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abstract: Previous studies reached contrasting conclusions re-
garding how fluctuations in abundance affect Ne in semelparous
species with variable age at maturity: that Ne is determined by the
arithmetic mean N among the T years within a generation (N ≈e

; monocarpic plants with seed banks) or the harmonic meanTNt

( ; Pacific salmon). I show that these conclusions arise from˜N ≈ TNe t

different model assumptions rather than inherent differences between
the species. Sequentially applying standard, discrete-generation for-
mulas for inbreeding Ne to a series of nominal generations accurately
predicts the multigenerational rate of increase in inbreeding. Vari-
ability in mean realized reproductive success across years ( ) is thekt

most important factor determining Ne and Ne/N. When abundance
is driven by random variation in , . With random˜k N ≤ TN ! TNe tt t

variation in Nt and constant per capita seed production (C), variation
in is low and ; however, if C varies among years, Ne can˜k N ∼ TNe tt

be closer to . Because population regulation affects the genetic˜TNt

contribution of entire cohorts of monocarpic perennials, Ne for these
species may be more closely approximated by than by . With˜TN TNt t

density-dependent compensation, , and Ne is furtherCov (k , N ) ! 0t t

reduced because relatively few breeders make a disproportionate con-
tribution to the next generation.
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It might appear that Pacific salmon (Oncorhynchus spp.)
and monocarpic plants with seed banks have little in
common. After all, they are in different kingdoms; plants
are autotrophs and are stationary as adults, whereas
salmon are heterotrophs and can migrate thousands of
kilometers in fresh water and the ocean. However, both
groups share an unusual combination of life-history traits
(semelparity with variable age at maturity) that have im-
portant evolutionary consequences. Seed banks serve as
a genetic reservoir of “sleeping genes” that can awaken
and contribute their genetic material—a phenomenon
that can extend the generation time, increase effective
population size (Ne), and slow the rate of genetic change
(Templeton and Levin 1979; Hairston and De Stasio 1988;
Kaj et al. 2001). In monocarpic perennials, vegetative
rosettes provide a genetic storage effect equivalent to that
of a seed bank (Vitalis et al. 2004). A somewhat similar
role in Pacific salmon is played by cohorts of juveniles
and subadults, which can be thought of as carrying sleep-
ing genes that awaken when the fish return to their natal
stream to spawn.

Recently, two articles considered how annual variation
in abundance affects Ne in semelparous species and came
to contrasting conclusions. Nunney (2002) concluded that
in annual plants with seed banks, Ne per generation is
primarily determined by the arithmetic mean of the pop-
ulation sizes in the years making up a generation; for
Pacific salmon, I found that Ne is more strongly influenced
by the harmonic mean of the annual sizes (Waples 2002).

The purpose of this article is twofold. First, I show that
the apparent discrepancy in the conclusions of the two
articles is due more to different model assumptions than
to inherent differences between salmon and monocarpic
plants. Second, I consider life-history and demographic
factors that influence genetic variability and show that, in
these species, Ne and the ratio Ne/N are determined pri-
marily by the method of population regulation—specifi-
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Table 1: Notation

Parameters Definition

Demographic:
Nt Number of adults reproducing in year t
M Maximum age at reproduction
Ai Probability that a progeny produced in year t matures in year ( )t � i � A p 1iip1, M

T Generation length (mean age of parents) in years ( )T p � iAiip1, M

NT Total number of adults in a generation ( )N p � NT ttp1, T

Nt Arithmetic mean of the Nt within a generation
Ñt Harmonic mean of the Nt within a generation
JN Index of population fluctuation based on log-transformed values of Nt; , where jL2jLJ p 10N

is the standard deviation of log (Nt)
Ct Per capita production of seeds by plants flowering in year t
JC Analogue to JN that quantifies yearly variation in Ct

Bt Total number of seeds in the seed bank in year t
rt, i Number of offspring maturing in year produced by adults reproducing in year tt � i
Rt Total number of adult offspring in the next generation produced by adults reproducing in

year t ( )R p � rt t, iip1, M

lt Mean number of adult offspring in the next generation produced by each adult reproducing
in year t ( )l p R /Nt t t

jl Standard deviation of l across years
RT Total adults in the next generation produced by all the adults in the current generation

( )R p � RT ttp1,T

Xt Proportional contribution of adults reproducing in year t to the next generation ( )X p R /Rt t T

Genetic:
k Number of gametes contributed to the next generation by an individual
kt Mean k for individuals breeding in year t ( )k p 2ltt

K Mean k for all individuals breeding within a generation ( )K p 2R /NT T

k∗ Mean of the within a generationkt
2jk(t) Variance in k among individuals within year t

Vk Variance in k among all individuals within a generation
Nb(t) Effective number of breeders in year t
Ne Effective population size for a generation
Ne(n) Effective population size over a period of n generations ( mean of the Ne inN ≈ harmonice(n)

the separate generations)

cally, the degree to which random and deterministic pro-
cesses lead to variation in mean reproductive success
among breeders in different years. These results provide
a basis for evaluating the genetic consequences of de-
mographic and life-history characteristics of salmon,
monocarpic plants, and other semelparous species with
variable age at maturity, such as crustaceans with dia-
pausing eggs.

Description of the Models

Model description involves three steps. First, I summarize
common features of the two models and review the no-
tation used here (table 1). Second, I describe general life-
history differences between salmon and plants with seed
banks. Finally, I review specific assumptions made by pre-
vious authors in implementing the two models.

Common Features

In both models, in year t a certain number of individuals
(Nt) mature and reproduce (fig. 1). Their progeny mature
in future years according to a fixed maturity schedule Ai,
where Ai represents the probability of maturing in year

. If population size is constant, the age distributiont � i
of adult breeders is also given by Ai, and generation

age of parents is given bylength p average T p
, where M is the maximum age at reproduction.� iAiip1, M

If population size fluctuates, age structure will as well, and
will only approximate the generation length.� iAi

