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for dry biomass yield and 14 yield-component traits, in trials grown for 3 years.
Notably, dry biomass yield of four Miscanthus accessions exceeded 80 Mg/ha in
Zhuji, China, approaching the highest observed for any land plant. Additionally, six
M. sinensis in Sapporo, Japan and one in Leamington, Canada also yielded more than
the triploid M. Xgiganteus ‘1993-1780" control, with values exceeding 20 Mg/ha.
Diploid M. Xgiganteus was the best-yielding group at the northern sites. Genotype-
by-environment interactions were modest among the five northern trial sites but large
between Zhuji, and the northern sites. M. sinensis accessions typically yielded best at

trial sites with latitudes similar to collection sites, although broad adaptation was
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1 | INTRODUCTION

Miscanthus is a C4 perennial grass native to East Asia, and
a promising biomass crop for many applications, including
lignocellulosic ethanol production, gasification or direct
combustion to generate electricity or heat, producing paper,
building materials, biodegradable plastic, animal bedding,
mulch, and livestock feed (Acikel, 2011; Clifton-Brown &
Lewandowski, 2002; Heaton, Clifton-Brown, Voigt, Jones,
& Long, 2004; Johnson, Tucker, Barnes, & Kirwan, 2005;
Sacks, Juvik, Lin, Stewart, & Yamada, 2013). All of these
applications depend on high-yielding cultivars in order to
be commercially viable. Nearly all Miscanthus biomass pro-
duction currently uses a single high-yielding clone of M.
xgiganteus (Glowacka et al., 2015), despite its insufficient
winter hardiness in USDA zone 5b environments and colder
(<—26.1°C average annual minimum air temperature; Dong,
Green et al., 2018), as well as the risk of disease and pest sus-
ceptibility associated with monoculture (Ahonsi et al., 2010;
Arnoult & Brancourt-Hulmel, 2015; Bradshaw, Prasifka,
Steffey, & Gray, 2010; Clifton-Brown & Lewandowski,
2002; Prasifka et al., 2009). We refer to this clone as M.
xgiganteus ‘1993-1780° after the accession number of the
type specimen at Kew Royal Botanic Gardens Herbarium
(Hodkinson & Renvoize, 2001); it is also commonly referred
to as M. Xgiganteus ‘Illinois’ in North America (Glowacka et
al., 2015). Although M. xgiganteus ‘1993-1780’ is a triploid,
the species name can refer to hybrids of any ploidy between
Miscanthus sinensis and Miscanthus sacchariflorus (McNeill
et al., 2012; Sacks et al., 2013).

Of all temperate-adapted Miscanthus species, M. sinen-
sis has the broadest native range (Clifton-Brown, Chiang,
& Hodkinson, 2008; Dwiyanti, Stewart, & Yamada, 2013;
Sacks et al., 2013), suggesting high genetic diversity for en-
vironmental adaptation. In previous population genetics stud-
ies, we identified six major genetic groups of M. sinensis,
with three in China, one in China and Korea, and two in Japan
(Clark et al., 2014), with the South Japan (S Japan) group
being further subdivided into S Japan and Central Japan in a
subsequent study (Clark et al., 2015). Ornamental M. sinensis

observed for accessions from southern Japan. Genotypic heritabilities for third year
yields ranged from 0.71 to 0.88 within locations. Compressed circumference was the
best predictor of yield. These results establish a baseline of data for initiating selection

to improve biomass yield of M. sinensis and M. Xgiganteus in a diverse set of relevant

biomass yield, genotype-by-environment effects, germplasm, Miscanthus Xgiganteus, Miscanthus

sinensis, multi-location field trials

cultivars represent a narrow portion of the genetic diversity
of the species, originating almost exclusively from two small
regions in southern Japan with subsequent introgression from
diploid M. xgiganteus ‘Purpurascens’ in about half the cul-
tivars currently marketed (Clark et al., 2014, 2015, 2018).
US-naturalized M. sinensis were derived from non-admixed
ornamentals (Clark et al., 2014, 2015). Despite this narrow
genetic base, and artificial selection for short stature (Kaiser,
Clark, Juvik, Voigt, & Sacks, 2015), ornamental M. sinen-
sis have been used in the breeding of new biomass cultivars
simply due to their availability in Europe and North America
(Clifton-Brown et al., 2008). However, it is also widely rec-
ognized that better yields can be obtained with a broader
germplasm base than that represented by the ornamental cul-
tivars (Clark et al., 2014; Clifton-Brown et al., 2001, 2008;
Jensen et al., 2011). The selection of high-yielding M. sin-
ensis clones derived from crosses indicates the potential for
yield improvement through breeding (Arnoult & Brancourt-
Hulmel, 2015; Clifton-Brown et al., 2001).

To date, few studies have evaluated large, diverse germ-
plasm panels of M. sinensis for yield, and these field trials
were conducted only at single locations (Nie et al., 2016;
Slavov et al., 2014; Zhao et al., 2013). In contrast to the sin-
gle-location studies, previous multi-location trials of M. sin-
ensis have included relatively few genotypes, yet consistently
found significant genotype-by-environment (G X E) effects
on yield (Arnoult & Brancourt-Hulmel, 2015; Clifton-Brown
et al., 2001; Kaiser et al., 2015; Yan et al., 2012).

In the current study, we present field evaluations of the
largest and most genetically diverse panel of M. sinensis
evaluated to date, with phenotypic data from three field trial
locations in East Asia and three in North America. In partic-
ular, we phenotyped 569 M. sinensis genotypes previously
characterized for population structure (Clark et al., 2014),
representing six genetic groups from nearly the entirety of
the species’ natural geographic range. Biomass yield and
14 yield-component traits of M. sinensis were studied to (a)
determine the range of genotypic diversity for yield in this
species, and how performance varied with location of origin
and genetic group, (b) quantify G X E effects and how well
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performance at one trial site predicted performance at other
trial sites, and (c) identify yield-component traits that are
strong predictors of yield.

