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Nonlocal modeling is a rapidly growing field, with a vast array of applications and connections to

questions in pure math. One goal of this work is to present an approachable introduction to the

field and an invitation to the reader to explore it more deeply. In particular, we explore connections

between nonlocal operators and classical problems in the calculus of variations. Using a well-known

approach, known simply as The Direct Method, we establish well-posedness for a class of variational

problems involving a nonlocal first-order differential operator. Some simple numerical experiments

demonstrate the behavior of these problems for specific choices of kernel and boundary conditions.
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Chapter 1

Background and Motivation

The goal of this chapter is to introduce the fundamental concepts of nonlocal variational problems.

The hope is that the introduction in first two subsections will be understandable for anyone with

knowledge of multivariable calculus and linear algebra. A brief history is presented to place the

questions in their proper context, and key concepts are given some intuitive motivation. The

discussion is somewhat informal and technical details are mostly saved for later.

1.1 Calculus of Variations

A vast array of problems across the mathematical sciences can be viewed as optimization prob-

lems: minimizing error, maximizing profits, minimizing energy or material used in a given process,

maximizing the strength or stability of a structure, and so on. Some of these can be handled using

elementary techniques from calculus. If you can write down a sufficiently smooth function modeling

the quantity to be optimized, just take the derivative and set it equal to zero. This generally leads

to an algebraic equation, which can either be solved exactly or with well-established numerical

techniques. Even in cases with many variables, the same basic procedure generally holds: take the

gradient of the function, find where it is 0, and solve the corresponding system of equations.

From a mathematical standpoint, it is natural to wonder if these techniques can be extended to

a more general setting. Can we solve optimization problems in an abstract vector space? Is there

an analogous procedure? Additionally, the process mentioned above for the finite dimensional case

only gives necessary conditions for local extrema. For example, f(x) = x3 satisfies f ′(0) = 0, but

there is no local extremum at the origin. So we would also like to know when optimal solutions
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even exist: what are the sufficient conditions for the presence of an extreme value? These are the

sorts of questions investigated by the calculus of variations.

Studying these more general problems is not merely mathematical abstraction. As we will see,

problems in the calculus of variations have found all sorts of applications throughout science and

engineering.

1.1.1 Origins

The Isoperimetric Problem is perhaps the first problem ever solved in the calculus of variations.

Though a (non-rigorous) solution was known to the Ancient Greeks, the problem is now most

strongly associated with Dido, Queen of Carthage. One version of the story goes like this: Upon

arriving at the north coast of Africa, Dido negotiated to buy as much land as could be enclosed

enclosed by an oxskin. She cut the skin into thin strips and arranged them into a circle, thus

solving the problem of maximizing enclosed area given a fixed perimeter (Blasjö 2005).

The key difference between the isoperimetric problem and the optimization problems of elemen-

tary calculus is that Dido was looking for a curve rather than a point. To fully specify a continuous

path through space, one needs to specify the functional values for an infinite list of points. Thus,

the problem cannot be solved using the basic techniques of multivariable calculus, which only han-

dle finite dimensional spaces. To find necessary conditions for minimimization problems in infinite

dimensional spaces, we need the techniques of the calculus of variations.

The story of the isoperimetric problem also highlights another key component of the calculus

of variations. Beginning in 1838, Jakob Steiner published a series of five proofs that the circle does

in fact maximize area given a fixed perimeter. He relied primarily on geometric arguments (which

are presented in Blasjö 2005), but made a crucial mistake. He never gave any justification for the

fact that the problem had a solution. As Weierstrass noted, Steiner’s arguments “do not prove

that there is an actual maximum, and not just an upper bound” (Blasjö 2005). Thus, it was not

until 1879, when Weierstrass showed the problem was well-posed, that the isoperimetric problem

was fully solved.

We’ve seen that the types of problems we will be concerned with thus involve two considerations:
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1. Sufficient conditions: when does a solution even exist?

2. Necessary conditions: what properties must the solution satisfy?

For much of the history of the calculus of variations, the focus was on this second question. To better

explore the ideas involved, we turn to another classic example from the history of mathematics.

In June of 1696, John Bernoulli posed the following problem:

Given points A and B in a vertical plane to find the path AMB down which a movable

point M must, by virtue of its weight, proceed from A to B in the shortest possible

time (Goldstine 1980).

Note that this does not ask for the shortest possible distance, which is of course just a strraight line

connecting A and B. Rather, the problem requires minimizing the time of travel. The problem is

illustrated in Figure 1.1, and has become known as the brachistochrone problem (from the Greek

for ‘shortest time’).1

Figure 1.1: Bernoulli’s Brachistochrone problem: find the path connecting A and B which minimizes
the travel time of the falling object M . Image adapted from Kot 2014.

Many of the top mathematicians in Europe submitted solutions, including Leibniz, l’Hôpital,

Newton and John’s brother James Bernoulli.2 The solution to the problem is a curve called the
1Some very nice animations and interactive explorations of the problem are hosted by the MAA at https:

//www.maa.org/press/periodicals/convergence/historical-activities-for-calculus-module-3-optimizat
ion-galileo-and-the-brachistochrone-problem.

