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ENGI:\LLRI:\C; AND APPLIED SCIENCFS 

A 'IODIFlED TRANSHIPMENT ALGORITHM FOR TRUCKING 
Harold James Johnson 

Lincoln IIigh school 
Lincoln, Nebraska 

\BSTRACT: I'he transportation of goods and merchandise within allY city is an 
,'ss"llti:ll part of urban life. These trucks, however, add greatly to the traffic congestion 
and i',lliulion. Comequently, some approach is desired to reduce the effect. One such 
:'1'1)1\,::,'11 can be to restrict truck traffic during rush hOLlIS and on specific roads. 
!lO\\ ,'I d, a more desirable approach includes minimization of the truck-miles r.:quired to 
trall'i'"rt the merchandise. One such technique is the transhipment algorithm which 
,'\)I1,','rr" the flow through an intermediate point. The current algorithm is a minor 
lllodifiL':ltiol1 of the distribution problem and it is not very efficient. Thus, the proposed 
:lI'I'ruad] is to transform the problem into three, rather than two, dimensions, Current 
res,'ar,' h has been devoted to forward flow only, 

INTRODUCTION 

Since the advent of the industrial revolution the world has seen a 
remarkable growth in the size and complexity of their organizations. The 
small artisans' shops of an earlier era have become the expanding corporations 
of tooay. But, as times changed and old complications were done away with, 
new problems arose. As each company had its own set of goals and 
responsibilities they tended to cross purposes, 

The transportation of goods within one city, or among several cities, is 
one of the familiar branches of common dispute. Trucks tend to add to 
traffic congestion and are responsible for a considerable amount of pollution 
produced by motor vehicles. Therefore, a method of dispersing this problem, 
or at least easing it in part, is needed. One approach is the limitation of 
truck-miles and thus limit the time a truck is on the road. 

A technique for solving this problem is by using a linear equation, known 
as the transhipment algorithm, to determine the minimal time a truck needs 
be Ull the road, This algorithm, when applied to the trucking situation, has a 
four-i'()lcl purpose. It saves time by reducing the mileage and limiting trucking 
to the best route. It saves resources, in this case trucks and their maintenance, 
as one big truck may be used to perform the present task of three smaller 
trucks, It lessens cost, it uses the least expensive routes for all parties 
conce! ned, so there is a minimum cost. Reducing the cost to the shipper then 
allows the shipper, in theory, to pass it on to consumers. Finally, it cuts back 
on pollution, using one truck instead of three, you limit the air pollution 
produced, plus the noise pollution as welL And less time on the road means 
less time for the production of pollution. 

The current algorithm, however, is a mere extension of the distribution 
problem and not as effective as it might be. It was designed by Alex Orden, 
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and first published in Management Science in 1956. It was proven valid, but 
as time passed, new ideas for solving this problem more quickly were 
designed. The proposed approach is to transform the problem into three . ' rather than two, dimensions. 

To understand this better, one must realize that the original method Was 
based on a table placed on an xy-graph. The form on which my proposed 
solution is obtained is on a table on the area and within the volume of a cube. 
At the present, research has been devoted to the forward flow only. 

BACKGROUND: The transhipment problem is a direct extension of the 
transportation problem. This, in tur~, is a special case of linear equation 
which involves the determining of the optimal shipping pattern. In this case 
there are three different series and three different types of paths to consider. 
Yet, to begin, it is better to observe the transportation problem so the 
introduction of information is step by step. 

The transportation problem is similar to the transhipment problem only 
there do not exist any intermediary points. For example, there exists a 
source, a factory i 0=1 ,2,3, ... m) that produces ai (amount in supply) and a 
destination, a store j 0=1 ,2,3, ... n) with a requirement of bj units (amount in 
demand). Supposing that the amount shipped from the factory to the store is 
directly proportional to the shipping cost. Now, xi" is the amount shipped 
from factory i to store j; also Cij is the cost per unit shipped along the varying 
paths. The resulting equation looks like this: 

m n 
Minimize ~ c L: 2: '" i=l j-1 

This is subject to the restrictions that the summation over j of Xij is equal 
to ai (the amount shipped is equal to that in supply); the summation over i of 
Xij is equal to bj (the amount shipped is equal to that in demand); and that Xij 
is greater than or equal to zero. This leads to the observations that the 
amount in supply is equal to the amount in demand which are equal to Xij 
with the bounds of i and j. However, this is only for convenience sake and the 
difference may be supplemented by introducing a dummy factory or store 
with infinite supply and demand respectively. 