2 | MATERIALS AND METHODS

2.1 | Plant materials and field trials

In total, 589 Miscanthus accessions were studied (Data S1
and S2). We previously assigned the 566 M. sinensis and
three M. floridulus genotypes evaluated in the current study
to one of the eight genetic groups (hereafter referred to as
M. sinensis for a total of 569 genotypes) (Clark et al., 2014):
77 Ornamental, 38 US naturalized, 28 S Japan, 84 N Japan,
157 Korea/N China, 25 Sichuan, 75 Yangtze-Qinling, and 85
SE China/tropical. Due to the small number of individuals in
the S Japan group, for the purpose of this study we did not
divide it into the S Japan and Central Japan groups identified
by Clark et al. (2015). Six of the genetic groups for M. sin-
ensis were identified previously via discriminant analysis of
principle components (Jombart, Devillard, & Balloux, 2010)
and by the software Structure (Falush, Stephens, & Pritchard,
2003); the ornamental group and the US naturalized group
were found to be subsets of the S Japan group but we label
them independently to denote their unique provenances (Clark
etal., 2014, 2015, 2018). Moreover, about half the accessions
in the ornamental group had most of their ancestry from M.
sinensis and <30% ancestry from diploid M. sacchariflorus,
presumably the result of plant breeding efforts to introgress
greater winter hardiness via crosses with diploid M. Xgigan-
teus ‘Purpurascens’, while the other half were pure M. sinen-
sis (Clark et al., 2014, 2015, 2018). Collection locations of
all the natural and naturalized accessions are listed in Data S1
and those collected in Asia are shown in Figure 1. In addition
to the M. sinensis accessions, we phenotyped seven diploid
and three tetraploid M. sacchariflorus accessions from Korea
and China, eight natural diploid M. Xgiganteus from China,
the ornamental diploid M. Xgiganteus ‘Purpurascens’, and
the biomass cultivar triploid M. Xgiganteus ‘1993-1780". All
accessions were maintained as clonal stock plants in pots at a
greenhouse in Ontario, Canada and vegetatively propagated.
Ramets of each accession were distributed to each field trial
location during January—March of 2012.

In the early summer of 2012, field trials were planted at five
northern locations (Sapporo, Japan by Hokkaido University
(HU); Leamington, Ontario, Canada by New Energy Farms
(NEF); Fort Collins, Colorado, USA by Colorado State
University (CSU); Urbana, Illinois, USA by the University
of Illinois (UI); and Chuncheon, Korea by Kangwon National
University (KNU)); plus one southern location (Zhuji, China
by Zhejiang University (ZJU)) (Table 1). Except for CSU,
which has an arid climate, supplemental irrigation was
only provided in year 1 to facilitate establishment. Nitrogen

=B|OENERGY.! ;ggg—Wl LEY
fertilizer was applied to the field trials in the spring in the
following amounts: 100 kg/ha at HU, NEF, and UI each year;
none at CSU; 80 kg/ha at KNU each year; and 14 kg/ha at
ZJU in the first year only. Not all accessions were successfully
established at all six locations (Table 1 and Data S1). Further,
at the two locations in the US we were limited largely to or-
namental and US naturalized accessions due to quarantine
limitations on importation of Miscanthus from Asia (Table 1
and Data S1). In spring of 2013, an additional planting was
made at UI to include plant materials that had been newly
released from USDA quarantine. Field trials at each site had
from three to four replications in a randomized complete
block design with single-plant plots equally spaced within
and between rows on 1.5 m centers (Table 1). Harvesting was
conducted in late autumn or early winter, after dormancy or
the first killing freeze led to dry-down, with stems being cut
15-20 cm from the ground. To determine dry biomass yield,
at some sites the entire plant was oven dried before weighing,
while at other sites the fresh weight was measured, then a
subsample was weighed before and after oven drying in order
to estimate dry weight of the whole plant.

2.2 | Phenotypic data collection and analyses

Biomass yield (dry weight) and 14 yield-component traits
were measured in the second and third year after planting at
each trial location (Table 2). Additionally, phenotypic data
were collected in the fourth year at KNU for all traits and at
HU for biomass yield only. Only data on establishment were
taken during the first year because year 1 yields of Miscanthus
are not expected to be strongly associated with yield in years 2
and 3 but data from years 2 and 3 are typically strongly corre-
lated (Clifton-Brown et al., 2001). At UI, year 2 was 2013 for
the trial planted in 2012, and 2014 for the trial planted in 2013.
To estimate dry biomass yield per area, yield per plant was
divided by the plot area (2.25 m?) and expressed as Mg/ha. For
plants on which basal circumference exceeded the square plot
perimeter (mostly M. sacchariflorus accessions in years 3 and
4), we instead estimated plot area from basal circumference,
assuming a circular footprint. Data on flowering time and win-
ter hardiness were measured but are not presented here.

For each trait X year combination, phenotypic values
were transformed using the Box—Cox method (Box & Cox,
1964) as implemented in the R package MASS (Venables &
Ripley, 2002) in order to make the data approximate a nor-
mal distribution. Linear models for determining optimum
lambda values for Box—Cox (where the transformation to be
performed is log(x) if A = 0, and (xx — 1)/\ otherwise) were
fit in R with field trial location, genotype, and their interac-
tion as fixed effects, using the 569 M. sinensis individuals
from the field trial. Lambda values ranging from —2 to 2,
at intervals of 0.1, were tested. Least square means (LS
means) were estimated for all entries using the R package



CLARK ET AL.

JBAL CHANGE BIOLOGY

="BIOENERGY

(a) Field trial locations (b) Actual and predicted phenotypic values mapped to collection locations
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Variation in year 3 yield and yield-component traits among Miscanthus accessions and genetic groups. (a) Field trial locations in

Asia and North America. (b) Least-squared means of M. sinensis genotypes in the study for dry biomass yield (Mg/ha; 10 Mg/ha = 2,250 g/plant),
compressed circumference (cm), and culm length (cm), at five northern locations (HU, NEF, Ul, CSU, and KNU; 37.9—43.1° N; left column) or
one southern location (ZJU; 29.8° N; right column) in year 3 mapped to the collection locations in Asia. Circle diameters are proportional to trait

values, as shown in the legend for each plot. Colors indicate predicted trait values at UI (left column) and ZJU (right column) from bioclimatic

variables using linear modeling (Equation 7). The maximum predicted value within the geographic range shown is indicated at the bottom of the

color scale. Note that in the northern field trial locations, accessions collected below 30° N tended to perform poorly relative to accessions from

further north, and that few of the southeast China accessions survived in the northern trial locations. In contrast, the accessions with the most

southern provenance typically were the best performers at the southern field trial location. Notable exceptions to both trends can also be seen. (c)

Boxplots of dry biomass yield. Each boxplot represents one field trial location, with latitude indicated. Genotypes are shown by genetic groups.

Dashed horizontal lines indicate yield of the M. Xgiganteus ‘1993-1780 control, and solid lines indicate mean yield across all M. sinensis. Boxes

span from the first to third quartile for each group. Whiskers extend to the minimum and maximum values, or to the first and third quartile +1.5

times the box length, respectively, whichever is shorter. Points indicate genotypes with values outside the range spanned by the whiskers. The

number of genotypes with data for each genetic group in each location is indicated in parentheses after the group number. Msa = M. sacchariflorus;

Mxg = M. Xgiganteus; all other groups are M. sinensis

Analyses of variance (ANOVA) were conducted with
random effects models using the R package Ilme4 (Bates,
Michler, Bolker, & Walker, 2015) to estimate variance com-
ponents for M. sinensis only. Box—Cox transformed pheno-
typic values (Y) were used for all models. Models were fit
for each location X trait X year combination with replication
(R) and genotype (G) as random effects. The model is given
below, where b is the intercept, f is a vector of coefficients,
and ¢ is random error.

