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Abstract 
An iterative sampling process for dimensional measurement is presented. The strategy is based upon 
the use of surface normal measurement data to develop an interpolating curve between sample 
points. The interpolant is used to select subsequent measurement targets iteratively. The process is 
repeated until the measurement converges to a complete and accurate evaluation of the surface. The 
required sample size is proportional to part quality. The most accurate parts will require the least 
sample points; whereas, lower quality parts will require a greater number of total samples. The 
method is particularly applicable to measurement of complex surfaces with coordinate measuring 
machines (CMMs). 
 
Keywords: dimensional metrology, coordinate metrology, sampling, uncertainty 
 
1. Introduction 
 
Coordinate measuring machines (CMMs) are widely used in manufacturing to verify and 
control the dimensional accuracy of manufactured goods. Through a variety of mecha-
nisms, these machines determine the position of points on the surface of the object under 
inspection. After a set of point measurements has been collected, part conformance to the 
design intent can be evaluated. Typically, groups of points are associated with nominal 
feature shapes and fitted to the geometry. The fit parameters are then compared to the 
design intent to determine conformance. The validity of this evaluation process is depend-
ent upon the assumption that the set of sample points is representative of the surface being 
inspected. Current practice is to develop a sampling process that is constant for a given 
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part design [1–5]. This static sampling process will perform acceptably for the majority of 
actual part shapes, but leaves open the possibility of interaction between the sampling plan 
and part errors. We have shown previously that the interaction between sampling patterns 
and part errors can result in fitting errors equal in magnitude to the part form error [6]. 
This paper will illustrate an iterative sampling method that determines a sampling pattern 
for individual parts based upon the use of surface normal measurements to predict the 
part errors between sample points. 

CMMs capable of measuring surface normals have been available for many years. The 
primary application of this capability has been to maintain contact with the part while the 
probe traces a line across the part surface (scanning). This type of measurement permits a 
much higher data collection rate than the standard point-to-point probing technique used 
by most CMMs. However, scanning requires a machine with controls and dynamic stiff-
ness of a much higher caliber than a point-to-point probing CMM. The result is that CMMs 
capable of scanning are typically priced from two to five times higher than a point probing 
machine with a similar work volume. The cost of probe heads capable of generating surface 
normal measurements represents only a small percentage of the price differential between 
scanning and point probing CMMs. This work presumes the availability of an intermediate 
product between the point probing and scanning machine classes; that is, a point probing 
CMM that also generates surface normal measurements. Sensors suitable for this type of 
machine have been demonstrated by a number of researchers recently [7–10]. 

The method uses the fact that the deviation in the measured surface normal indicates 
the rate of change in the surface error at the measurement point to develop an estimate of 
the errors between measurement points. Using this error estimate, we iteratively select regions 
where the predicted errors exceed our measurement uncertainty criteria and resample 
these areas until the error surface estimate converges to our measuring criteria. In this pa-
per, we develop the interpolation model and show examples of the algorithm performance 
for two-dimensional (2-D) sections. 

This sampling strategy is particularly relevant using min-max fitting algorithms. These 
fitting algorithms, typically applied to meet the intent of the ANSI Y14.5 tolerance stand-
ard, are constrained by the extreme points of the dataset under analysis. This dependence 
on extrema results in min-max algorithms being highly sensitive to the measurement 
points available in the sample set [11–16]. Our algorithm ensures that extreme points that 
do not represent surface discontinuities will be represented in the dataset, within a known 
uncertainty range. 
 
2. Optimization issues for sampling in coordinate metrology 
 
Three principal factors must be addressed to optimize a sampling plan for a dimensional 
measurement. The first factor to consider is how the sampling plan will affect the total 
measurement time, which directly correlates to the cost of the measurement. The second 
issue is the accuracy of any design tolerance evaluation performed using the sample points. 
The final, and often overlooked, issue is the completeness of the measurement. 
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A CMM requires significant capital investment, both for the equipment itself and for 
the infrastructure required to maintain suitable environmental conditions for proper oper-
ation. Skilled operators are generally required to oversee the measurements and interpret 
measurement results. It is desirable, therefore, to maximize the output of these machines 
by developing a measurement algorithm that produces valid results in minimum time. 
Because total measurement time is proportional to the number of sample points required 
for the measurement cycle, minimizing the number of sample points collected is an im-
portant factor to consider when developing an optimal measurement plan. 

Hocken et al. [11], show that using minimal sample sets to develop substitute geometry 
representations of part features can lead to poor measurement accuracy when form errors 
are present. They note that current industry practice is to sample far fewer points than are 
necessary to ensure development of accurate substitute features. Tolerances evaluated using 
Chebyshev algorithms are particularly sensitive to the sample set provided to the calcula-
tion [12–15]. An inaccurate measurement can lead to lost production, scrapped materials 
and, in extreme cases, the loss of a customer. These costs can be many orders of magnitude 
higher than the cost of the measurement itself. An accurate and reliable measurement re-
sult is an important factor to consider when developing a sampling plan. 