Therefore, except for the non-negativity restriction the others can be 
written thus; 

n 
o = a -:::: Xij 

i j=l 
m 

o - b j - E Xij 
i'"'l 

for all i = 1,2,3, ••• m. 

for all j = 1,2,3, ••• n. 
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Using Lagrange multipliers we may then write an equation to combine 
the constraints with the basic objective function z. These multipliers shall be 
ui (i=l ,2,3, ... m) and Vj 0=1 ,2,3, ... n). Thus one arrives at the final equation; 

m n m n n m 
.z"''':; ;: cijx.j+l: u.(a.-E Xi.)+E v.(bj-E x. j ) 

i",1 j"'1 l. i=1 l. l. j'"l J j=1 J i-1 l. 

m n m n 
= i £ (ciJ· - u i - vj)xij + E uiai + ~ Vjbjo 
Wj~ ~ J~ 

This shows that xi· must be greater than zero or else there is no 
allocation, then Cij must he equal to ui plus Vj. In addition, there shall be (m + 
n = 1) allocations when the program is completed, unless the problem is 
degenerate, because there are (m + n) unknowns or that is to say ui and Vj. 
Anyone of these can be assigned arbitrarily, and the rest solved algebraically. 
This holds true for the transhipment algorithm. 

As previously denoted the transhipment is similar to the transportation 
problem, however, it adds warehouses in between to provide a wider variety 
of routes and costs. Whereas, in one case it is cheaper to ship from factory to 
a store, in another it might be cheaper to ship it with a regular run to a 
warehouse and then distribute it to the store. from there. Luckily, the 
transhipment problem can be broken down to factor nearly the same way as 
the transportation problem. 

There are actually three parts to the problem as shown in Fig. 1. This is 
designated by the direction of the flow between series. There are three: A 
series are the manufacturers (denoted Al ,A2,A3 , ... ) and are the source of the 
supply ai; B series are the warehouses (denoted Bl ,B2,B3,.'.) and may be any 
point in the system as long as there is a path to the point; and C series are the 
retailors (denoted Cl ,C2,C3, ... ) these hold the final demand. As well as these 
there are three different paths: forward flow, the flow directed towards the 
demand which includes direct and excludes any that meet the following 
paths' requirements; backward flow, flow away from the demand with similar 
costs as the forward but, not necessarily the same; and flow within a series; 
example, from Alto A2. Present research by the author has developed a 
solution to the forward flow only since it can be equated without the use of 
any other part. 

The new algorithm was based on the theory that placing the operations 
on a cube, instead of a plane, would minimize elements and improve 
accessibility. In Fig. 2, it is explained how each series is taken into account; A 
encompasses the cube horizontally, while Band C oppose each other rising 
vertically on adjacent sides, descending on the opposite, and crossing both the 
top and bottom planes. Thus the area is utilized, while within the volume of 
the cube the shift between each plane takes place. The operation of the 
forward flow takes place on the three visible planes. Unfolding the planes for 

83 



TRANSACTIONS OF THE NEBRASKA ACADEMY OF SCIENCES 
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better observation the diagram is similar to Fig. 3. It is noticeable that all 
traffic is at right angles to reach the final destination when passing through an 
intermediary point, the direct path is not. However, for convenience sake, the 
direct path can be altered to conform with the right angle pattern by adding a 
dummy intermediary point with a like cost into its cell but, a zero shipping 
cost out. Still, the problem may be solved in either form but the author 
recommends the latter form as easier. 

There yet remains the determining of the necessary and sufficient 
optimal conditions before the equation can be worked. The following 
conditions were designed by Marvin M. Johnson, Ph.D., University of 
Nebraska, and are used with his permission. The effective objective function 
and the constraints for this problem are as follows: 
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m n n p 

Minimize '7 2 L: ,S eijxij + ;..:: , 
ejkxjk• I~ .:.. 

i=l j=l j=l k=l 

which is subject to the following points; Input to the warehouses is equal to 
the amount in supply. Input to the stores is equal to the amount in demand. 
InpLit tu the warehouses is equal to their outputs. Supply is equal to demand 
Jnd xij and Xjk ~lre non-negative. Here eij and ejk are used to denote cost per 
unit since one ot the sqles IS already C. 

l\exL using the Lagrangian function to eliminate the basic variables, the 
technique assures global rather than local optimality. The multipliers are 
similar to those Llsed in the transportation problem but there is an extra one 
as we have introduced a new series. These are ui (i=! ,2,3, ... m), rj 
U=l ,2,3, .. n), and vk (k=l,2,3, ... p). The resulting function is: 

So that the Lagrange function is optimal at the same point as the minimum of 
the object function, either the multipliers must be equal to zero or the terms 
following must. The simplified function looks like this: 

Now the conditions for optimality must be restated from this. 

Wij = eij - ui - rj for Stage 1, and tjk = ejk - vk + rj for Stage 2. 
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Stage 1 indicates the flow from factory to warehouse, and Stage 2 indicates 
the flow from warehouse to store. The amount in supply must be equal to the 
number shipped in Stage I, and the amount in demand must be equal to the 
number shipped in Stage 2. This means supply and demand are equal, and 
ends with the restriction that the number shipped cannot be negative. 

With the use of partial derivitives we also obtain this: 
w··z·· = 0 and W·· ~ 0 for Stage 1· x·· = z··2 non-negative· IJ IJ IJ ' IJ 1 J ' 

tjkYjk = 0 and tjk ~ 0 for Stage 2; and, Xjk = Yjk2 non-negative. 