Y=b+p,R+p,G+e (1)

Additionally, multi-location models were fit for all lo-
cations and for the five northern locations. Multi-location
models were only fitted when data for a given trait X year
combination were available for all locations in a given com-
bination of locations. Replication within location (L), geno-
type, and genotype X location, and location were included as
random effects in the multi-site models:

Y=b+p,RL+B,G+B,GL+p,L+e )

Genotypic (broad-sense) heritabilities were estimated as:

2
2 oG
H A3)

og+0g, /n+02/ng

where 020 is the variance attributed to genotype (i.e., acces-
sion), 02GL is the variance attributable to genotype X location
interaction (omitted for single-site models), 026 is the residual
variance, n; is the number of field trial locations, and 7 is
the total number of replications across all field trial locations
(Holland, Nyquist, & Cervantes-Martinez, 2002).

Genetic correlations between pairs of locations were es-
timated as:

O-G(site 1xsite2)

R R 05
(O'G(snen X0 site2) )

rg=

“)

Where 660 1xsire2) 18 the covariance of genotype means be-
tween locations and azc(me]) and GZG(siteZ) are the components
of variance among genotypes at locations 1 and 2, respec-
tively (Burdon, 1977).

Genetic correlations between traits measured on the same
M. sinensis plants were estimated as:

O G(trait] xtrait2)

* _
Fo=

®

05
2 2
(O-G(traitl) X0 Gtrait2) )

WNere 6 irrxirair2) 18 the genotypic component of covariance
for traits 1 and 2 [calculated as ((rZG(,mi,]Hm,»,Z) —UZG(,mM )
GZG(,m[[Z ))/2], and O'ZG(,M, 1y and UZG(,W-Q ) are the genotypic vari-
ance components for traits 1 and 2, respectively (see equation
9 of Howe, Saruul, Davis, & Chen, 2000). The ‘traitl+trait2’
indicates a calculated trait that is the sum the values for both
traits at each field plot.

An additional random effects ANOVA was conducted
on year 3 dry biomass yield data to estimate variance com-
ponents for location, replication, genetic group (D), genetic
group X location, genotype within genetic group, and geno-
type X location. In order to obtain significance estimates to
test hypotheses that yield was dependent on these effects,
this ANOVA was conducted in SAS 9.4 using the MIXED
procedure.

Y =b+ B, L+ p,RL+ 3D+ f, DL+ fsGD + f;GDL+£ (6)

To predict performance in a given environment based
on provenance of M. sinensis germplasm, linear models
were fit for dry biomass yield, compressed circumfer-
ence, and culm length in year 3 based on the ‘universal
response function’ method of Wang, O'Neill, and Aitken
(2010). Bioclimatic data were obtained from WorldClim v2
(Fick & Hijmans, 2017), including mean annual tempera-
ture (BIOI), maximum temperature of the warmest month
(BIOS), annual precipitation (BIO12), and precipitation
of the warmest quarter (BIO18). Minimum temperature of
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the coldest month (BIO6) was initially included, but was
dropped from the model for not having a significant effect
when BIO1 and BIOS were included. Because latitude is
known to influence Miscanthus yields via flowering time
(Clifton-Brown et al., 2001; Jensen et al., 2011), latitude
was also included in the model. For each of the five inde-
pendent variables (four bioclimatic variables plus latitude),
the second degree polynomial of the value at the germplasm
collection location was included, as well as the value at the
collection location multiplied by the value at the field trial
location. Effects due to field trial location alone were omit-
ted from the model because they resulted in negative yield
predictions, likely because field trial locations differed
in terms of management as well as climate. Models were
run across all individual plots, with Box—Cox-transformed
phenotypes as dependent variables. The models were then
used to map predicted phenotypic values at Ul and ZJU
for hypothetical collection sites at 0.1 degree (6 min) inter-
vals across East Asia. The equation for the models is given
below, where Y is a Box—Cox transformed phenotype, b is
a model coefficient, ¢ is random error, i is the collection
location (provenance) of germplasm, j is the field location,
BIO1, BIOS, BIO12, and BIO18 are the bioclimatic vari-
ables described above, and Lat is latitude.

Y;=by+b,BIO1,+b,BIO1} +b;BIO1,BIO1,+b,BIOS,
+bsBIOS? +bgBIO5,BIOS; +b;BIO12,+ bgBIO12?  (7)
+byBIO12,BI012;+b,,BIO18,+ b, BIO18;
+b,BIO18,BIO18,+b;Lat; +by,Lat; +bsLat,Lat; + &

All data and code are available in the Illinois Data Bank,
https://doi.org/10.13012/B2IDB-0790815_V2.

3 | RESULTS

3.1 | Yield performance

The commercially important biomass cultivar control, trip-
loid M. Xgiganteus ‘1993-1780’, typically yielded more at
the northern trial sites (LS means for year 3 dry biomass
yields were 19.7, 18.7, 15.2, and 20.4 Mg/ha at HU, NEF,
CSU and Ul, respectively; Figure 1 and Table 3) than at
the southern site (3.8 Mg/ha at ZJU), though performance
at KNU was also low (4.2 Mg/ha) although compressed
circumference and culm length at KNU were similar to
those at other northern sites (Data S2). In comparison to
the northern locations in the current study, prior studies re-
ported similar third year yields for triploid M. Xgiganteus
of 13.7-37.3 Mg/ha in IL, USA (Arundale et al., 2014;
Heaton, Dohleman, & Long, 2008; Kaiser et al., 2015)
and 13.8-37.8 Mg/ha in England, Germany and Portugal
(Clifton-Brown et al., 2001), though the prior trials were
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planted at higher density (1-2 plants m™?) than the current
study (1 plant 2.25 m™?). Thus, data from this and prior
studies indicate that small and large plots provide similar
estimates of Miscanthus biomass yield when expressed in
Mg/ha (Dong, Liu et al., 2018; Kaiser et al., 2015; Zhao et
al., 2013). Consistent with the poor performance of M. Xgi-
ganteus ‘1993-1780 at ZJU, we have previously observed
this genotype to have low yields at similar latitudes in the
southern coastal plain of the US due primarily to early flow-
ering (e.g., in August, unpublished).