An accurate measurement result does not ensure that the evaluation of the feature is 
complete. A complete measurement contains a full evaluation of the errors present on the 
part. In contrast, an accurate measurement requires only points representing the mean 
shape of the feature and the two extreme points above and below the mean line. Summer-
hays et al. [1], have demonstrated methods for generating accurate, but incomplete, sam-
pling plans for cylinders based upon process knowledge of the expected modes for the 
complete error shape. A complete error assessment is of particular importance when meas-
urement results are used for automated process feedback [17] [18]. Complete error evalu-
ations can also reduce the time required to diagnose and correct manufacturing errors 
when process problems appear and human intervention is required. 

Weckenmann et al. [19] suggest that a good sampling strategy will lead to: 

1. the parameters of the substitute feature sought, to be correctly determined from the 
data points sensed 

2. in a minimum time 
3. using a suitably evaluation criterion 
4. with sufficient reliability 
5. and within a predetermined confidence range. 

 
In addition, for a sampling solution to be generally applied, the methodology should be 

independent of the nominal feature shape, manufacturing process, and make no assump-
tions about the distribution of errors across the surface. 

Current research indicates that a general solution to the sampling problem is not possi-
ble with established measurement practices. We attempt to solve the problem by using the 
increased information content available when both the surface normal and the position in 
space of surface points are measured. Using the deviations of location and surface normal 
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from nominal, we have an indication of how the form error changes locally. This infor-
mation is used to develop an interpolating curve that predicts the form error between pairs 
of measurement points. The curve is then used to decide if subsequent measurement points 
are required to complete the measurement within desired confidence limits and, if so, the 
optimal locations for further sample. 
 
3. Error surface model 
 
3.1. Interpolation between measurement points 
Interpolation between measurement points is a widely used practice today. Graphic 
presentation of surface finish, roundness, and surface profiling all use linear interpolation 
to fill in the gaps between measurement points. Because these applications measure posi-
tion only, a linear model is the sole possible solution between pairs of points. The interpo-
lation is performed by first estimating the perpendicular deviation of each sample point 
from the nominal surface. Then lines are computed between each pair of points. The de-
pendent axis is the surface error (e) and the independent axis is the distance along the 
surface (s). This coordinate system is the error space. Typically, the line segments in error 
space are magnified and transformed back to the part coordinate system to present the 
inspection results graphically. When measuring position data, the distinction between the 
error space and part coordinate system is largely trivial, and rarely is it developed for-
mally. When dealing with position and normal vector measurements, this distinction is 
more important and greatly simplifies development of our ideas. Transformation of meas-
urement data into error space makes the data independent of the nominal geometry and 
permits use of a consistent methodology, regardless of part complexity. Figure 1 shows 
nominal and actual position and surface normals for two sample shapes transformed into 
error space. 
 

 
 

Figure 1. Transformation of measured position and surface normals into error space; in-
terpolated errors are shown as a dotted curve. 
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The bold lines in the top half of the figure represent a nominal shape with nominal sur-
face normals shown at two locations. The lighter arrows represent actual measurements, 
with the base of the arrow representing the surface position measured, and the arrow di-
rection indicating the measured surface normal. The bottom half of the figure shows the 
same data after transformation into error space. The arrows represent the position and 
surface normal deviation from nominal, and the dotted lines suggest an interpolant be-
tween the pair of sample points. Transformation of surface normals into error space and 
computation of the interpolant is developed below. 
 
3.2. Transformation of 2-D position and surface normal vectors into error space 
We want to transform both measurements of position and surface normal vectors into error 
space. The position deviation is defined as the minimum perpendicular distance from the 
measured point to the surface. Note that the direction of the perpendicular will be the nom-
inal surface normal. We have effectively reduced the dimensionality of the position data 
from a vector to the scalar e. We want to perform the same dimension reduction for the 
surface normal measurement. 

Consider a general, continuous curve C. The vector N represents the nominal unit nor-
mal vector for the curve at a given point P [Eq. (1)]. This vector can be computed in terms 
of arc distance (s) as: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

(1) 

The true surface tangent at the sample point is the sum of the nominal tangent and the 
tangent of the manufacturing error. The surface normal we measure is perpendicular to 
the tangent [Eq. (2)] and can be expressed as: 
 

𝜕𝜕𝜕𝜕actual
𝜕𝜕𝜕𝜕

 

(2) 

which is the normalized vector of the sum of vectors N and E. Figure 2 is a sketch of the 
relation between N, E, and M. The measured direction is correct, but it is not possible to 
determine the magnitude |N + E|. 
 