Then either w~ (tjk for Stage 2) or Zij (Yjk for Stage 2) or both equal zero 
when the solution is optimal. Howeve!, assuming that Zij (Yjk) is zero then xi· 
= Zi/ = 0 (Xjk = Yjk2 = 0). But, if the amount shipped is equal to zero theJ 
there is no problem. Because of tills Wij (tjk) cannot be greater than zero as 
this forces the amount to be shipped to retain the value of zero. Therefore, 
Wij (tjk) must equal zero, and then eij = ui + rj (ejk = vk - rj). And these are all 
the conditions willch must be met for cptimality. 

EXAHPLE: 
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METHOD: Now that all the rules have been established, the final step is 
the method used to work the equation. In Fig. 4, there is an example of a 
common problem which shall be utilized to explain the method. In the 
example there isn't any direct flow, but it has been explained how it would 
be dealt with. The first instruction is to draw a chart and fill in the pertinent 
information available as shown in Fig. 5. 

Subtract the smallest number in each A row in the AB-plane from every 
number in that row until there is a zero in at least one cell of that row. This 
would appear as in Fig. 6. Next. subtract the smallest number in each Crow 
in the CB-plane from every number in tha' row until there is at least one zero 
in one cell of each row, as in Fig. 7. 

To allocate the supply to the routes, start in the AB-plane with the upper 
left cell and move outward until a zero is located. If there are two zeroes in a 
column, pick the one that does not require the other to choose a path that is 
not optimaL Remember that if something is added to AB-plane, it must also 
be added to CB-plane. 

To make sure that the required conditions are met, it is noted that the 
amount in supply (12) is equal to that in demand (12). Since the number in 
the supply series varies from seven to five it is obvious that to meet the 
demand of six each, the seven must be split into one and six. An arbitrary 
assignment of six from A I to C 1 has been made and the others have one 
remaining choice, to satisfy C2. In Fig. 8, arrows indicate the allotments to 
each cdL Checking to see if tlus meets the requirements of number of 
occupied cells is done this way. Since (m + n - 1) is the number used for the 
transportation problem, then the transhipment problem should be similar but 
with one element more. Let (m + n - 1) = r, then (r + p - 2) = (m + n + p - 3). 
Placing our information in the formula the result is four; thus, there should 
be, and are, four occupied cells in the graph. 

Satbfied C, / 3+6 / 4 I 

~ 
5 I Vk 

-6 C, 
I 4+6 1 

+5 
C2 

-6 C2 1 -l 
Assi.gned 

Ai l2+61 1 I 
+7 Ai +1 ___ 

(1+5 1 o I Ui 

+5 
5 A2 

A2 I 
'1 ·2 '3 " B~ Bl,.. 

C2 

2 3+6 5 

6 4+6 ) 

4 2+6 7 

,+5 4 

Ai 

Fig. 8 
rJ 

Fig. 9 Fig. 10 

To prove that the answer is optimal, there are two methods. The first is 
trial and error, checking each set of paths separately. This is a long and 
tiresome method. It is better to follow the rules set previously. These are eij = 

ui + rj (or ejk = vk - rj). To attain these multipliers is easy enough. Take the 
lowest number in any column that contains an allocation and subtract it from 
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any number in that column in the AB-plane and add it to any number in the 
same culumn in the CB-plane. This then lends itself to determining vk and ui 
algebraicallv. Subtract the remainder of that number till a zero is placed in 
each assigned cell. Next, add the unassigned and determine the rest of rj by 
subtracting the smallest number until there is a zero in each column. Now 
you arc ready to check for optimality. Plug each of the values into the 
appropriate one of the two equations, eij = ui + rj (ejk = vk - rj). If all the 
results are not greater than or equal to zero then the problem has not reached 
optimality. You must reassign by changing the allocations to occupy the celt 
which is less than zero. 

The work and final results are shown in Fig. 9 and 10. As our problem 
proves optimal by means of the two equations, it only remains to find the 
total optimal cost. However, in deriving the answer we discovered as well that 
this was a special case as there are two patterns of optimality. These are: 

UNITS 

6 

5 

COST 

x 5 

x 6 

x 5 

Total 

TOTAL 

30 

6 

25 

61 

UNITS 

6 

5 

COST 

x 6 

x 5 

x 4 

Total 

TOTAL 

36 

5 

20 

61 

Can optimality be arrived at in both cases? The answer is obviously yes, since 
the results are equal. This then is the solution and pattern to reach it. 

CONCLUSION 

In conclusion the method used to solve this problem is a simplified 
version of the original. Having solved the equation for forward flow the doors 
to backward flow and series flow are opened and future research may be 
devoted to establishing a simpler method of factoring the problem. However, 
the final result should be a simplified and easier method to work the problem 
opening up its use for calculations of trucking in the near future. 
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