Among the M. sinensis genotypes, large and highly sig-
nificant differences in yield and yield components were ob-
served at each location (Tables 4 and 5). For example, over
all trial sites, LS means for M. sinensis genotypes in year
3 ranged from 0.004-119 Mg/ha for dry biomass yield,
4-708 culms per plant, 2-241 cm for compressed circumfer-
ence, and 28-399 cm for culm length (Data S1). Nineteen
M. sinensis genotypes were observed to have year 3 yields
exceeding 20 Mg/ha at HU or NEF, more than the highest-
producing planting of the M. Xgiganteus ‘1993-1780° con-
trol in this study, and/or 50 Mg/ha at ZJU (Table 3). Three
M. sinensis genotypes at HU and one at NEF exceeded 25 Mg/
ha, and four exceeded 80 Mg/ha at ZJU (Table 3). Average
yield of M. sinensis in year 3 at the southern trial location,
ZJU, was 15.4 Mg/ha, which was 2-5-fold greater than at the
five northern locations (Figure 1, Table 4). Location main
effects for year 3 yield of M. sinensis accounted for 23% of
the total variation if all trial locations were included in the
ANOVA and 20% for just the northern trial locations (Table 5,
Equation 6). However, genotype X location interactions were
modest among the five northern trial sites (37.9-43.1° N) for
year 3 yield but large between ZJU (29.8°N) and the northern
sites (Table 5). The combined genetic group X location and
genotype within genetic group X location effects were only
10% of the total variation for yield in the five northern locations
but were 32% of the total variation when ZJU was included
in the analysis (Table 5). Similarly, in years 2 and 3, genetic
correlations for yield between pairs of locations were always
negligible between ZJU and northern locations (except for a
moderately negative correlation between UI and ZJU in year
2) but generally much higher among northern locations (Table
6, Equation 4). Lower genetic correlations for yield among the
northern trial locations in year 3 relative to year 2 may have
been due to drought stress at HU in year 3 and an unusually
cold winter prior to year 3 at Ul that caused winter damage in
some genotypes (Table 1 and Figure S1). Genetic correlations
among sites tended to be high (>0.7) for culm node number,
culm dry weight, and diameter of basal internode (Data S3).

The M. sinensis genotypes that yielded best at a given trial
location typically originated from a latitude that was similar
to or more southern by ~5° than the trial location, though
there were notable exceptions (Figure 1). Additionally, the
M. sinensis genotypes that had the longest culms at a given
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TABLE 2 Yield and yield-component traits measured in multi-location field trials of Miscanthus sinensis

Description” and notes

Single-plant plots on 1.5 m centers were harvested in late autumn by cutting the stems
15—-20 cm above the soil surface. Samples were dried at 60°C until constant weight.
Estimates are reported per area based on plot dimensions (2.25 m?) or per plant.

Stems were compressed at the middle height of the plant such that all the culms were in
close contact without air gaps; then the circumference of the compressed bundle was

Circumference of the base of the plant, without compression.

Compressed circumference divided by basal circumference, to estimate the proportion
of the plant's footprint filled by stems.

Length of the tallest culm in late autumn, measured from the base of the stem to the tip
of the panicle if present, otherwise to the highest part of the highest leaf.

Number of nodes on the tallest culm of each plant in late autumn.

Culm length divided by the number of nodes for the tallest culm of each plant in late

Mass of the tallest culm of each plant in late autumn, after removal of leaves and drying
at 60°C until constant weight achieved. (Not recorded at KNU in year 3 or 4 or at

Estimated from culm length, culm diameter at first internode, and culm diameter at last
internode, assuming the stem was shaped like the frustum of a cone:CmL * &t *
[(DBI/2)? + (DBI/2)*(DTI/2) + (DTI/2)*/3

Culm dry weight divided by culm volume. (Not estimated for KNU in year 3 or 4 or at
Measured on the tallest culm of each plant in late autumn.

Measured on the tallest culm of each plant in late autumn.

Counted for each plant.

Number of reproductive culms divided by the total number of culms. (Not estimated at
HU in year 2 or at KNU.)

Trait Abbreviation
Dry biomass yield (g/plant or Yld
Mg/ha)
Compressed circumference CC
(cm)
measured.
Basal circumference (cm) BC
Compressed circumference/ CC/BC
basal circumference
Culm length (cm) CmL
Culm node number CmNdN
Internode length (cm) IntL
autumn.
Culm dry weight (g) CmDW
ZJU.)
Culm volume (cm?) CmV
Culm density (g cm ™) CmDW/V
ZJU.)
Diameter of basal internode DBI
(mm)
Diameter of topmost internode ~ DTI
(mm)
Total number of culms TCmN
Proportion of reproductive RCmN/TCmN
culms
Culms per footprint (# cm™>) TCmN/A

The total number of culms divided by the area of the plant's footprint. The footprint area
was estimated from the basal circumference, assuming a circular base.

All traits were measured at the end of the growing season.

trial location were typically from within ~10° south of the
testing site (especially the Yangtze-Qinling group for the
northern trial locations, and the Sichuan and SE China/trop-
ical groups for ZJU; Figure 1). One of the largest excep-
tions to this geographic pattern was PMS-496 from 41.9° N
in northeast China (Korean/N China genetic group), which
yielded 86.4 Mg/ha in year 3 at ZJU, yet most accessions
from this northern group yielded poorly at ZJU (Figure
1, Table 3). Linear modeling using bioclimatic variables
(Equation 7) predicted that the highest yielding M. sinensis
for temperate regions could be collected at high elevations
from ~24-32° N in China (e.g., PMS-014; Table 3) fol-
lowed by S Japan, whereas the highest yielding M. sinensis
for subtropical regions could be collected from the Ryukyu
Islands, Taiwan and the Philippines (primarily due to large
predicted culm length), and to a lesser extent coastal south-
east China (Figure 1b and Figure S2). Notably, our model

predicted the presence of M. sinensis (yields greater than
zero) along coastal southeast Russia, where it has been col-
lected recently (Hodkinson et al., 2016), despite our study
lacking genotypes of that provenance. Model terms and co-
efficients are provided in Table S1. Among the M. sinensis
genetic groups, the S Japan group was especially notable
for having produced relatively high and stable yields over
all trial locations (Figure 1). For example, year 3 yields of
JMO0232.001 from the Hiruzen highlands in southwestern
Honshu were 21.8, 11.4, and 35.6 Mg/ha at HU, KNU, and
ZJU, respectively (Table 3). However, a comparison of all
genetic groups over all species (not just within M. sinen-
sis) revealed that the diploid M. Xgiganteus genotypes col-
lected in China from 29° to 37° N were the best-yielding
entries at the northern trial sites HU, NEF and KNU, and
some of these genotypes out-yielded the triploid M. xgigan-
teus ‘1993-1780° control where it performed best, at NEF
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TABLE 5 Partitioning of variance for dry biomass yield (Mg/ha) in year three among field trial locations, genetic group, genotypes within

groups and their interactions for 569 Miscanthus sinensis genotypes (Equation 6)

All locations ZJU excluded
Prop. total Prop. total

Source df Variance variance P df Variance variance P
Location 5 1.01 0.23 0.0905 4 0.64 0.20 0.0915
Rep within location 15 0.58 0.01 0.0108 13 0.06 0.02 0.0157
Genetic group 7 0.05 0.01 0.3901 7 0.42 0.13 0.0549
Genetic group X location 25 0.93 0.20 0.0008 18 0.05 0.01 0.0636
Genotype within genetic 548 0.70 0.15 <0.0001 489 0.57 0.18 <0.0001

group
Genotype within genetic 902 0.56 0.12 <0.0001 690 0.29 0.09 <0.0001

group X location
Residual 1.33 0.28 <0.0001 1.21 0.37 <0.0001

Note. All effects were treated as random. Data were transformed by the Box—Cox method before fitting the model.
The field trial locations were HU = Hokkaido University; NEF = New Energy Farms; CSU = Colorado State University; UI = University of Illinois at Urbana-
Champaign; KNU = Kangwon National University; ZJU = Zhejiang University. df = degrees of freedom, estimated using the Satterthwaite method for fixed effects

model; all other estimates based on random effects model. P = significance.

and HU (Figure 1 and Figure S3, Table 3, Data S2). The
diploid M. Xgiganteus genotypes that outperformed triploid
M. xgiganteus ‘1993-1780° also had compressed circum-
ferences exceeding that of M. sinensis and M. Xgiganteus
‘1993-1780’ across all sites where they were planted (Figure
S3). Culm lengths of the diploid M. Xgiganteus genotypes,
however, were similar to those of M. sinensis (Figure S3).