 
 

Figure 2. Relationship between nominal tangent vector (N), tangent error vector (E), and 
measured tangent (M). 
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The information that is lost because of the normalization of the vector M represents the 
error in the rate that the surface is being developed. For example, if |N + E| > 1, the curve 
in the area of the sample point is being traversed “too quickly,” and the resulting curve 
will be shorter than intended. Similarly, if |N + E| < 1, then the curve is being developed 
more slowly than was intended, and the arc length of the curve will be longer than ex-
pected in the area being sampled. If either error is systematic, subsequent sample points 
will detect the error, so the loss of information, although undesirable, will not render eval-
uation of the surface using normal vectors unworkable. 

The surface normal error vector is 
 

𝜖𝜖′ = 𝑁𝑁 −𝑀𝑀 
 
For the case of a 2-D curve with small errors in the surface normal vectors, we can approx-
imate the error as a scalar quantity 
 

𝜖𝜖′ = sin𝜃𝜃 
 
where θ is the angle between the nominal and measured surface normal vectors. The sym-
bol 𝜖𝜖′ is chosen because it describes the rate of change of the surface error e with respect to 
distance along the surface 
 

𝜖𝜖′ = (𝛿𝛿𝜖𝜖/𝛿𝛿𝜕𝜕) 
 

We now have four parameters in error space for each pair of measurement points on 
our surface. We can interpolate the surface error between measurement points as a cubic 
polynomial 

𝜖𝜖(u) = a0 + a1u + a2u2 + a3u3 
 

The inputs for this polynomial are the positions and the derivatives at the endpoints, 
which corresponds exactly to the Hermite form of a cubic polynomial. A sample calcula-
tion of the polynomial coefficients is given in the Appendix. By interpolating a cubic poly-
nomial between pairs of measurement points, we develop a cubic spline representation of 
the surface errors. The resulting error estimating curve exhibits C1 continuity. 

Spline interpolations exhibit several important advantages over polynomial interpola-
tion, most importantly the variation diminishing property [20]. This property means that the 
interpolation surface will not exhibit more intersections with any given plane than the 
spline’s control polygon. Therefore, the interpolation method described will not produce 
an error surface with more waves than the true surface. The interpolation model will also 
converge with the true error surface as sample size increases. However, it does not con-
strain the interpolated surface to be bound by the true error surface, so it is possible that 
the error interpolation might exaggerate the surface errors between sample points. 
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4. Uncertainty of the interpolating curve 
 
To obtain an estimate of the accuracy and reliability of the interpolant, the first issue to 
consider is variation in the curve attributable to the uncertainty in measurement of the 
position and surface normal at each point. We also consider how the actual wavelength of 
the error between measurement points will affect our interpolant. 

The interpolating curve developed between two measurement points can be expected 
to vary as a result of the uncertainty of measurement of both the position and surface nor-
mal measurement. The cubic equation describing the curve can be split into two compo-
nents; the ideal cubic interpolant, and the curve attributable to measurement error. The 
measuring error curve is also a cubic polynomial. The actual interpolating curve is the sum 
of these two components: 
 

Ga = Gi + Ge 
 

The ideal interpolant is not an exact representation of the error surface between meas-
urement points. It is merely the interpolating cubic polynomial that would be found using 
the true values of position and surface normal at the sample points. Consider the cubic 
error function Ge. The function can be written in the Hermite form as 
 

Ge(u) = b3u3 + b2u2 + b1u + b0      0 ≤ u ≤ 1 
 

If the position and surface normal measurement errors were known at each point, the 
cubic coefficients could be found from the following: 
 
                                             b3 = 2Pe(0) – 2Pe(1) + dNe(0) + dNe(1) 

b2 = –3Pe(0) + 3Pe(1) – 2dNe(0) – dNe(1) 
                                              b1 = Ne(0) 
                                              b0 = Pe(0) 
 

Pe is the position measurement error, and Ne is the error in the measurement of surface 
normal. Because of the parameterization of the Hermite form from 0 to 1, Ne must be scaled 
by d, the distance between sample points. 

Five independent parameters control the shape of the uncertainty curve. We want to 
find the bounding shape that encloses all of the possible error curves. The four measure-
ment uncertainty terms could combine in 64 (43) ways to produce a maximum curve. Also, 
the distance term changes the magnitude of the error curve in a nonlinear fashion. To sim-
plify evaluation of this function, we separate the error polynomial into the sum of two 
functions dependent only upon the surface normal or position measurement uncertainty. 
  