The Nt breeders in year t produce a total of Rt offspring
that eventually mature as adults in subsequent years. De-
mographic contributions to the next generation are quan-
tified by the ratio , which is the replacementl p R /Nt t t

rate (or population growth rate) for adults reproducing
in that year. The magnitude of variation in lt is measured
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Figure 1: Schematic diagram of life-history features of the two types of species. Common features of both models: circles, Nt adults maturing in
year t; curved solid arrows, reproductive contribution of 1 year of adults to future years, with size of the arrows proportional to the fraction maturing
at each age (Ai). Relative contribution of different parental years to a future year of adults (curved dotted arrows) depends not only on Ai but also
on annual population size and productivity. Life stage typically subject to population regulation is indicated. A, Seed-bank model. Nt adults flowering
in year t produce a total of CtNt seeds that enter the seed bank. Probability of seed germination is constant at g/year, which, assuming no mortality
in the seed bank, leads to a generation length of years. Of the CtNt seeds contributed to the seed bank in year t, the largest fraction (g)T p 1/g
mature in year , the next largest fraction ( ) mature in year , etc. In this example, , so (only 8 years of seedt � 1 g[1 � g] t � 2 g p 0.25 T p 4
germination are shown here). In a given year (e.g., year 8), the fraction g of all the seeds in the seed bank germinate, but due to variable carrying
capacity, only Nt are allowed to mature. B, Salmon model. Nt adults spawning in year t produce a total of progeny that survive tol N p (k /2)Nt t tt

reproduce in future years. In this example, maturity occurs at ages 3, 4, or 5, so a nominal generation includes years of spawners,T p SiA p 4i

and the Nt adults spawning in a given year (e.g., year 8) are derived from parents spawning 3–5 years previously.

by jl. Over the T years making up a generation, the total
number of breeders ( ) contributes a total ofN p � NT t

offspring that mature in subsequent years, soR p � RT t

is a measure of population growth rate perR /NT T

generation.
Yearly genetic contributions are quantified by andkt

, the mean and variance (among individuals within a2jk(t)

single year) of the number of gametes contributed to the
next generation, and and Vk are the corresponding valuesK̄
computed across all individuals within a generation. Since
we are dealing with diploid species, andk p 2l K ptt

.2R /NT T
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Species-Specific Details

Seed Bank. In the seed-bank model (fig. 1A), in year t,
Nt monoecious plants mature, flower, and die. Each adult
produces an average of Ct seeds, and C is generally high
to ensure that the seed bank is large compared with the
number of adults and hence does not limit future pop-
ulation size. Each seed in the seed bank has a fixed annual
probability g of germinating; as a consequence, the pro-
portion of a cohort of seeds that germinate in each suc-
cessive year (the Ai values) is a monotonically (and ex-
ponentially) decreasing function of time (fig. 1A). If a seed
germinates, it either becomes a flowering adult that year
or dies before maturing. If no mortality occurs in the seed
bank, the average age of germinating seedlings is 1/g ; if
population size is constant, 1/g also represents the average
age of parents and hence the generation time, T.

Salmon. In the Pacific salmon model (fig. 1B), each fe-
male in year t contributes several thousand eggs, but high
mortality in juvenile and early ocean phases largely de-
termines the growth rate (lt) for that cohort. Variation in
male reproductive success could be modeled separately but
is generally considered to be comparable to that of the
female. The lt Nt progeny from adults in year t that survive
to maturity return to spawn at a variety of ages i, with i
typically ranging from ≥2 to ≤6 (leading to to 5T ≈ 3
years). Age at maturity within a cohort can be evenly
spread over two or more years or, more commonly, dom-
inated by a single age.

Previous Implementations of the Two Models

Seed Bank. In Nunney’s (2002) implementation of the
seed-bank model, each plant in every year produced ex-
actly C seeds. Survival in the seed bank was random, and
genotypes in the Nt successful adults in year t were ran-
domly drawn from seeds germinating that year. Within
each year, therefore, the maturing adults approximated an
ideal Wright-Fisher population in which the variance in
realized reproductive success was Poisson ( ) and2j ≈ kk(t) t

the effective number of breeders (Nb(t)) was the same as
the census number (Nt).

Variation in population size was accomplished by ran-
domly drawing a number Nt from a lognormal distribution
with a specified geometric mean (generally 100; Nunney
also considered a scenario involving random fluctuation
between “good” and “bad” years, but that variation will
not be considered here). An index of variability in Nt was
calculated as ratio of (log-transformed) popu-J p theN

lation size 1 SD above the mean to population size 1 SD
below the mean. A typical time series of Nt values using
this model is shown in figure 2 (top).

Under the assumption that mating is random and selfing
does not occur, Nunney (2002, eq. [28]) obtained the fol-
lowing approximation for effective size per generation:

˜N ≈ N � (T � 1)N , (1)e t t

where and are the arithmetic and harmonic means˜N Ntt

of the Nt, respectively. As T increases, the term in equa-Nt

tion (1) quickly dominates. Consequently, Nunney (2002)
concluded that in most situations, Ne in annual plants with
seed banks is determined primarily by the arithmetic mean
of the number of adult plants per year.

Vitalis et al. (2004) also evaluated a seed-bank model
that allowed consideration of monocarpic perennials.
Their model allowed a maximum longevity to be imposed
on seeds in the seed bank as well as an annual cost (risk
of mortality), both of which may be more realistic than
the assumptions of Nunney’s model. However, Vitalis et
al. only considered asymptotic behavior in populations of
constant size, so most of their results are not directly rel-
evant to the issues discussed here. Nevertheless, their treat-
ment of density dependence is illuminating and is con-
sidered below in the “Discussion.”

Salmon. Like Nunney, my primary interest has been the
effects of variable population size on Ne per generation
rather than variation among individuals within years, and
hence for simplicity I have assumed (Waples 2002) that
the population is ideal each year so that . Pre-N p Nb(t) t

viously (Waples 1990a), I showed that if population size
is constant in the salmon model, effective size per gen-
eration (Ne) is approximately equal to Nt times the gen-
eration length: . Based on limited evaluations ofN ≈ TNe t

variable population size, I also concluded (Waples 1990b)
that effective size per generation is a function of the har-
monic mean, not arithmetic mean, of the Nt across the
years making up a generation:

˜N ≈ TN . (2)e t

Subsequently, however, it became evident that the rela-
tionship between Ne and Nb in salmon depends on the
population dynamic model and that different demographic
scenarios lead to contrasting genetic results (Waples 2002).