Though some diploid M. Xgiganteus hybrids had high
yields at ZJU, the best performing groups at this south-
ern trial location were the M. sinensis SE China/tropical,
Sichuan basin, and S Japan (Figure 1, Table 3). Genotypes
in the SE China/tropical and Sichuan basin groups were also
especially tall at ZJU, with culm lengths of eight genotypes
between 3.5 and 4.0 m (Figure 1, Figures S3 and S4; Data
S1 and S2). In contrast to the ZJU results, relatively few
genotypes of the M. sinensis SE China/tropical group and
Sichuan basin group survived in the northern trial locations
and most that did survive in the north performed poorly
there. However at HU (43.1° N), PMS-014 was the second
highest yielding M. sinensis genotype in year 3 (25.4 Mg/ha)
and it was present in three replicates, which was exceptional
given that it originated from the Sichuan group (29.7° N);
PMS-014 also yielded well at ZJU, with 40.2 Mg/ha but it
did not survive at NEF (Table 3). Similarly, PI423566 from
the SE China/tropical group was the highest yielding M. sin-
ensis entry at NEF with 28.2 Mg/ha in year 3, essentially in
a tie for top yield with two diploid M. Xgiganteus hybrids
(Table 3).

Among the ornamental cultivars, there was a significant
negative association between year 3 yield and the proportion
of ancestry from M. sacchariflorus (via diploid M. Xgigan-
teus ‘Purpurascens’) at HU but not at the other trial loca-
tions (Figure S5a); however, a similar negative association

was observed at CSU, but too few non-hybrid individuals
survived for the association to be significant (Figure S5a).
Similarly, there was a negative association among the orna-
mental cultivars between the proportion of ancestry from M.
sacchariflorus and culm length at HU, NEF, CSU, UI, and
KNU (Figure S5b). In contrast, the total number of culms had
a significant positive association with proportion of M. sac-
chariflorus ancestry at NEF, KNU, and UI for the ornamental
cultivars (Figure S5c¢). Therefore, M. sacchariflorus ancestry
did not affect yield at NEF, UI, or KNU because although
hybrid ornamentals had shorter culms than the non-hybrids,
they had more of them. At HU and CSU, hybrid and non-
hybrid ornamental genotypes had similar numbers of culms,
but because culms of hybrid ornamentals were shorter, they
had lower yields than the non-hybrids. Less water availability
at HU in year 3 and CSU in general (Figure S1) may have
preferentially reduced the number of culms in the hybrids
with greatest M. sacchariflorus ancestry, as in nature this
species is typically found in riparian environments. A simi-
lar genotype-by-environment effect observed by Kaiser et al.
(2015) was also associated with drought at a previous trial in
southern Illinois, USA where hybrid ornamentals performed
poorly.

3.2 | Heritabilities, and genetic correlations
between years and traits

Genotypic heritabilities for most traits and locations were
high, suggesting strong potential for improvement via clonal
selection within M. sinensis (Table 7, Equation 3). For
example, genotypic heritabilities for yield among the trial
locations in year 2 ranged from 0.49 at KNU to 0.85 at ZJU,
and in year 3 from 0.71 at HU to 0.88 at ZJU. Over all northern
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TABLE 6 Genetic correlations among five northern field trial
locations (HU, NEF, CSU, UI, and KNU; 37.9-43.1° N) and one
southern location (ZJU; 29.8° N) for dry biomass yield (Mg/ha) in
years two and three for Miscanthus sinensis accessions

HU NEF CSU Ul KNU 7JU
Year 2
HU 0.68 1.03 0.53 0.89 0.01
NEF 426 0.64 0.45 0.48 0.15
CSU 56 57 1.00 1.62
Ul 105 113 55 0.90 -0.47
KNU 187 183 46 74 —-0.03
ZJU 242 200 4 18 67
Year 3
HU 0.61 0.77 0.22 0.48 0.11
NEF 400 0.40 0.66 0.58 0.08
CSu 44 47 0.47 0.94
Ul 77 87 43 0.51
KNU 166 170 39 62 0.14
ZJU 192 197 4 10 62

Note. Genetic correlations are shown in the top halves of the matrices; lower
halves of the matrices indicate the number of individuals with yield data in com-
mon between each pair of sites. Correlation values are omitted for pairs of sites
with fewer than 15 individuals in common. Genetic correlation was estimated as
the genotypic covariance between two sites divided by the square root of the
product of the genetic variance at each site (Equation 5).

HU = Hokkaido University; NEF = New Energy Farms; CSU = Colorado State
University; Ul = University of Illinois at Urbana-Champaign; KNU = Kangwon
National University; ZJU = Zhejiang University.

trial sites, heritability for yield was 0.78 in year 2 and 0.84
in year 3 (Table 7). Genetic correlations between year 2 and
year 3 for each of the traits were moderate to strong (Table
8, Equation 5). For yield, genetic correlations between year
2 and year 3 ranged from 0.58 at Ul to 0.95 at ZJU, and were
0.76 across all five northern sites. Traits with consistently
strong genetic correlations between years 2 and 3 at each trial
site were: culm length, culm node number, internode length,
culm dry weight, culm volume, diameter of basal internode,
and diameter of topmost internode.

Genetic correlations between yield-component traits and
yield in year 3 were mostly moderate, with some exceptions
(Table 9, Equation 5). Among all yield component traits,
compressed circumference had the highest correlation with
yield, ranging, in year 3, from 0.91 at UI to >0.99 at KNU. In
comparison, year 3 genetic correlations between culm length
and yield ranged from 0.46 at NEF to 0.88 at ZJU, with 0.62
over all five northern trial sites. Mostly low or negligible year
3 genetic correlations with yield were observed for internode
length, total culm number, and the proportion of reproduc-
tive culms (RCmN/TCmN). Negligible to moderate negative
year 3 genetic correlations were observed between culms per
footprint (TCmN/A) and yield at each trial location.