E D G E W O R T H  A N D  W I L H E L M ,  P R E C I S I O N  E N G I N E E R I N G  2 3  (1 9 9 9 )  

8 

To solve for the first independent function, we assume that the surface normal meas-
urement errors are zero. This is the case for measurements using only position data. In 
such cases, the error function for the position terms can be written as a line between the 
two sample points. Using the parameters shown above: 
 
                                                                 b0 = Pe(0) 

b1 = Pe(1) – Pe(0) 
                                                                 b2 = 0 
                                                                 b3 = 0 
 

Setting the position measurement error terms to zero, we can find the uncertainty func-
tion for the surface normal measurements: 
 
                                                              b3 = Ne(0) + Ne(1) 

b2 = –2Ne(0) – Ne(1) 
                                                               b1 = Ne(0) 
                                                               b0 = 0 
 
Summing these two functions and subtracting from the original Hermite function gives 
the deviation from an exact solution that results from our separation of the error terms: 
 

Separation Error = (Pe(1) – Pe(0)) (–2u3 + 3u2 – u) 
 

The deviation is a function of the difference between the position measurement errors 
at each sample point only. The maximum deviation from the exact form is 0.096 times the 
difference between the position measurement errors at each sample point. Therefore, using 
the simplified model will give a result that is within 10% of the true measurement error. 
More importantly the deviation is 0 at u = 0.5, which is the point of maximum uncertainty 
in the interpolant. It is clear a reasonable estimate of the uncertainty of the interpolating 
curve can be obtained by considering the position and surface normal variation inde-
pendently. 

Having a model for the effect of measurement errors upon the interpolating curve, it is 
possible to find the magnitude and distribution of the uncertainty of the interpolating 
curve based upon statistical values for the expected measurement variation of position and 
surface normal results. The uncertainties from the position measurements combine to pro-
duce a rectangular region between the two measurement points of width equal to the total 
position measurement uncertainty. 

The surface normal uncertainties combine to produce the largest deviation when the 
signs of the normals are opposite. The maximum variation occurs at the midpoint between 
the samples. The magnitude of the maximum or minimum is to ±0.25 dNu, where d is the 
distance between sample points, and Nu is the standard uncertainty of the surface normal 
measurement in radians. Figure 3 shows the total combined uncertainty zone for the inter-
polant. 
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Figure 3. Shape of the combined uncertainty zone for the cubic interpolant. 
 

Representing the standard position measurement uncertainty by PU and the surface nor-
mal measurement variation by NU, the maximum combined variation at the midpoint be-
tween samples is: 
 

Max Variationu = 0.5 = ±[0.5PU(0) + 0.5PU(1) + 0.125 dNU(0) + 0.125 dNU(1)] 
 

The variation computed above is an upper bound for the uncertainty of the interpolant 
attributable to measurement uncertainty. Because there are four independent parameters 
contributing to the variation that will combine statistically, it is an inherently pessimistic 
estimator. Assuming that the measuring uncertainties are independent, the combined un-
certainty can be shown to be [Eq. (3)]: 
 

�0.5𝑃𝑃𝑈𝑈2 + 0.03125𝑑𝑑2𝑁𝑁𝑈𝑈2 

 
Table 1 shows the 95% confidence zone of the interpolant at various sample separations 

for two cases. The first case shows the uncertainties for the dataset used as an example 
later in this text. The expanded position uncertainty for this data set was ±0.002 mm and 
the expanded surface normal uncertainty was estimated to be 0.0004 radians. The second 
set of uncertainty values is based upon the results of an uncertainty analysis of a scanning 
CMM at a manufacturer’s facility. 
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Table 1. 95% Confidence interval on the variation of interpolation curve resulting 
from measuring uncertainty using combined uncertainties 
Surface distance 
between samples 
(mm) 

Variation for example data 
PU = 0.002 mm 

NU = 1.4 arc min 

Variation for scanning cmm 
PU = 0.0018 mm 
NU = 8 arc min 

  1 ±0.0014 mm ±0.0013 mm 
 10 ±0.0015 mm ±0.0043 mm 
 25 ±0.0026 mm ±0.010 mm 
 50 ±0.0038 mm ±0.020 mm 
250 ±0.0180 mm ±0.102 mm 

 
Both sets of data suggest that the interpolation model could be useful in a wide range 

of measuring applications. A measurement system capable of measuring surface inclina-
tions to ±1.4 arc seconds, such as shown in the first dataset, could generate error estimates 
for samples spaced 50-mm apart with uncertainty less than double the point measurement 
variation. 
 
4.1. Sampling algorithm 
The interpolation model is used to allow the measuring system to determine a sampling 
plan autonomously for individual parts that will consistently produce a reliable and com-
plete measurement. The interpolant identifies areas where further samples may be re-
quired for a complete measurement. After additional samples are collected, the process is 
repeated until all completion criteria are satisfied. The process is outlined below, and Fig-
ure 4 is a flow chart for the measurement cycle. 

1. Initially, sample the profile. Enough samples should be taken so that it is possible 
to fit the measurement data to the nominal profile. The initial sample points should 
also include the endpoints of the region of interest. 

2. Fit the measurement data to the nominal geometry using an appropriate algo-
rithm. This step is necessary to ensure that the measurement points are correlated 
to point on the nominal surface with minimal error. 

3. Calculate the position and surface normal errors for each point as described above. 
Use these data to develop an interpolation curve between each pair of points. 