Scenario 1. Each year’s breeding population contributes
an equal number of progeny to the next generation re-
gardless of the number of breeders. This is similar to the
model considered by Waples (1990b). With Rt fixed within
a generation at , if Nt varies, the mean replace-R p R /Tt T

ment rate ( ) also varies across years.l p R /N p k /2t t t t

Under these conditions, Ne per generation is a function
of the harmonic mean of Nt (eq. [2]).
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Figure 2: Contrasting patterns of variation in population size in the two models. In the seed-bank model (top), Nt is a random, lognormally
distributed variable. Data shown are one time series with of variability in #. In the salmon model (bottom), variation in Nt isJ p index N p 25N

generated by random, lognormal variation in l, resulting in a higher-order Markov process. Shown are three replicate time series with j p 1.0l

and . In both models, initial , and population size was constrained by .T p 4 N p 100 2 ≤ N ≤ 30,0000 t

Scenario 2. Each year’s breeding population contributes
to the next generation in direct proportion to the number
of breeders. In this scenario, lt and are constant acrosskt

years within a generation, and Ne is a function of the
arithmetic mean Nt:

N p N p TN p N . (3)�e t Tt
tp1, T

Scenario 2 is also referred to as the additive model because
is simply the sum of all the mature adults acrossN p Ne T

a generation.
Neither scenario is completely realistic. If lt is constant,

population size quickly stabilizes at a constant value, apart
from small random fluctuations in age at maturity. The
same result occurs if Rt is fixed over time. Thus, although

either of these two scenarios could apply to any particular
generation, neither is a plausible general description of
demographic processes in fluctuating salmon populations.
Accordingly, I used computer simulations to model
changes of allele frequency in salmon populations that
fluctuated in size due to random variation in l across
years (Waples 2002). Three typical time series of Nt values
using this type of model are shown in figure 2 (bottom).
Simulation results (Waples 2002) showed that for most
parameter sets considered, variance . An-˜N ≤ TN ! TNe t t

alytical evaluation of a time series of data for one salmon
population led to a similar result: in most generations,
inbreeding Ne calculated from demographic data was less
than and much less than . Based on these collective˜TN TNt t

results, Waples (2002) concluded that in most Pacific
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salmon populations, equation (2) (harmonic mean
method) is the better predictor of Ne.

The salmon and seed-bank models thus have a number
of similarities: the populations are closed (Nunney also
presented results for an island model with migration); the
breeders each year represent an “ideal” population; the
genes considered are assumed to be neutral, and gene fre-
quency change was tracked for a single, diallelic locus; and
each replicate simulation ran for 80–100 years. However,
the two models have important differences in age struc-
ture, magnitude of variation in Nt, and mechanisms of
population regulation. To evaluate these factors quanti-
tatively, I used a combination of analytical and numerical
methods that focus on inbreeding effective size.

Methods

Analytical Methods for Computing Ne

Inbreeding Ne quantifies the per generation rate of increase
in inbreeding; it is proportional to the inverse of the prob-
ability f that two homologous alleles in a randomly chosen
individual are identical by descent (IBD; derived from the
same gene copy in the same individual in a prior gener-
ation): . If random selfing occurs, the inbreed-N p 1/(2f )e

ing coefficient in generation is determined by Ne thet (f )t
previous generation: . If selfing is notE(f ) p 1/(2N )t e(t�1)

allowed, alleles that are identical by descent cannot unite
in individuals until the grand progeny generation, so f is
a function of Ne two generations before: E(f ) pt

.1/(2N )e(t�2)

I used an analytical method modified from Ryman and
Laikre (1991) to quantify the effects of population dynamic
processes on f and inbreeding effective population size over
single- and multiple-generation intervals. Ryman and
Laikre (1991) considered the effective size of a population
that is a composite of two or more groups of individuals
with different effective sizes and mean reproductive rates.
The inbreeding effective size of the composite population
is

1
N p , (4)e

2Xt� ( )Nt

where Nt is the effective size of segment t and X pt

is the proportional contribution of breeders in seg-R /Rt T

ment t to the progeny generation. Ryman and Laikre used
this approach to analyze the effective size of a hatchery-
wild system in which one population segment is taken into
captivity and enjoys enhanced reproductive success. For
species that reproduce only once, this same approach can

be applied to the years comprising a generation (Waples
2002).

This problem can also be formulated in a more tradi-
tional way using the familiar equation for inbreeding ef-
fective size (Crow and Kimura 1970; Crow and Denniston
1988):

KN � 2T

N p , (5)e VkK � 1 �
K

where is the census population size for a gen-N p � NT t

eration and and Vk are calculated across all individualsK
within the generation. If selfing does not occur, equation
(5) applies both to monoecious species and to species with
separate sexes (Crow and Denniston 1988). It can be
shown that equation (5) is mathematically equivalent to
equation (4) (see app. A in the online edition of the Amer-
ican Naturalist). Equation (5) is more convenient and ex-
planatory of the Ne/N ratio when data are expressed in
terms of generational and Vk, whereas equation (4) isK
better suited for use with data expressed in terms of mean
progeny production per year.

These equations also have a straightforward interpre-
tation for variable population size in age-structured, se-
melparous species. Because yearly reproductive output also
represents lifetime reproduction in these species, calcu-
lation of and Vk across all individuals in a nominalK
generation provides a way to quantify the increase in in-
breeding contributed by breeders in that generation. Two
differences compared with the discrete generation model
can be noted. First, in age-structured populations, it can
take some time for IBD alleles to percolate across years
and unite in individuals. Therefore, the increase in f arising
from matings in generation t will not necessarily all occur
by generation . However, equation (5) describes thet � 2
increase in IBD alleles in the population as a whole in
generation , and it quantifies the eventual contri-t � 1
bution of generation t breeders to f in subsequent gen-
erations. The second difference is that in age-structured
populations, although it is possible to define an average
generation length T, within any particular time series the
choice of the start and end of a generation is rather ar-
bitrary. Using empirical data, Waples (2002) showed that
Ne calculated using equation (4) can vary depending on
which specific years are included in a nominal generation.
It is thus important to ask the following question: if equa-
tion (4) or (5) were applied sequentially to a time series
of demographic data partitioned into nominal generations
of length T years, would the result accurately predict the
true multigenerational effective size of the population?
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Individual-Based Genetic Model

To evaluate this question quantitatively, I used an indi-
vidual-based computer model that followed the popula-
tion dynamics of the salmon model but also considered
age structures more typical of plants with seed banks.
Three basic steps (described in more detail below) were
involved: (1) A time series of variable population sizes was
generated, and demographic data were used to compute
multigenerational Ne using three methods: the harmonic
mean method ( ; eq. [2]), the arithmetic mean˜N p TNe t

method ( ; eq. [3]), and the discrete-N p TN p Ne Tt

generation model (eq. [4]); (2) The rate of increase in f
for individuals following this population size trajectory
was monitored; (3) The multigenerational Ne’s were used
to compute expectations of f, which were compared with
observed f from the simulated populations to evaluate per-
formance of the three methods.