="BIOENERGY =J

Genotypes with relatively many culms typically com-
pensated to varying degrees with thinner, less voluminous,
and lighter culms than genotypes with fewer culms (Data S4,
Equation 5). At the northern trial locations, culm basal and
topmost diameters, culm volume, and culm dry weights were
negatively correlated with the total number of culms in year 3
(Data S4). Genetic correlations in year 3 between total num-
ber of culms and diameter of topmost internode were negative
but weak at all locations (—0.02 at ZJU and from —0.27 at HU
to —0.40 at CSU for the northern trial locations). However,
for diameter of basal internode, year 3 genetic correlations
with total number of culms were strongly negative at CSU,
Ul, and KNU (-0.69, —0.72, and —0.80, respectively) and
weakly negative at HU and NEF (—0.38 and —0.44, respec-
tively). Year 3 genetic correlations between culm volume
and total number of culms were negative and weak at HU,
NEF, CSU, and UI (-0.28 to —0.49) and strongly negative at
KNU (-0.70). Similarly, year 3 genetic correlations between
culm dry weight and total number of culms were negative and
weak at HU, NEF, CSU, and UI (-0.28 to —0.47). However,
genetic correlations between total number of culms and culm
length were negligible. Moreover, negative year 3 genetic cor-
relations between basal circumference and number of culms
per footprint were strong at NEF (—0.73) and CSU (-0.80),
moderate at HU (—0.51) and UI (-0.42), but negligible at
KNU (-0.16) and ZJU (—0.33), indicating that genotypes
with larger basal circumferences typically had fewer stems
per area (more space between stems and/or thicker stems)
than those with smaller footprints (Data S4).

4 | DISCUSSION
4.1 | Yield potential, adaptation and
implications for breeding

A key finding of this study has been the identification of
which M. sinensis genetic groups yield the most, and in
which production environments. Given that the M. sinensis
genetic groups originate from known geographies (Figure 1,
Data S1), the results of the current study are expected to pro-
vide useful guidance to researchers regardless of whether their
M. sinensis genotypes of interest were included in the present
study. Moreover, our estimates of genotype-by-location inter-
actions and genetic correlations among trial locations for M.
sinensis yield indicated that information from one northern
trial location may be expected to be moderately informative
about performance at other northern trial locations (e.g., HU
and NEF), whereas performance of genotypes at southern trial
locations may be substantially different from and not well
predicted by performance at northern trial locations and vice
versa. Notably, we found that the S Japan M. sinensis group
had high and stable yields over the northern and southern trial
locations tested, and was the overall best M. sinensis group
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(Continued)

TABLE 7

Northern

All trial locations

trial locations

7ZJU

CSU UI KNU
0.84
0.64
0.74
0.91

NEF

HU

Trait

0.83
0.78
0.00
0.83

0.92
0.80
0.66
0.83

0.87
0.70
0.83
0.76

0.78
0.59

0.91
0.75
0.79
0.87

0.91
0.78
0.78
0.78

0.77
0.82
0.74
0.79

Diameter of topmost internode (mm)

Total number of culms

Proportion of reproductive culms

0.50

Culms per footprint (# cm™>)

Zhejiang University.

Kangwon National University; ZJU =

Colorado State University; Ul = University of Illinois at Urbana-Champaign; KNU

Hokkaido University; NEF = New Energy Farms; CSU =

Note. HU
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at the northern trial sites, which will be useful for breeding
biomass cultivars that have broad adaptation. Among all the
non-ornamental M. sinensis groups, the S Japan group had on
average the greatest total number of culms in year 3 at all loca-
tions tested (Data S2), although year 3 genetic correlations be-
tween total culm number and yield at each trial location were
mostly low (Table 9). In contrast to the wild accessions from
S Japan, the S Japan-derived ornamental group, which mostly
included individuals selected for short stature, was with few
exceptions not advantageous for yield (Figure 1), yet most
prior breeding of Miscanthus in the US and Europe has been
based on the ornamental germplasm. For subtropical environ-
ments (hardiness zone 8 or warmer) such as ZJU, we expect
that the M. sinensis SE China/tropical, Sichuan basin, and S
Japan groups will be the most promising source of M. sinensis
parents to breed improved biomass cultivars. To the best of
our knowledge, this is the first study to identify differences in
yield potential among M. sinensis genetic groups for different
production environments.

In addition to quantifying differences among M. sinensis
genetic groups for yield, we also identified specific geno-
types with outstanding yield potential for different produc-
tion environments. At HU and NEF, two of the northern trial
locations, where the biomass cultivar control triploid M. Xgi-
ganteus ‘1993-1780’ yielded well (~20 Mg/ha), we observed
six M. sinensis genotypes at HU and one at NEF with greater
yield than the control in year 3 (20.7-30.9 Mg/ha; Table 3);
such high yields have commercial potential. Similarly, high
yields (15.0-22.4 Mg/ha) have been previously reported for
M. sinensis genotypes that were collected from Honshu,
Japan and evaluated in Sweden, Denmark and Portugal
(Clifton-Brown et al., 2001), and from a Chinese germplasm
panel evaluated at a trial in Wuhan, China in which rare in-
dividuals had high year 2 yields (~20-38 Mg/ha) (Zhao et
al., 2013). However, at our southern trial location, ZJU,
dry biomass yields of the seven most productive M. sinen-
sis genotypes (63.7-119.1 Mg/ha; Table 3) were similar to
maximum experimental dry matter yields obtained for sug-
arcane in Australia, Hawaii, and Louisiana (Bischoff et al.,
2008; Tew & Cobill, 2008) and for the C, grass Echinochloa
polystachya growing in the Amazon floodplain with no water
or nutrient limitation, which has been suggested to represent
the maximum productivity of a C, crop (Piedade, Junk, &
Long, 1991). Such high yields in Miscanthus have not been
reported previously. The exceptionally high yields estimated
for some M. sinensis genotypes at ZJU were likely due to
a combination of highly conducive growing conditions and
small-plot bias. In small plots and especially single-plant
plots, a tall individual can lean out and take canopy space
from neighboring plots containing shorter plants, which
would otherwise be unavailable if the tall genotype had been
grown in a large monoculture. Additionally, the growing con-
ditions that favored high biomass production at ZJU included
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TABLE 8 Genetic correlations between years 2 and 3 for each trait measured on Miscanthus sinensis genotypes grown at five northern field
trial locations (HU, NEF, CSU, UI, and KNU; 37.9-43.1° N) or one southern location (ZJU; 29.8° N)

Trait HU NEF CSU

Dry biomass yield (g/ 0.85 0.69 0.77
plant)

Compressed circumfer-  0.69 0.53 0.65
ence (cm)

Basal circumference 0.67 0.67 0.89
(cm)

Compressed circumfer-  0.56 0.61 0.58
ence/basal
circumference

Culm length (cm) 0.90 0.85 0.91

Culm node number 0.84 0.97 1.02

Internode length (cm) 0.76 0.88 0.98

Culm dry weight (g) 0.91 0.90 1.19

Culm volume (cm3) 0.92 0.92 0.90

Culm density (g cm ™) 0.66 0.78 0.45

Diameter of basal 0.91 0.90 0.84
internode (mm)

Diameter of topmost 0.94 0.82 1.05
internode (mm)