4. Evaluate each piece of the interpolating spline for new target points, and sample 
the new targets. The criteria for selecting new target points are discussed below. 

5. Return to step 2, and repeat the process until no new target points are located. 
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Figure 4. Flow chart of sampling algorithm. 
 

Step 4 requires that the algorithm be able to determine the nominal position and surface 
normal for any point on the surface profile. This could be achieved by either maintaining 
a mathematical model of the surface in the CMM controller or by supplying a file with a 
dense array of nominal coordinates and surface normals from which the program could 
select the closest match to the ideal target. We should note that, for general application, the 
CMM must have the ability to find a collision-free path from its current position to the new 
targets. Although it is beyond the scope of this paper, the authors are satisfied that this 
could be achieved by reverse-engineering the CMM’s original path across the profile. 

Depending upon the size of the surface being measured, the processing speed for fitting, 
and the maximum drive speed of the CMM, it may be desirable to iterate to the stop criteria 
between pairs of points instead of searching the entire surface. This approach would min-
imize the distance traveled by the CMM. 
 
4.2. Criteria for selecting new target points 
Although the ideal set of criteria for choosing new target points has not been determined, 
presently we are using three general rules to decide when and where further samples are 
necessary. These are as follows. 

1. Sample at the extreme location(s) on the interpolating curve if the error curve ex-
ceeds the bounding box formed by the sample points plus an offset value. 

2. If the interpolation curve does not violate the sampling boundaries described 
above, but the distance between sample points is greater than the maximum spac-
ing between sample points, probe at the midpoint between the pair of samples. 

3. If the spacing between sample points is less than or equal to the minimum spacing 
between sample points parameter, do not sample further, regardless of the previ-
ous two rules. 

 
Other rules could be implemented, depending upon the measurement application. For 

example, a step between sample points will produce an inflection point in the interpolation 
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curve. If it desirable to locate the location of steps, it would be necessary to sample at in-
flection points. 
 
4.3. Limitations of the search algorithm 
The algorithm we have described depends upon the assumption that the manufacturing 
errors are continuous. One source of discontinuous errors is the surface roughness of the 
part. Discontinuities could also be the result of errors in the process plan or one-time events 
specific to only a single part from a manufacturing run. 

The effect of surface finish upon the algorithm is difficult to characterize precisely. As 
the surfaces being measured become rougher, an effective irreproducibility will result, be-
cause probing two closely spaced points could result in a discontinuity of surface normal 
measurements. Efforts to define the interaction of surface finish and surface normal meas-
urements better are currently underway. 

Process planning errors that result in discontinuities, such as burrs or gouges, would be 
difficult to detect consistently using our search algorithms. However, these types of errors 
should be designed out of the process at the prototyping stage and would not normally 
appear during a production run. 

As with any iterative method, the final result is sensitive to the starting conditions of 
the algorithm. The number of measurements required for convergence will vary, depend-
ing upon the location of the initial sample points. 
 
4.4. Simulated testing of the search algorithm 
Several test cases have been implemented to confirm the utility of the sampling algorithm, 
all with positive results. Examples of simple bending, sinusoidal error profiles, and com-
binations of trigonometric functions all converge quickly and reliably to a complete and 
accurate representation of the true error profile. 

The test case presented here uses actual measurement data collected as part of a study 
to determine the correlation of part errors with standard machine tool performance tests 
[21]. The data consisted of 360 measurements of a 300-mm diameter circular contour cut 
on a horizontal machining center. Figure 5 shows a roundness plot of the CMM data. The 
dataset contains large errors at 0 and 180° because of backlash in the x-axis. The very large, 
sharp discontinuity at 270° is the result of a velocity error when the machining process 
changes from a drilling operation to a contouring operation at the beginning of the cut. 
This dataset presents a significant challenge to any sampling plan because of the large 
amount of process data available, as well the sharp discontinuity at 270°. 
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Figure 5. Contouring error data used for simulated testing of the search algorithm. 
 

The data were collected using a point probing CMM in an environment controlled to 20 
± 0.1°C. Because surface normal data was unavailable, it was estimated by numerically 
differentiating the measured deviations from the nominal circle. The appendix contains 
the complete set of surface normal and position deviations used in the experiment. 

An initial sample size of three points was selected to allow a circle fit to be computed. 
The samples were uniformly distributed. If process knowledge were used, the algorithm 
could be optimized by starting the process at one of the coordinate axes. To make our test 
as realistic as possible, we choose to forego this advantage and take our initial data equally 
spaced starting at 20° from the x-axis. The threshold for choosing to sample a predicted 
extrema was set to 2 mm. The minimum separation between sample points was 2°, and the 
maximum separation between sample points was 60°. The algorithm described above was 
applied and terminated after 27 points were collected in total. Figure 6 shows the graph of 
position error as measured by the CMM and as represented by the cubic spline model after 
completion of the search algorithm. A uniformly spaced sampling strategy would require 
more than six times as many points to achieve the same minimum feature resolution. 
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Figure 6. Performance of sampling algorithm. 
 