Population Size Trajectories. Each year t ( to 80), at p 1
value for lt was drawn randomly from a lognormal dis-
tribution with specified mean (generally ) and stan-l̄ ≈ 1
dard deviation jl. The size of the first M years is fixed at

individuals. The Nt adults maturing in year tN p Nt 0

produced a total of progeny that matured inR p N lt t t

future years. Age at maturity for each individual was cho-
sen by a random number with probability of maturing at
year equal to Ai. This model leads to a higher-ordert � i
Markov chain with Nt depending on population sizes and
growth rates in several years prior to year t (fig. 2, bottom).
This presents a difficulty for averaging f and Ne across
replicates because the different population size trajectories
are not independent and identically distributed (IID). To
get around this difficulty, for each population size trajec-
tory I replicated the process of genetic drift 1,000 times
and averaged f values across replicates; this is equivalent
to averaging across 1,000 independent gene loci in the
same individuals. The mean observed f was then compared
with expected f for the three methods, and the entire pro-
cess was replicated for 100 random population size tra-
jectories to generate a distribution of Obs(f )/E(f ) values
for each of the three methods.

Genetic Drift. In each replicate of the process of genetic
drift, genotypes in the N0 adults for years 1 to M were
drawn by sampling randomly from 2TN0 distinct alleles
with the proviso that the two alleles for a new individual
could not come from the same parent. This modeled sam-
pling from a single generation (generation 0) of an ideal
monoecious population of size TN0 in which selfing was
not allowed and (i.e., ). Beginning in yearf p 0 N p �e(�1)

1, progeny were produced by mating adults in a Wright-
Fisher process without selfing (hence, ; Ca-N ≈ N � 0.5b(t) t

ballero 1994; Balloux 2004). Genotypes of progeny pro-
duced that matured in years 2 to M replaced those of
individuals chosen as described above but did not increase
population size. Each year, f was measured directly in all
maturing adults. Table 2 shows a sample of demographic
and genetic data from a single time series for one param-
eter set.

Multigenerational Ne and E(f). To compute multigener-
ational Ne, the Nt and lt values were partitioned into a
consecutive series of nominal generations of length T
years. For each of the three methods, Ne was computed
each generation, and an n-generation effective size ( )Ñe(n)

was computed as the harmonic mean of the single-
generation values. Although the Ai were constant across
years within a parameter set, with variation in population
size, the mean age of parents of adult breeders (and hence
the true generation length) also varies over time. There-
fore, for each population trajectory, the true number of
elapsed generations, n (based on the running mean age of
parents each year), was computed for each time interval
up to 80 years.

The values were used to compute conditional ex-Ñe(n)

pectations for f as follows. With respect to a reference
generation in which , the expected increase in f in af p 0
single generation is . The expected cu-E(Df ) p 1/(2N )e

mulative increase in f due to n generations of drift can be
calculated from the panmictic index ( ) as1 � f

n˜E(f ) p 1 � [1 � 1/(2N )] , (6)n e(n)

where is the harmonic mean Ne across n generations.Ñe(n)

Since selfing was not allowed, and E(fn) at generationÑe(n)

n were computed from single-generation effective-size es-
timates from generations �1 to . As noted above,n � 2

and . Although the common prac-N p � N p TNe(�1) e(0) 0

tice of representing the long-term Ne by the harmonic
mean of single-generation values is not exact, the ap-
proximation has been shown to be robust in most practical
circumstances (Motro and Thompson 1982; Hühn and
Piepho 2004; Jagers and Sagitov 2004). Use of the exact
expression for E(fn) as did not1 �� [1 � 1/(2N )]e(i)ip1, n

materially change the results (data not shown).

Demographic Models

Two demographic simulation models were also used. The
first model used the same population dynamics as the
individual-based salmon model but did not track individ-
ual genotypes; this allowed consideration of the relation-
ship between true Ne, , and under a wider range of˜N Ntt

parameter values.
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Table 2: Simulated demographic and genetic data for selected generations of a semelparous
species with salmon age structure

Generation
and year Nt lt Rt Xt Ne

Observed f

1 2 1,000 f̄

5:
17 68 .43 29 .036 TN p 834t .0000 .0000 .0049 .0068
18 216 .20 42 .052 ˜TN p 594t .0093 .0093 .0077 .0069
19 334 1.00 334 .415 Eq. (4) p 592 .0150 .0120 .0087 .0070
20 216 1.85 400 .497 .0000 .0000 .0041 .0072

6:
21 69 .82 56 .066 TN p 755t .0145 .0145 .0064 .0069
22 112 4.83 541 .639 ˜TN p 526t .0268 .0134 .0060 .0089
23 277 .36 101 .119 Eq. (4) p 259 .0072 .0090 .0084 .0087
24 297 .50 149 .176 .0067 .0101 .0090 .0084

20:
77 28 .60 17 .258 TN p 89t .0000 .0500 .0778 .0632
78 18 .77 14 .212 ˜TN p 87t .1000 .1000 .0667 .0627
79 20 .85 17 .258 Eq. (4) p 88 .0000 .0000 .0667 .0681
80 23 .77 18 .273 .0909 .0455 .0202 .0693

Note: ; years. Typical data are shown for one randomly generated time seriesA p 0 0 0.25 0.5 0.25 T p 4i

with initial and . For each generation, Ne was calculated three ways from the demographicN p 100 j p 10 l

data, using the arithmetic mean method (eq. [3]), the harmonic mean method (eq. [2]), and equation (4).

and . Observed f values are shown for replicates 1, 2, and 1,000; over all¯R p l N X p R /SR f p mean ft t t t t t

1,000 replicates.

The second demographic approach evaluated how var-
iation in Nt in the seed-bank model affected generational
Vk and hence Ne. Random series of Nt values were gen-
erated that approximated the range of scenarios considered
by Nunney (2002): the Nt were lognormally distributed
about a geometric mean of 100, with variance such that

# to 64#. The seed bank was initiated with N0CTJ p 4N

seeds (N0 and C were both set at 100 to correspond with
Nunney’s values, although Ct was allowed to vary across
years in some parameter sets), and the system was allowed
to run for 100 years to reach a dynamic equilibrium with
Nt and Bt (the total number of seeds in the seed bank)
both varying over time. After the burn-in period, each
simulation was run for another 1,000 years, mean lifetime
reproductive success was calculated for each cohort of Nt

parents, and for each span of T consecutive years, gen-
erational values of Vk and were computed. GeometricK
means of the single-generation ratios were used toV /Kk

compute the Ne/NT ratio using equation (5). Although
seeds were effectively immortal in Nunney’s model, I im-
posed a maximum longevity of to facilitate com-M p 100
pilation of data on lifetime reproductive success.

Results

Individual-Based Model

First, I verified that the individual-based inbreeding model
correctly predicts the rate of increase in f when applied to

simulated data for a species with discrete generations and
variable Nt. For a variety of values of N0 and jl, Obs(f )/
E(f ) ratios for different time series clustered tightly around
1.0 (data not shown). As expected from theory, the var-
iance among time series asymptotically approached 0 as
the number of replicates of the gene-sampling process in-
creased (comparable to averaging across an increasing
number of independent gene loci).