Total number of culms 0.85 0.83 0.95

Proportion of reproduc- 0.93 0.55
tive culms

Culms per footprint 0.56 0.85 0.94

(#cm™)

Northern

trial All trial
Ul KNU 7JU locations locations
0.58 0.68 0.95 0.76 0.99
0.66 0.94 0.74 0.92 1.23
0.83 0.91 0.87 0.90 1.00
0.67 0.78 0.68 0.93 1.14
0.94 0.76 0.89 0.94 1.02
0.89 1.20 0.90 0.94 0.98
0.89 0.76 0.68 0.92 0.91
0.90 0.95 0.95
0.92 0.92 0.95 0.98 1.01
0.66 0.88 0.88
0.87 0.99 0.99 1.01 0.99
0.88 0.98 0.96 0.90 0.95
0.72 0.59 0.50 0.85 0.67
1.15 0.38 0.93 0.86
0.86 0.96 0.70 0.82 0.78

Note. All traits were Box—Cox transformed. Genetic correlation was estimated as the genetic covariance of two traits divided by the square root of the product of the

genetic variance of each trait (Equation 5).

HU = Hokkaido University; NEF = New Energy Farms; CSU = Colorado State University; UI = University of Illinois at Urbana-Champaign; KNU = Kangwon

National University; ZJU = Zhejiang University.

high soil fertility and a high water table associated with the
land having previously been in rice production, a growing
season of ~10 month duration with a large number of grow-
ing degree days (USDA hardiness zone 9; Table 1), and a
carefully managed trial. Thus, exceptionally high yields were
achieved for some entries at ZJU; however, determining ex-
actly how exceptional the yield potential is for each of these
entries will require further testing in large-plot trials. Overall,
the results of this study suggest that some Miscanthus geno-
types, when grown in a humid subtropical climate such as in
Zhejiang province China or the southern coastal plain of the
US, may be able to achieve dry matter yields similar to that
of sugarcane grown in the tropics.

For subtropical production environments where light to
moderate freezes are common, select Miscanthus genotypes
or intergeneric hybrids between Miscanthus and Saccharum
(i.e., miscanes), may have an adaptive advantage over sugar-
cane. In Tifton, GA (31.5° N), Knoll et al. (2013) observed

that two new energycane selections (Ho 06-9001 and Ho
06-9002) had maximum dry matter yields greater than 34 Mg/
ha, whereas maximum yields of the sugarcane cultivar con-
trols were less than 15 Mg/ha, highlighting the importance of
selecting biomass grass crops for adaptation to their potential
production environments. Moreover, top yields of the energy-
cane and sugarcane entries at Tifton were in year 2, followed
by a substantial decline in year 3 (Knoll et al., 2013), which
is typical for these short-lived (usually 3-5 years) crops. In
contrast, Miscanthus yields in our study increased each year
from years 2—4 (Data S2), which was consistent with previous
studies documenting that Miscanthus typically reaches a yield
plateau during years 25 and can remain highly productive for
more than 10 years (Heaton et al., 2004; Jones & Walsh, 2001;
Lewandowski, Clifton-Brown, Scurlock, & Huisman, 2000).
Thus, for subtropical environments, some Miscanthus germ-
plasm, such as the highest-yielding genotypes we observed at
ZJU, may have both short-term and long-term biomass yield
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TABLE 9 Genetic correlations between dry biomass yield and 14 yield-component traits measured in year 3 on Miscanthus sinensis
genotypes grown at five northern field trial locations (HU, NEF, CSU, U, and KNU; 37.9—43.1° N) or one southern location (ZJU; 29.8° N)

HU NEF CSU
Compressed circumference 0.96 0.93 0.95
(cm)
Basal circumference (cm) 0.95 0.24 0.79
Compressed circumference/ 0.43 0.64 0.57
basal circumference
Culm length (cm) 0.65 0.46 0.72
Culm node number 0.55 0.50 0.39
Internode length (cm) 0.01 —0.16 0.29
Culm dry weight (g) 0.71 0.66 0.85
Culm volume (cm®) 0.61 0.48 0.68
Culm density (g cm™) 0.36 0.38 -0.87
Diameter of basal internode 0.54 0.47 0.36
(mm)
Diameter of topmost 0.44 0.37 0.59
internode (mm)
Total number of culms 0.39 0.42 0.39
Proportion of reproductive 0.02 0.12 0.23
culms
Culms per footprint (# cm™)  —0.64 -0.04 -0.53

Northern trial All trial
Ul KNU 7JU locations locations
091 1.00 0.96 1.04 1.06
0.71 0.61 0.76 0.64 0.50
0.59 0.93 0.84 0.71 0.96
0.49 0.57 0.88 0.63 0.52
0.16 0.64 0.48 0.57 0.64
0.16 0.43 0.38 —0.11 —-0.41
0.38 0.72
0.33 0.51 0.85 0.62 0.58
0.32 0.51
0.07 0.52 0.83 0.54 0.67
0.39 0.17 0.66 0.48 0.29
0.55 0.29 0.46 0.23 0.08
0.56 0.52 -0.19 7ZH
—0.08 —0.13 —0.18 —0.50 —0.53

Note. All traits were Box—Cox transformed. Genetic correlation was estimated as the genetic covariance of two traits divided by the square root of the product of the

genetic variance of each trait (Equation 5).

HU = Hokkaido University; NEF = New Energy Farms; CSU = Colorado State University; Ul = University of Illinois at Urbana-Champaign; KNU = Kangwon
National University; ZJU = Zhejiang University. ZH=not calculated due to zero heritability.

advantages over sugarcane. Moreover, the energycanes Ho
06-9001 and Ho 06-9002 had a high proportion of ancestry
from Saccharum spontaneum, a wild species with thin stems
(Tew & Cobill, 2008), which suggests that a similar breeding
strategy of combining commercial sugarcane genotypes with
M. sinensis that are highly productive in and adapted to sub-
tropical environments may result greater gains still.

Atypical M. sinensis genotypes that performed well at
trial sites that were far north or far south of their collection
sites were also observed, and these likely represent a valu-
able breeding opportunity. Though the M. sinensis SE China/
tropical and Sichuan basin were the highest-yielding groups
at ZJU, few genotypes of these southern groups performed
well at the northern trial sites. However, rare individuals from
the SE China/tropical and Sichuan basin groups were among
the highest-yielding entries at some of the northern trial
sites, pointing the way toward a useful breeding strategy. If
high yield potential from the SE China/tropical and Sichuan
basin groups can be combined with greater winter hardiness
from more northerly adapted Miscanthus, it may be possible
to make large gains in yield potential for northern produc-
tion environments. Similarly, rare genotypes from northern
M. sinensis groups that performed well at ZJU may have

advantageous alleles that are rare or absent from southern
groups. Thus, we might expect to obtain useful transgressive
segregants by crossing individuals of differing provenance
but each with complementary genes for high yield potential
in a particular environment (Rieseberg, Archer, & Wayne,
1999).