As can be seen from the figure, the algorithm results in a good estimate of the shape of 
the surface. If we exclude the discontinuity at 270°, the profile error found by the 360 point 
measurement is 20.6 μm, the iterative method finds a profile error of 17.3 μm. The discrep-
ancy in the two results is attributable to the discontinuous nature of the backlash error at 
0 and 180°. Although the exact magnitude of the backlash errors is not identified, a large 
error is clearly indicated in these areas. 
 
5. Conclusions 
 
An innovative technique has been developed for the adaptive sampling of part surfaces 
measured with a coordinate measuring system. The technique is predicated on a sample 
of position <x,y,z> and surface normal <i,j,k> at each measurement point. Using this ex-
tended dataset and a description of the nominal geometry for a measured part, it is shown 
that an estimate of the error surface can be made incrementally as sample points are ac-
quired. 

Each new estimate of the error surface is used to choose the next sample point on the 
part surface. The error surface is developed using a cubic spline representation. The di-
minishing variation properties of this model ensure that the error model will always have 
fewer or an equal number of spatial undulations, as compared to the actual part surface. 
As the sample size increases, the error surface converges to match the error of the actual 
surface closely. Current stopping criteria include comparison of tolerance to estimated er-
ror and comparison of spatial frequency of the error surface to expected spatial frequency 
for the part. The data and computation requirements for the technique are quite small. The 
technique is always conservative in estimating the error surface. When the error surface 
differs from the actual part surface, the maximum estimated error always exceeds the error 
of the actual part surface. Uncertainty analysis is developed to show how the uncertainty 
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of the estimated error surface is related to the magnitude and frequency of measurement 
errors. Example data from a high-precision part and a high-precision measurement instru-
ment suggest that the uncertainty associated with this technique can be controlled and 
compares well with the uncertainty of the measuring instrument. 

For an equal number of samples, the method will require more measurement time than 
a uniform sampling pattern, because of the extra drive moves required by the algorithm. 
However, because the algorithm generates sample points concentrated in the areas of large 
error, the number of sample points required will be consistently less than that required by 
a uniform pattern for an equally complete measurement. Note that the sampling strategy 
described in this paper will automatically sample sparsely on acceptable parts or parts 
exhibiting high process capability, while requiring that extensive samples be made on 
parts of low process capability. The process will perform particularly well in comparison 
to a static process sufficient to measure poor quality parts completely, when high-quality 
parts are inspected. 

The technique has been described and demonstrated for 2-D problems and has imme-
diate practical applications. A three-dimensional (3-D) extension is currently being devel-
oped. The algorithm can also be immediately applied to the problem of identifying outliers 
in scanned surface data. The error surface estimate would be incrementally built up from 
the data points acquired by a scanning coordinate metrology probe. Outliers would be 
identified by considering deviations at surface points with respect to the nominal curva-
ture of the part surface and the maximum spatial frequency expected for the part surface. 
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Appendix 

Test data and sample calculation of interpolating curve 
Angle ε μm ε′ × 10–3 Angle ε μm ε′ × 10–3 Angle ε μm ε′ × 10–3 

0 –5.6 1.19 45 0.6 0.25 90 5.3 0.36 
1 –0.4 1.35 46 1.5 –0.04 91 5.7 0.13 
2 2.2 2.53 47 0.1 –0.56 92 6.2 0.24 
3 11.0 1.40 48 –1.1 –0.77 93 6.6 –0.11 
4 8.4 –1.18 49 –3.6 –0.64 94 5.4 –0.83 
5 7.7 –0.09 50 –4.1 –0.07 95 3.3 –0.20 
6 7.1 –0.31 51 –4.2 0.17 96 3.9 –0.20 
7 6.4 0.06 52 –3.1 0.72 97 2.0 –0.53 
8 7.0 –0.07 53 –1.5 –0.06 98 1.8 0.02 
9 6.0 –0.29 54 –3.1 –0.49 99 1.5 –0.27 