Age Structure and Generation Length. Figure 3A shows
the rate of increase in f in a constant population with age
structure typical of Pacific salmon. Nominal generations
of length years are shown by dashed vertical lines;T p 4

each year, so effective size computed by all threeN p 100t

methods is the same: . As˜N p TN p TN p N p 400e t Tt

expected given that no selfing is allowed, for gen-f p 0
eration 1 (years 1–4) and rises to close to the expected
value ( ) for yearsE(f ) p 1 � {1 � 1/[2(400)]} p 0.00125
5–7 in generation 2. In year 8, f is slightly higher because
some individuals are progeny of adults maturing in the
first year within the generation (year 5) and so have ex-
perienced an extra generation of inbreeding. This phe-
nomenon is repeated in the following generation but is
more muted as age structure effects begin to even out. By
about year 16 (end of generation 4), the pattern has largely
stabilized; in subsequent years, f increases at the expected
rate, but the absolute value of f is slightly elevated com-
pared with the expectation. This latter effect is due pri-
marily to the fact (mentioned above) that within each
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Figure 3: Comparison of observed f (Obs[f ]) and expected f (E[f ]) for the individual-based salmon model with constant population size N pt

. Obs(f) was averaged across 1,000 replicates; E(f ) was calculated using equation (6), and Ne each . A, Salmon age100 generation p TN p Nt T

structure; maturity at ages 3, 4, or 5 years. Vertical dashed lines identify the nominal generations. B, Distribution of the ratios Obs(f )/E(f ) for 100
replicate time series using three different age structures. Obs(f ) and E(f) were calculated as the difference between values at generation 4 and the
final generation. Asterisks indicate geometric mean ratios.

generation, at least one year class is composed in part of
progeny of adults reproducing earlier in the generation.
Waples (1990a) observed a similar phenomenon in eval-
uating the rate of allele frequency change in Pacific salmon
populations: the rate of change in allele frequency was as
predicted from , but for any given pair of years,N p TNe b

the absolute magnitude of allele frequency change was

higher than the expectation because one year’s spawners
represent only part of a generation. In the remaining anal-
yses (results shown in figs. 3B, 4 and table 3), I computed
Obs(f )/E(f ) using differences between values for gener-
ation 4 (after initial age structure effects had stabilized)
and the end of the replicate (80 generations).years p 80/T
With N constant, E(f ) is the same for all three models,
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Figure 4: Comparison of observed f (Obs[f ]) and expected f (E[f ]) for the individual-based salmon model but with variable population size
( ; ). For each time series, E(f ) was computed from equation (6) based on three different ways of calculating Ne; Obs (f ) is theN p 100 j p 1.00 l

arithmetic mean f across 1,000 replicates of the gene sampling process. A, Age structure similar to that of annual plants with seed banks. B, Age
structure typical of Pacific salmon. Asterisks show geometric mean ratios.

and in this case, multigeneration Obs(f )/E(f ) ratios clus-
tered tightly around 1.0 for age structures typical of both
salmon and plants with seed banks (fig. 3B).

When Nt varies, E(f ) differs for the three methods of
computing Ne. Figure 4 shows typical results for species
with age structure similar to that of plants with seed banks
(fig. 4A) and Pacific salmon (fig. 4B). In both cases, the
distribution of Obs(f )/E(f ) calculated from equation (4)
is centered around 1.0 with a geometric mean close to 1.
In contrast, Obs(f ) exceeds E(f ) for both the harmonic
mean and the arithmetic mean methods, indicating that
those approximations overestimate true Ne. Results for a

more extensive range of simulations (table 3) were similar:
equation (4) consistently estimates Obs(f ) accurately,
whereas the other two methods consistently underestimate
the rate of increase in f and thus overestimate Ne. This
indicates that true Ne was even less than predicted by the
harmonic mean method, although the difference was
somewhat less with an age structure typical of plants with
seed banks (cf. fig. 4A, 4B).

Magnitude of Variability in N. Nunney (2002) noted that
the magnitude of variability in Nt considered in the salmon
model was small compared with the variability in the seed-
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Table 3: Ratio of observed f to expected f (Obs[f ]/E[f ]) for var-
ious age structures (Ai), generation lengths (T), and variabilities
in population growth rate (jl)

Ai and T a jl
b

Obs(f )/E(f )

Eq. (4)
Additive

( )N p TNe t

Harmonic
( )˜N p TNe t

.6 .1 .1 .1 .1:
2 1.0 .99 1.17 1.13

.4 .3 .2 .1:
2 1.0 .98 1.17 1.14

.48 .24 .14 .08 .06:
2 .5 .99 1.07 1.06
2 1.0 .99 1.16 1.13
2 1.5 .98 1.19 1.16
2 2.0 .99 1.20 1.17

.33 .33 .33:
2 1.0 .98 1.14 1.11
3 1.0 .99 1.28 1.23
4 1.0 .99 1.34 1.25

.25 .5 .25:
2 1.0 1.01 1.16 1.14
3 1.0 1.03 1.39 1.27
4 .5 1.01 1.16 1.12
4 1.0 1.03 1.41 1.29
4 1.5 1.05 1.54 1.36
4 2.0 1.05 1.65 1.42

Note: E(f ) was calculated from equation (6) based on three different ways

of calculating Ne. Values shown are geometric means of Obs(f )/E(f ) for 100

randomly generated time series of Nt and lt; in each parameter set, N p0

.100
a Generation length was controlled by varying age at first maturity.
b Constant population size ( ) was also considered for all age struc-j p 0l

tures, in which case all three methods yield the same Ne. With constant N,

geometric mean Obs(f )/E(f ) was in the range 0.993–0.997 for all age

structures.

bank model, and he predicted that “given larger annual
fluctuations in the number of breeding fish, the error in-
troduced by using the harmonic mean alone would be-
come apparent” (p. 202). This hypothesis, however, is not
supported by results shown in table 3. The range of var-
iability in jl (0.5–2.0) considered in those simulations
corresponds to variability in Nt that spans the range
( # to 64#) considered by Nunney (2002). ForJ p 4N

both seed-bank and salmon age structures, increasing var-
iability in Nt did not lead to better agreement with the
arithmetic mean method; in fact, the opposite was true—
as variability increased, upward bias of both the arithmetic
mean and harmonic mean methods increased. Even with
high levels of variability in Nt and lt, however, equation
(4) still provided a very good estimate of true multigen-
eration Ne.