The results of this study and previous studies indicate that
interspecific progeny of M. sinensis and M. sacchariflorus
were frequently, but not always, high yielding and vigorous,
likely due to heterosis and/or transgressive segregation; this
advantage has been conferred regardless of whether the prog-
eny were diploid, triploid or tetraploid. In the current study,
diploid M. Xgiganteus F, genotypes from 29° to 37° N in
China were the highest-yielding entries at the northern trial
locations, with yields at NEF and HU that were ~1.5- and
~2-fold greater than the high-yielding control, M. Xgiganteus
‘1993-1780° (Table 3, Figure 1). The best performing diploid
M. xgiganteus, PMS-430 and PMS-279, were collected from
even lower latitudes (29-30° N) than the putative origin of
M. xgiganteus ‘1993-1780" (~35.4° N; Table S2), with the
M. sinensis portion of their genome originating from the SE
China/tropical group (Clark et al., 2014); we hypothesize that
sufficient winter hardiness for the northern trial locations was
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inherited primarily from the M. sacchariflorus parents. Yan
et al. (2012) compared 31 M. sinensis and 48 M. sacchari-
florus Chinese populations at Xilinhot, a cold-winter site in
north China (43.9° N), and observed that for a given latitude
of origin, overwintering survival of M. sacchariflorus acces-
sions was substantially greater than for M. sinensis accessions.
In contrast to the high yields of PMS-430 and PMS-279, the
diploid M. Xgiganteus ‘Purpurascens’ and the ornamental M.
sinensis descended from it (Clark et al., 2015) were low-yield-
ing compared to most M. sinensis (Table 3, Figure 1). Clifton-
Brown et al. (2001) also found that diploid M. Xgiganteus
selected from a cross and grown at five locations in Europe
typically, though not in all cases, had a yield advantage over
selected M. sinensis genotypes collected in Japan. Uwatoko,
Tamura, Yamashita, and Gau (2016) observed that seven new
triploid M. Xgiganteus genotypes collected from the wild in
Japan had yields that were similar to the high-yielding control
‘1993-1780’, when grown in a field trial in Koshi, Japan (32.9°
N). Matumura, Hasegawa, and Saijoh (1987), studying a cross
between diploid M. sinensis and tetraploid M. sacchariflorus,
observed that one triploid progeny had biomass yields inter-
mediate to its parents but its tetraploid sibling yielded about
twice as much as its highest-yielding parent. Thus, the devel-
opment and testing of new M. Xgiganteus genotypes are ex-
pected to be an important breeding strategy for obtaining new
higher-yielding cultivars of Miscanthus.

4.2 | Yield-component traits for predicting
M. sinensis yields

Compressed circumference, which serves as an easily
measured proxy for culm diameter multiplied by the square
root of the number of culms (genetic correlation of 0.85
across all sites in year 3), was a strong predictor of yield in
the current study (genetic correlations >0.91 for each trial
location; Table 9) and the best predictor of yield among
all the yield-component traits we evaluated. Both yield
and compressed circumference had a larger environmental
component than many other traits (Table 7), but the high
genetic correlation between them indicated that the phe-
notypic variation attributable to genotype followed a very
similar pattern between yield and compressed circumfer-
ence. Culm length, which had a moderate to high genetic
correlation with yield (0.46-0.88; Table 9), is also easily
measured, and together with compressed circumference
provides a three-dimensional model of overall plant size.
Gifford, Chae, Swaminathan, Moose, and Juvik (2015) also
observed a strong genetic correlation between compressed
circumference and yield (0.88) and a moderate genetic
correlation between plant height and yield (0.54) in an F,
population of M. sinensis ‘Grosse Fountaine’ X M. sinensis
‘Undine’ evaluated at Urbana, Illinois. Similarly, Slavov et
al. (2014) observed a moderate genetic correlation between

plant height and yield (0.65) in a panel of 138 M. sinensis
genotypes phenotyped near Aberystwyth, UK. Previously
published phenotypic correlations between height and
yield for Miscanthus have also been mostly moderate,
though less frequently high (Anzoua, Suzuki, Fujita, Toma,
& Yamada, 2015; Clifton-Brown et al., 2001; Jezowski,
2008; Nie et al., 2016; Yan et al., 2012; Zhao et al., 2013)
or low (Nie et al., 2016). Thus, compressed circumference
and culm length (or height) are expected to be consistently
good predictors of yield in M. sinensis populations, while
being considerably less expensive to measure.

We also found that culm dry weight was a potentially use-
ful predictor of yield, with genetic correlations ranging from
0.38 to 0.85 (Table 9). Similarly, Lim et al. (2014) observed
a high phenotypic correlation between culm dry weight and
yield (0.84) for 42 M. sinensis genotypes collected from
South Korea, Kyushu, Japan, and southeastern Russia when
evaluated in a field trial at Suwon, South Korea.

Genetic tradeoffs between total number of culms per
plant, plant footprint, and culm diameter, volume and dry
weight, were observed among the M. sinensis genotypes in
this study. Genotypes with larger footprints tended to have
fewer and sometimes thicker culms (Data S4). Also, geno-
types with many culms typically had thinner and lighter
culms. However, these tradeoffs were partial and varied in
magnitude, sometimes substantially, by trial location. Such
variability in partitioning tradeoffs is consistent with previous
studies, which have reported highly diverse estimates for cor-
relations between yield and number of shoots, and between
yield and stem diameter for M. sinensis (Clifton-Brown et al.,
2001; Gifford et al., 2015; Jezowski, 2008; Nie et al., 2016;
Slavov et al., 2014; Yan et al., 2012). Moreover, exceptions to
these tradeoffs may be important, as the broadly adapted and
high-yielding S Japan group had the greatest average number
of culms among the M. sinensis groups at all trial locations,
but also the largest or nearly largest basal circumference at
all locations tested (Data S2); diameter of basal internode
was variable over locations but relatively high at HU, NEF,
and ZJU. Thus a desirable ideotype for a biomass cultivar of
M. sinensis may be a plant that has a large compressed cir-
cumference obtained via many thick and heavy culms, a large
footprint, and long (>3 m) culms.

5 | CONCLUSIONS

Large genotype-by-environment interactions between the
southern trial site, ZJU, and the northern trial sites indicates
the need to breed M. sinensis separately for southern and
northern production zones. However, good concordance of
M. sinensis genotypic performance among northern trial
locations, even those on different continents, will facilitate
breeding for northern production zones. To establish a
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new M. sinensis breeding program for high biomass yield,
we recommend conducting field trials that are focused on
genotypes belonging to the genetic groups that are expected
to perform best in the target environment; these genetic
groups are: S Japan for all environments, Sichuan and SE
China/tropical for hardiness zones 8 or warmer, and Korea/N
China and Yangtze-Qinling for hardiness zones 7 or colder.
Our climate models suggest that additional germplasm
collections should be performed in mountainous regions
of China south of 32° N for hardiness zones 7 or colder,
and in the Ryukyu Islands, Taiwan, and the Philippines for
hardiness zones 8 or warmer.
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