10 6.1 0.24 55 –3.0 0.39 100 0.7 –0.21 
11 6.9 0.37 56 –2.1 –0.08 101 1.0 0.57 
12 7.5 –0.21 57 –3.2 –0.27 102 2.7 0.16 
13 6.4 0.05 58 –2.7 0.52 103 1.5 –0.58 
14 7.4 –0.16 59 –1.5 0.01 104 0.8 0.08 
15 5.5 –0.50 60 –2.6 –0.46 105 1.3 –0.10 
16 5.6 0.26 61 –2.8 0.52 106 0.2 –0.37 
17 5.8 –0.35 62 –1.1 –0.06 107 0.0 0.17 
18 4.3 –0.26 63 –3.4 –0.98 108 0.8 0.31 
19 4.7 0.08 64 –4.8 –0.11 109 1.1 –0.23 
20 4.5 0.17 65 –4.2 0.48 110 0.1 –0.06 
21 5.3 –0.11 66 –3.3 –0.12 111 0.9 0.21 
22 3.9 –0.41 67 –4.1 0.18 112 0.6 –0.30 
23 3.9 0.24 68 –2.2 0.62 113 –0.2 –0.29 
24 4.3 –0.23 69 –1.9 –0.36 114 –0.7 –0.01 
25 3.0 –0.21 70 –3.0 0.14 115 –0.9 –0.49 
26 3.6 0.39 71 –1.4 0.31 116 –2.7 –0.35 
27 4.2 –0.14 72 –1.8 –0.08 117 –2.1 0.60 
28 2.9 –0.68 73 –1.4 0.06 118 –1.2 –0.49 
29 1.4 –0.33 74 –1.3 0.41 119 –3.7 –0.44 
30 1.3 0.17 75 0.4 0.47 120 –2.2 1.21 
31 1.8 0.10 76 0.3 –0.54 121 0.4 0.13 
32 1.6 –0.26 77 –1.0 0.29 122 –1.1 –0.33 
33 1.0 0.17 78 1.5 0.69 123 –0.3 0.32 
34 2.1 0.11 79 1.6 –0.20 124 0.2 0.43 
35 1.5 –0.05 80 1.5 0.22 125 1.5 0.05 
36 1.7 –0.34 81 2.6 0.43 126 0.4 –0.38 
37 –0.3 –0.69 82 2.8 –0.68 127 0.3 0.29 
38 –1.4 –0.48 83 0.6 0.21 128 1.1 –0.07 
39 –2.2 0.50 84 3.6 0.72 129 –0.1 –0.53 
40 0.5 0.64 85 3.0 –0.53 130 –0.7 0.24 
41 0.1 –0.50 86 2.2 0.09 131 0.0 –0.48 
42 –0.7 0.18 87 3.5 0.71 132 –2.5 –0.31 
43 0.7 0.40 88 4.9 0.06 133 –1.1 0.60 
44 0.8 –0.17 89 4.2 0.01 134 –1.1 –0.67 

(continued on next page) 
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Appendix (continued) 
Angle ε μm ε′ × 10–3 Angle ε μm ε′ × 10–3 Angle ε μm ε′ × 10–3 

135 –3.0 0.08 180 –0.8 –0.36 225 –6.1 –0.46 
136 –0.8 0.63 181 –0.2 0.30 226 –5.2 0.47 
137 –1.0 –0.42 182 0.2 –0.03 227 –4.9 –0.19 
138 –2.2 –0.49 183 1.9 2.60 228 –5.8 –0.21 
139 –3.1 0.02 184 11.1 1.94 229 –5.5 0.37 
140 –2.5 0.01 185 10.6 –0.43 230 –4.6 0.02 
141 –3.3 –0.37 186 11.0 –0.04 231 –5.1 0.10 
142 –4.0 –0.19 187 10.0 –0.33 232 –4.0 0.17 
143 –4.3 0.08 188 9.6 –0.24 233 –4.4 0.06 
144 –4.3 –0.50 189 8.7 –0.27 234 –3.8 –0.14 
145 –6.2 –0.26 190 8.3 –0.15 235 –4.6 0.33 
146 –5.1 0.73 191 8.1 0.24 236 –2.4 0.38 
147 –3.6 0.18 192 8.9 –0.28 237 –3.4 –0.61 
153 –4.3 –0.49 198 6.3 –0.20 243 –2.1 –0.28 
154 –5.4 –0.51 199 4.7 –0.78 244 –2.9 0.39 
155 –6.4 0.18 200 3.2 –0.20 245 –0.7 0.19 
156 –5.4 –0.28 201 3.4 0.10 346 –2.5 –0.89 
157 –7.4 –0.07 202 2.9 –0.60 247 –3.9 –0.12 
158 –5.0 1.09 203 0.9 –0.48 248 –3.2 0.63 
159 –2.8 0.78 204 0.8 0.28 249 –1.7 –0.02 
160 –1.5 –0.21 205 1.1 –0.54 250 –3.1 –0.46 
161 –3.1 –0.20 206 –1.6 –0.94 251 –3.0 0.49 
162 –2.2 0.28 207 –2.7 0.06 252 –1.2 0.63 
163 –2.8 –0.75 208 –2.3 –0.21 253 –0.5 –0.15 
164 –4.9 –0.19 209 –3.6 –0.13 254 –1.1 0.11 
165 –3.7 0.46 210 –2.5 0.56 255 0.2 0.56 
166 –3.6 –0.38 211 –1.9 –0.39 256 0.7 –0.40 
167 –4.8 –0.12 212 –3.6 –0.13 257 –1.0 –0.29 
168 –3.8 0.64 213 –2.3 0.42 258 –0.3 0.43 
169 –2.4 0.22 214 –2.4 –0.19 259 0.3 –0.05 
170 –2.6 0.00 215 –3.2 –0.66 260 0.1 0.36 
171 –2.4 –0.19 216 –5.1 –0.22 261 2.0 0.48 
172 –3.5 –0.32 217 –4.6 –0.11 262 2.0 –0.17 
173 –3.4 0.36 218 –6.2 –0.71 263 2.0 0.29 
174 –1.8 0.88 219 –7.2 0.20 264 3.2 0.33 
175 0.1 –0.03 220 –5.6 0.56 265 3.1 –0.51 
176 –1.3 –0.13 221 –5.3 –0.38 266 1.9 0.30 
177 0.0 0.51 222 –6.3 0.29 267 4.3 0.69 
178 0.7 0.30 223 –3.8 0.88 268 4.3 –0.36 
179 1.2 –0.40 224 –3.4 –0.71 269 3.3 –0.27 