Salmon Demographic Model

Nunney (2002) noted that the generation time of Pacific
salmon is relatively short and predicted that Ne would

converge to that predicted by the arithmetic mean method
if T were larger. To evaluate this hypothesis, I conducted
additional demographic simulations using salmon popu-
lation dynamics and longer generation length (controlled
by varying the minimum age of maturity). Results (fig. 5)
show that regardless of generation length ( to 9T p 2
years) and whether maturity occurred at three or five dif-
ferent years, Ne computed from demographic data using
equation (4) was always less than or equal to that predicted
by the harmonic mean method. Results in figure 5 used
a modal age structure; qualitatively similar results were
obtained when maturity was evenly spread across ages.

I also conducted simulations with , 0.19, 0.14,A p 0.25i

0.105, 0.08, 0.06, 0.045, 0.034, 0.026, 0.07 for ages i p
to 10; this approximated age structure in a seed-bank1

model having a fixed germination probability of 0.25/year
and , but with A10 representing the sum of all prob-T ≈ 4
abilities for (see Templeton and Levin 1979 for ai ≥ 10
similar example). Results (data not shown) indicate that
spreading maturity across many years does tend to dampen
annual fluctuations in Nt. Nevertheless, true Ne (eq. [4])
was still less than estimated using the harmonic mean
method.

Seed-Bank Demographic Model

Variation in Population Size and Seed Production. Several
features characteristic of the seed-bank model involving
constant C (as assumed by Nunney 2002) can be noted
(fig. 6, top). First, with a long generation length (T p

) and modest ( #) variation in population size,10 J p 4N

Vk was close to the Poisson variance ( ), so trueV p 1.03Kk

Ne was in close agreement with predictions of the arith-
metic mean method ( ; eq. [5]). With moreN /N p 0.99e T

dramatic variation ( #), was somewhatJ p 50 V /KN k

higher (1.34), and hence effective size was lower
( ). Second, for both levels of variability inN /N p 0.85e T

Nt, increased and Ne/NT decreased as generationV /Kk

length was reduced from to . Third, as ex-T p 10 T p 2
pected, with increasing variability in population size, the
difference between the harmonic mean and the arithmetic
mean Nt increased. Fourth, with constant C, relatively
good agreement was found between Ne calculated using
equation (5) and that predicted by Nunney’s formula (eq.
[1]).

Results are quite different when per capita seed pro-
duction is allowed to vary (fig. 6, bottom). With JN set at
25#, Ne calculated from the demographic data depends
heavily on variation in Ct, being much lower for J pC

# than for #. Furthermore, when Ct varies, Ne/50 J p 4C

NT decreases as generation length decreases—the opposite
of the pattern found when Ct is constant. Finally, with
yearly variation in Ct, under most circumstances, equation
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Figure 5: Ne/NT as a function of age structure and generation length for simulated demographic data in the salmon model. In each simulation,
geometric mean and . The time series of Nt and values was used to calculate Ne three ways, with results for equation (4) (blackN ≈ 200 j p 1.0 kt l t

circles) and the harmonic mean method ( ; open circles) expressed as a fraction of the values for the arithmetic mean method (˜N p TN N pe t e

; gray circles). Plotted values are geometric mean ratios of multigeneration Ne values. A, Maturity at 3 consecutive years, with probabilitiesTN p NTt

0.25, 0.5, and 0.25. B, Maturity at 5 consecutive years, with probabilities 0.12, 0.22, 0.32, 0.22, and 0.12. Variation in generation length was achieved
by varying age at first maturity.

(1) is a poor predictor of true Ne, and performance declines
as JC and T increase. With #, predicted true˜J ≥ 25 TNC t

Ne better than did equation (1).

Density Dependence. In the salmon model considered by
Waples (2002) and here, lt was chosen independently of
Nt, so density dependence was absent except as a result of
boundary constraints on population size. In the seed-bank
model, only Nt plants are allowed to mature each year
from among the germinating seeds, with Nt chosen ran-
domly. This is equivalent to random fluctuation in car-
rying capacity, with density-dependent survival at the stage
of germinating seeds (fig. 1A). Density dependence thus
occurs after seeds of various ages (and derived from par-
ents in many previous years) have germinated, so it does
little to create variation in across years and hence haskt

little effect on Ne. However, the constant C model leads
to an indirect form of density-dependent compensation.
Although seed production is constant for all plants in all
years, the fraction of their seeds that eventually mature
depends on Nt in subsequent years (see app. B in the online
edition of the American Naturalist). On average, seeds that
reproduce in years with low Nt will be followed by years
with relatively higher Nt (and vice versa). This will (on

average) enhance the realized reproductive success for
years of low abundance and reduce reproductive output
for years of high abundance, leading to a negative cor-
relation of Nt and . The effects of variation in Nt will bekt

most pronounced when generation length is short, in
which case lifetime reproductive success is strongly deter-
mined by Nt in the one or two years immediately following
seed production. This explains the result seen in figure 6,
top: with constant C, variation in Nt depresses Ne more
for than for longer generation lengths.T p 2

Joint Consideration of Variation and Covariation of
Population Size and Growth Rate

The large differences in model assumptions regarding pop-
ulation regulation indicate that it would be useful to an-
alytically consider how Ne is affected by variation and co-
variation of population size and growth rate. Although a
completely general formula for Ne in terms of

and the means and variances of Nt and doesCov (N , k ) kt t t

not seem possible, analytical results can be derived for
some specific cases (see app. C in the online edition of
the American Naturalist for details). If mean reproductive
success ( ) is constant across years within a generation,kt
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Figure 6: Ne/NT as a function of generation length and variability in Nt and Ct in the seed-bank model. For each parameter set, Ne/NT was calculated
using equation (5) based on realized mean and variance in reproductive success over a generation ( ,Vk), and the result was compared with estimatesK
based on the harmonic mean method ( ; eq. [2]) and Nunney’s model ( ; eq. [1]). Top, seed production is constant at˜ ˜N ≈ TN N ≈ N � [T � 1]Ne t e t t

; # and 50#. Bottom, # and Ct varies across years, with # or 50#.C p 100 J p 4 J p 25 J p 4N N C

regardless of the pattern of variation inN p � N p Ne t T

Nt. If population size is constant within a generation, then
the effective size : census size ratio is a simple function of
CV( ), the coefficient of variation of (eq. [C2] in thek kt t

online edition of the American Naturalist):

N 1e p . (7)
2N 1 � CV (k )T t

The expression CV2( ) is similar in form to I, the stan-kt

dardized variance in reproductive success ( ;2I p V /Kk

Clutton-Brock 1988; Nunney and Elam 1994; Nunney
2002), but with an important difference: whereas I mea-
sures variation among individuals within a generation,
CV2( ) measures variation in mean reproductive successkt

across years.
In more realistic scenarios, both Nt and vary acrosskt

years. In this case, it is apparent that Ne and Ne/N should

also be affected by because (for example) in-Cov (N , k )t t

breeding effective size should be reduced when and Nkt

are negatively correlated (i.e., relatively few breeders pro-
duce disproportionate numbers of offspring, and relatively
large numbers of breeders produce few offspring). Trial-
and-error numerical evaluation indicates that the follow-
ing formula, which includes a term for the standardized
covariance of Nt and ( is the mean of the amongk k kt ∗ t

years within a generation), provides a reasonable approx-
imation of the true Ne/N:

Cov (k , N )ttN 1e ≈ � . (8)
2N 2.5k N1 � CV (k )T ∗ tt

The usefulness of this approximation can be seen in
figure 7, which displays results for 200 replicate genera-
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Figure 7: Relationship between the true Ne/NT ratio (eq. [4]) and that predicted by equations (7) (filled circles) and (8) (open circles). Each data
point represents Ne/NT for a single generation of years. In A and B, Nt and values were chosen randomly and independently from lognormalT p 4 kt

distributions with , , and (A) or 2.0 (B). In C, data for 200 consecutive generations in the seed-N p 200 k p mean k p 2 CV(N ) p CV(k ) p 0.5tt ∗ t t

bank model with # and initial .J p J p 25 N p 100N C 0

tions of 4 years of simulated data. In figure 7A and 7B,
Nt and were randomly and independently chosen fromkt

lognormal distributions and Ne/N was computed using
equation (4). Under these conditions, although

, random variation within generationsE(Cov (N , k )) p 0t t

leads to a diversity of actual values for andCov (N , k )t t

means and variances of and Nt. With a moderate levelkt

of parametric variation ( ; fig. 7A),CV(N ) p CV(k ) p 0.5t t

equation (7) explains 94% of the variance in Ne/N, and
equation (8) provides no improvement. When variability
is high ( ; fig. 7B), equation (7) isCV(N ) p CV(k ) p 2.0t t

not quite as effective and has a slight upward bias for low
Ne/N; in this case, including the covariance term in equa-
tion (8) improves the fit considerably. Figure 7C shows
data for 200 consecutive generations in the seed-bank
model with #. Equation (8) does not per-J p J p 25N C
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form quite as well as in the random model, but it still
explains over two-thirds of the variance in Ne/N. I also
evaluated scenarios using conditions as in figure 7B and
7C but with generation length ranging from to 10.T p 2
Results (data not shown) indicate the following: in both
models, performance of equation (8) is better for short
generation length and declines somewhat as T increases;
in the random model, the difference between predictions
of equations (7) and (8) is largest when T is small, and
adding the covariance term does not improve performance
with ; in the seed-bank model, equation (8) wasT p 10
significantly better at predicting Ne for all values of T
considered. Although equation (8) obviously does not cap-
ture all of the factors that affect Ne in these species, under
even the least favorable conditions evaluated it still ex-
plains over 50% of the variance in Ne/NT among replicates.
This expression, therefore, can be useful as a heuristic tool
for evaluating at least the relative importance of factors
that affect Ne.

Discussion

An important result of the above analyses (table 3; fig. 4)
is that discrete generation formulas for inbreeding Ne (eqq.
[4], [5]) provide a robust means of calculating effective
size over single and multiple generations in age-structured,
semelparous species. Previously, Waples (2002) used this
approach with an empirical data set and found qualitative
agreement with results based on monitoring changes in
allele frequency in simulated salmon populations. How-
ever, a direct comparison of Ne calculated from demo-
graphic data and actual levels of inbreeding calculated
from genetic data for the same individuals has not pre-
viously been made. Results presented here used integer
values of T; if T is not an integer, it can be rounded to
the nearest integer (T ∗) to produce a nominal generation
length. In that case, Ne computed from equation (4) or
(5) should be scaled by the factor T/T ∗ to produce an
unbiased estimate of Ne per generation.

Collectively, results show that the contrasting conclu-
sions reached by Nunney (2002) and Waples (2002) are
due primarily to different model assumptions. The as-
sumption that C is constant across years in the seed-bank
model severely constrains variance in realized reproductive
success, with the result that generational Vk/ is not sub-K
stantially 11 even with large variation in Nt. As a conse-
quence, Ne is close to NT, in rough agreement with the
prediction of Nunney’s model (eq. [1]). As variation in
Nt increases, the ratio decreases, and the harmonicÑ /Nt t

mean method increasingly underestimates true Ne.
When C is allowed to vary in the seed-bank model,

however, under most circumstances equation (1) no longer
provides an adequate approximation to Ne. With moderate

variation in C and relatively long generation times, true
Ne can be much closer to than to the prediction from˜TNt

equation (1). Still, under all seed-bank scenarios evaluated,
Ne computed using equation (5) was intermediate to values
predicted by the arithmetic mean and harmonic mean
methods.

Results for the salmon model are quite different: true
Ne was never intermediate to and , as predicted˜TN TNt t

by equation (1); rather, in all scenarios considered it was
even less than . It is useful to explore possible expla-˜TNt

nations for this fundamental difference. Nunney (2002)
predicted that agreement of Ne in the salmon model with
equation (1) would improve for larger T and JN. As shown
in table 3, however, that is not the case. Instead, upward
bias from using the arithmetic mean method increased
with increasing variability in Nt. Another possible expla-
nation is that the seed-bank model assumes a monoecious
diploid with the possibility of selfing, whereas Pacific
salmon have separate sexes. However, Nunney’s model is
general enough to allow consideration of random mating
without selfing, in which case the two models are equiv-
alent with respect to the expected rate of genetic change
(cf. eqq. [2] and [2′′] in Crow and Denniston 1988). There-
fore, neither different assumptions about T and JN nor the
different mating systems of plants and salmon can explain
the different results for the two models.

A more fundamental difference in the two models is the
method of population regulation. Two factors are note-
worthy in this regard. First, in the seed-bank model, var-
iance in N within a generation is nearly as large as the
variance for the entire time series (fig. 2, top), so even
moderate variation in N leads to strong divergence be-
tween and within a generation. In contrast, N˜N Ntt

changes more gradually in the salmon model because of
strong dependence on population size in two or more
parental years. Thus, although variance in N over the 80-
year time series shown in figure 2 is approximately equal
for the two models, the variance within a generation is
much less in the salmon model and, as a consequence,

and are not as divergent. Because of these different˜N Ntt

relationships between and within a generation, it is˜N Ntt

perhaps not surprising that in the salmon model˜N ! TNe t

but in the seed-bank model.˜TN ! N ! TNt e t

Second, the different methods of population regulation
result in different relationships between Nt and . If isk kt t

constant and is binomial within each year, then the2jk(t)

entire generation acts as an ideal population with K p
and . In the seed-bank model, C isk ≈ V N ≈ N p TNk e Tt t

constant and Nt is a random variable and only indirectly
leads to modest variation in , so agreement with thekt

arithmetic mean model is good. In contrast, in the salmon
model, variation in Nt arises directly from random vari-
ation in . By definition, variation in among yearsk kt t
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within a generation increases the generational variance in
reproductive success (Vk) and hence reduces Ne. The mag-
nitude of this reduction is determined primarily by
CV( ), but is also a factor (eq. [8]; fig. 7).k Cov (N , k )tt t

Therefore, it is important to consider the factors primarily
responsible for variation and covariation in Nt and kt

across years: variation in fecundity and cohort-specific sur-
vival and mechanisms of density dependence. Relevance
of these factors for salmon and monocarpic plants is dis-
cussed below.

