Soc. Gen. Meeting, 2021, pp. 1–5.

[75] Molloy, “Performance analysis using stochastic Petri nets,” IEEE Trans.
Comput., vol. C-31, no. 9, pp. 913–917, Sep. 1982.

[76] A. Hahn and M. Govindarasu, “Model-based intrustion detection for
the smart grid (minds),” in Proc. 8th Annu. Cyber Secur. Inf. Intell. Res.
Workshop, 2013, pp. 1–4, doi: 10.1145/2459976.2460007.

[77] B. Li, R. Lu, G. Xiao, H. Bao, and A. A. Ghorbani, “Towards insider
threats detection in smart grid communication systems,” IET Commun.,
vol. 13, no. 12, pp. 1728–1736, 2019.

[78] D. Schachinger, W. Kastner, and S. Gaida, “Ontology-based abstrac-
tion layer for smart grid interaction in building energy management
systems,” in Proc. IEEE Int. Energy Conf., 2016, pp. 1–6.

[79] Y. Huang and X. Zhou, “Knowledge model for electric power big data
based on ontology and semantic web,” CSEE J. Power Energy Syst.,
vol. 1, no. 1, pp. 19–27, 2015.

[80] D. Wang, W. H. Tang, and Q. H. Wu, “Ontology-based fault diagno-
sis for power transformers,” in Proc. IEEE PES Gen. Meeting, 2010,
pp. 1–8.

[81] D. Krauß and C. Thomalla, “Ontology-based detection of cyber-attacks
to SCADA-systems in critical infrastructures,” in Proc. 6th Int. Conf.
Digit. Inf. Commun. Technol. Appl., 2016, pp. 70–73.

[82] A. Albalushi, R. Khan, K. McLaughlin, and S. Sezer, “Ontology-
based approach for malicious behaviour detection in synchrophasor
networks,” in Proc. IEEE Power Energy Soc. Gen. Meeting, 2017,
pp. 1–5.

[83] J. Zhao et al., “Power system dynamic state estimation: Motivations,
definitions, methodologies, and future work,” IEEE Trans. Power Syst.,
vol. 34, no. 4, pp. 3188–3198, Jul. 2019.

[84] A. Monticelli, “Electric power system state estimation,” Proc. IEEE,
vol. 88, no. 2, pp. 262–282, Feb. 2000.

[85] S. Chakrabarty and B. K. Sikdar, “Detection of hidden transformer tap
change command attacks in transmission networks,” IEEE Trans. Smart
Grid, vol. 11, no. 6, pp. 5161–5173, Nov. 2020.

[86] S. Chakrabarty and B. Sikdar, “Unified detection of attacks involving
injection of false control commands and measurements in transmis-
sion systems of smart grids,” IEEE Trans. Smart Grid, vol. 13, no. 2,
pp. 1598–1610, Mar. 2022.

[87] Y. Yang, K. McLaughlin, T. Littler, S. Sezer, B. Pranggono, and H. F.
Wang, “Intrusion detection system for IEC 60870-5-104 based scada
networks,” in Proc. IEEE Power Energy Soc. Gen. Meeting, 2013,
pp. 1–5.

[88] R. Khan, A. Albalushi, K. McLaughlin, D. Laverty, and S. Sezer,
“Model based intrusion detection system for synchrophasor applica-
tions in smart grid,” in Proc. IEEE Power Energy Soc. Gen. Meeting,
2017, pp. 1–5.

[89] D. Gopinath, G. Katz, C. S. Pasareanu, and C. Barrett, “DeepSafe:
A data-driven approach for checking adversarial robustness in neural
networks,” 2020, ArXiv:vol. abs/1710.00486, 2017.

[90] Y.-L. Tsai, C.-Y. Hsu, C.-M. Yu, and P.-Y. Chen, “Formalizing gen-
eralization and adversarial robustness of neural networks to weight
perturbations,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2021,
vol. 34, pp. 19692–19704.

[91] C. Si et al., “Better robustness by more coverage: Adversarial train-
ing with mixup augmentation for robust fine-tuning,” Findings Assoc.
Computational Linguistics: ACL-IJCNLP 2021, 2021, pp. 1569–1576.

[92] D. Li and Q. Li, “Adversarial deep ensemble: Evasion attacks and
defenses for malware detection,” IEEE Trans. Inf. Forensics Secur.,
vol. 15, pp. 3886–3900, 2020.

MUHAMMAD USAMA received the bachelor’s
degree from the National University of Computer
and Emerging Sciences, Islamabad, Pakistan, in
2015, and the master’s degree from the Lahore
University of Management Sciences, Lahore, Pak-
istan, in 2018, both in electrical engineering. He is
currently working toward the Ph.D. degree in com-
puter engineering at the department of computer
science and engineering, University of Nebraska–
Lincoln, Lincoln, NE, USA.

His research interests include the security of
critical infrastructures, hardware security for reconfigurable devices, and ma-
chine learning applications for improving cyber-physical security.

MUHAMMAD NAVEED AMAN (Senior Mem-
ber, IEEE) received the B.Sc. degree in computer
systems engineering from the University of En-
gineering and Technology, Peshawar, Pakistan, in
2006, the M.Sc. degree in computer engineering
from the Center for Advanced Studies in Engineer-
ing, Islamabad, Pakistan, in 2008, and the M.Eng.
degree in industrial and management engineering
and the Ph.D. degree in electrical engineering from
the Rensselaer Polytechnic Institute, Troy, NY,
USA, in 2012.

He is currently an Assistant Professor with the University of Nebraska–
Lincoln, Lincoln, NE, USA, where he also heads the Goof-Proof Hardware-
Oriented Security and Trust Lab. Previously, he was an Assistant Professor
with the National University of Computer and Emerging Sciences, Islam-
abad, Pakistan. He was also a Senior Research Fellow with the School of
Computing, National University of Singapore, Singapore. His noteworthy
research achievements include pioneering device attestation algorithms, in-
novative approaches to physical layer security leveraging transceiver and
wireless channel characteristics, and contributions to understanding privacy
attacks on machine learning models. His interdisciplinary expertise extends to
blockchains, power systems, optimization, and control systems. His research
interests include hardware systems security in embedded devices, physi-
cal layer security for Internet of Things devices, and trustworthy machine
learning.

VOLUME 5, 2024 85

https://dx.doi.org/10.1145/3433174.3433615
https://dx.doi.org/10.1145/2459976.2460007

	Command Injection Attacks in Smart Grids: A Survey
	Command Injection Attacks in Smart Grids: A Survey