(continued on next page) 
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Appendix (continued) 
Angle ε μm ε′ × 10–3 Angle ε μm ε′ × 10–3 Angle ε μm ε′ × 10–3 

270 3.3 0.28 300 1.0 0.53 330 –5.4 –0.13 
271 4.1 0.00 301 2.7 –0.08 331 –4.8 0.57 
272 3.2 –0.44 302 0.8 –0.31 332 –3.1 0.42 
273 2.7 0.33 303 1.9 0.64 333 –3.4 –0.67 
274 4.3 0.31 304 2.5 –0.49 334 –5.4 –0.19 
275 4.2 0.07 305 –0.1 0.89 335 –4.4 0.25 
276 5.5 0.83 306 –1.6 –0.67 336 –5.1 –0.68 
277 7.8 0.58 307 –3.6 –0.41 337 –6.7 –0.03 
278 8.5 0.30 308 –3.3 0.39 338 –5.3 0.55 
279 10.5 1.26 309 –2.0 0.64 339 –5.0 –0.36 
280 16.3 4.34 310 –0.4 0.42 340 –6.5 –0.34 
281 25.0 –3.04 311 –0.2 –0.35 341 –6.3 0.36 
282 4.5 –5.35 312 –1.7 –0.40 342 –5.7 –0.29 
283 3.4 0.16 313 –1.9 0.02 343 –7.6 –0.63 
284 0.8 –0.36 314 –2.3 –0.54 344 –8.1 0.17 
285 2.6 0.97 315 –4.2 –0.34 345 –7.3 0.13 
286 3.9 –0.30 316 –4.0 –0.13 346 –7.6 –0.18 
287 1.8 –0.55 317 –4.6 0.40 347 –7.8 0.13 
288 2.3 0.72 318 –1.9 0.95 348 –7.1 0.33 
289 4.0 0.00 319 –0.6 0.23 349 –6.7 –0.34 
290 2.7 –0.07 320 –0.5 –0.17 350 –8.2 –0.24 
291 3.8 0.02 321 –1.2 –0.30 351 –7.6 0.34 
292 2.4 –0.45 322 –1.4 0.48 352 –7.6 –0.59 
293 –2.5 0.38 323 0.2 –0.17 353 –9.5 0.09 
294 3.7 0.34 324 –2.1 –0.62 354 –7.1 0.78 
295 3.5 –0.65 325 –2.1 0.13 355 –6.9 –0.48 
296 1.5 –0.25 326 –2.4 –0.35 356 –8.1 0.23 
297 2.5 0.52 327 –4.2 –1.23 357 –5.8 0.74 
298 2.9 –0.34 328 –7.2 –0.10 358 –5.3 –0.06 
299 1.2 –0.57 329 –5.1 0.54 359 –5.6 –0.32 

We want to find the cubic curve that interpolates between the sample points at 3 and 25°. The Hermite form 
of the solution presumes a curve with endpoints at u = 0 and u = 1. We need to scale the derivatives by the 
distance between the sample points to correct for this parametrization. The spacing between sample points 
for this dataset is 2.6 mm. Maintaining units of micrometers throughout, we multiply both error derivatives 
by 57.2 × 103. The cubic coefficients can then be found using: 
                                      a0 = ε(3)                                                                                       =      11.0 
                                      a1 = (57.2 × 103)ε′(3)                                                                    =      80.1 

a2 = –3ε(3) + 3ε(25) – 2(57.2 × 103)ε′(3) – (57.2 × 103)ε′(25)     = –172.1 
                                      a3 = 2ε(3) – 2ε(25) + (57.2 × 103)ε′(3) + (57.2 × 103)ε′(1)           =     84.1 

So, 

                                     ε(u) = 11.0 + 80.1 u – 172.1 u2 + 84.1 u3        0 ≤ u ≤ 1 

is the interpolating curve between the sample points at 3 and 25°. 
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