Pacific Salmon

Mean fecundity varies among years in Pacific salmon
(Quinn and Bloomberg 1992), but the magnitude of var-
iation is usually dwarfed by large (often density indepen-
dent) annual fluctuations in juvenile survival that are com-
mon in both the freshwater and marine environments. For
example, lt (and hence ) can vary across several orderskt

of magnitude over a short period of time (Cass and Riddell
1999; Waples 2002). Simulation results for salmon re-
ported previously (Waples 2002) and in this article as-
sumed random variation in that was uncorrelated withkt

variation in population size. However, it is a fundamental
tenet of fisheries management that per capita production
increases at low population size and is depressed or as-
ymptotes at high density (Hilborn and Walters 1992), both
of which lead to . Equation (8) and figureCov (N , k ) ! 0t t

7 indicate that, to the extent that density-dependent com-
pensation occurs in salmon, reductions in Ne should be
even larger than indicated by a model assuming random,
uncorrelated variation in Nt and lt.

Monocarpic Plants

Perennials. A recent review of the evolutionary demog-
raphy of monocarpic perennials (Metcalf et al. 2003) in-
dicates that the following traits appear to be common in
these species: plants of the same size can vary substantially
in growth rate, survival and growth rates vary substantially
across years, seed production (and perhaps offspring qual-
ity) increases with parental size, reproductive success
among plants of the same size maturing in the same year
can vary due to timing of flowering, and the transition
from vegetative to reproductive state is affected by multiple
genetic and environmental cues. Collectively, these factors
indicate that in monocarpic perennials, variation in kt

across years is likely to be the rule rather than the exception
and that true Ne will be lower than predicted using the
arithmetic mean model. In addition, most population
models for these species assume that density dependence
occurs at the seedling stage, due to a limited number of
“safe sites” for germination (Metcalf et al. 2003). As

pointed out by Vitalis et al. (2004), this leads to an im-
portant difference compared with the seed-bank model,
because in this case the limitation applies directly to an
entire cohort. If the number of safe sites varies over time,
then will as well, with variation imposed on mean re-kt

productive success of plants flowering the previous year.
The number of safe sites might vary over time due to
variation in the number of empty sites or variation in
environmental conditions that allow more or less of the
empty sites to be suitable for germination in any given
year. A major contributor to the first factor is habitat
disturbance, which almost certainly varies over space and
time. It is also not hard to imagine that particularly fa-
vorable (or unfavorable) environmental conditions might
increase (or decrease) the number of empty sites suitable
for germination. Therefore, it seems likely that in many
perennial monocarps, variation in Nt caused by random
variation in carrying capacity might act in such a way to
increase variation in . As a consequence, Ne in thesekt

species might be better described by results of the salmon
model than the seed-bank model.

Is it likely that density dependence will take the form
of compensation, leading to a negative andCov (N , k )t t

further reducing Ne? Compensation would occur if, in
years in which relatively few plants flower, they either have
unusually high seed production or produce seeds with
higher probabilities of maturing and flowering. The extent
to which this occurs probably varies considerably across
species and, perhaps, across space and time within species.

Seed Banks. The assumption (Nunney 2002) that density
dependence acts at the germination stage (at which point
it applies to seeds randomly drawn from the seed bank
rather than to only a specific cohort) is widely used in
seed-bank models and seems reasonable for these species.
Therefore, it does not seem likely that density dependence
has a strong effect on Ne in plants with seed banks. How-
ever, the assumption that fecundity is constant over time
may not be realistic for many annual species, given the
evidence for large annual variation in seed production in
other monocarps. Similarly, given that seed banks are most
commonly found in populations that live in unpredictable
and/or extreme environments, it seems likely that the
probability of germination varies depending on environ-
mental conditions within a particular year (Levine and
Rees 2004). Finally, allowing for a maximum seed longevity
and an annual cost (chance of mortality) for seeds in the
seed bank (Vitalis et al. 2004) also would seem to be more
realistic. Mortality rates in the seed bank could also vary
from year to year depending on environmental conditions.
To the extent that they occur, all of these factors would
tend to increase variation in and reduce Ne comparedkt

with predictions of the arithmetic mean model.
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Effective : Census Size Ratios per Year

In order to focus on effects of fluctuating population size,
Nunney (2002) and Waples (2002) both assumed that

each year. However, in mostb p N /N p 1 N /N ! 1t b(t) t b(t) t

natural populations, so results presented above should be
regarded as maximum estimates of Ne per generation.
Yearly reductions in Nb(t) compared with Nt can be ac-
counted for in a general way as follows: seed banks, con-
stant C: ; seed banks, variable C:˜N ≈ N � (T � 1)Ne b(t) b(t)

; salmon, monocarpic perennials:˜TN ! N ! TNb(t) e b(t)

.˜N ! TN K TNe b(t) b(t)

Other Species

A variety of other semelparous species have variable age
at maturity, most notably crustaceans with diapausing
eggs. Results presented here should provide a framework
for evaluating how fluctuations in population size and
population demography interact to influence effective size
in these species.

A number of authors (e.g., Felsenstein 1971; Hill 1972,
1979; Orive 1993; Pollak 2000) have considered effective
size of iteroparous, age-structured species, but all assumed
constant population size and stable age distributions, so
results are not directly applicable to the topics considered
here (but see Engen at al. 2005). However, it can be shown
that if Nt is constant, the discrete-generation formulas used
here to estimate Ne from demographic data are equivalent
to the expression derived by Hill (1972, 1979) for Ne in
species with overlapping generations and a stable age
distribution.

The method used here takes advantage of the fact that
semelparous species reproduce only once, in which case
grouping T years of reproducing adults into nominal gen-
erations provides a good approximation to multigenera-
tional increases in inbreeding. It might be possible to ex-
tend this approach to iteroparous species, but the latter
are more complicated because of the uncertain relationship
between reproductive success in year t and lifetime repro-
ductive output.
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