2The Bernoulli family included a shockingly large number of hugely influential mathematicians. In fact, in his

https://www.maa.org/press/periodicals/convergence/historical-activities-for-calculus-module-3-optimization-galileo-and-the-brachistochrone-problem
https://www.maa.org/press/periodicals/convergence/historical-activities-for-calculus-module-3-optimization-galileo-and-the-brachistochrone-problem
https://www.maa.org/press/periodicals/convergence/historical-activities-for-calculus-module-3-optimization-galileo-and-the-brachistochrone-problem
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cycloid. This is the path a point on a circle traces out as it rolls. Supposedly, Newton wrote his

solution the very same day he received the problem. For whatever reason, he decided to submit

his solution anonymously. But upon receiving the work, John Bernoulli famously said he knew

immediately that it was Newton, because he could “recognize the lion by his claw” (Goldstine

1980).

These initial solutions, like Steiner’s solution to the isoperimetric problem, primarily relied on

geometrical reasoning. The Bernoullis and other mathematicians of the time went on to study many

related problems, including determining the shape of a hanging wire, supported only at each end

(known as a catenary curve). This work, and the brachistrocrone problem in particular, led Euler

to publish The Method of Finding Curves that Show Some Property of Maximum or Minimum in

1744. Euler considered 100 optimization problems and began formulating the analytic framework

that we use today (Goldstine 1980).3 This work inspired Lagrange, who was the first to introduce

the notion of variations and solidify the foundations of the field in more modern terms.4

To illustrate the basic method, let’s set up the brachistochrone in more detail.5 Suppose that

the path connecting A and B is given by a function y(x). Let s denote the arc length and ṡ denote

its time derivative, the velocity of the object M moving along the curve. If L is the total length of

well-known text History of Mathematics, Carl Boyer refers to the whole period between Newton and Euler as simply
“The Bernoulli Era” (Boyer 1968). Both Euler and his father were pupils of a Bernoulli.

The relationship between James and John is particularly notable. Although both made many contributions
to extending infintesmial calculus to new problems, there had been a longstanding rivalry between the brothers.
Interestingly, one of their public feuds involved the isoperimetric problem mentioned earlier. James found a solution
in 1697, recognizing it as a calculus of variations problem. But for some reason it was not made public until 1706.
John published an incorrect solution, and refused to admit both that his approach was flawed and that his brother
had given a correct analysis (Stillwell 2010, p. 271).

3For some additional discussion of Euler’s method, see Section 2.2 of Kot 2014.
4Lagrange was only 19 when he wrote to Euler with his general solution to problems in the calculus of variations.

Euler, who had independently come to the same conclusion (what is now called the Euler-Lagrange Equation, which
will be discussed later) intentionally withheld his paper so that the young Lagrange could publish first. Euler
continued to support Lagrange throughout his career, as it was Euler’s recommendation that secured Lagrange a
spot as a foreign member in Berlin’s Academy. In fact, Lagrange’s work across math and physics was so impressive
that when Lagrange moved to Prussia in 1766, King Frederick the Great welcomed him as “Europe’s Greatest
Mathematician.” Lagrange led a very interesting life, getting tangled up with royals and nobles during the French
revolution. (Motz and Weaver 1993, p. 159). Even Napoleon referred to Lagrange as “the lofty pyramid of the
mathematical sciences” (Motz and Weaver 1993, p. 161).

5The discussion below is based on Chapter 1 of Kot 2014.
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the curve, then the total time T of travel from A to B is given by

ˆ L

0

1

ṡ
ds.

We can use the arc length formula from calculus (essentially the infinitesimal version of the

Pythagorean Theorem) to find

T =

ˆ b

a

1

ṡ

√
1 + y′2 dx.

Note that ṡ is the derivative with respect to time, while y′ is the derivative of height or vertical

position with respect to x. Recall that kinetic energy is given by 1
2mṡ2 and gravitational potential

energy is mgy. Assuming that M starts at rest and energy is conserved, we have

1

2
mgṡ2 +mgy = mgya,

where ya is the initial height of the point A (as in Figure 1.1). We can then solve for the velocity:

ṡ =
√

2g(ya − y).

Thus, total time is given by

T =
1√
2g

ˆ b

a

√
1 + y′2

ya − y
dx. (1.1)

There are several things to note about Equation 1.1. First, the quantity T depends not on the choice

of a single input, but on the entire path taken. Thus, we think of T as a functional: a mapping

that takes a path or function as an input (or, more generally, an element of some abstract vector

space), and outputs a real number. Also, both y and its first spatial derivative, y′ appear inside

the integral. This turns out to be fairly typical: functionals studied in the calculus of variations

can be represented as something like

J [y] =

ˆ
D
f
(
x, y(x), y′(x)

)
dx, (1.2)
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where J is the functional and D is some domain of integration.6 To simplify notation, we write

“y” instead of “y(x),” since it is usually clear from context what the argument of u should be. To

ensure the problem is well-formed, we need to specify the set of possible solutions. For example,

Bernoulli probably implicitly assumed that the path of least time should be fairly smooth, without

any jumps. Thus, when fully describing a minimization problem in the calculus of variations, we

always provide the functional J , as well as its admissible class. For example, the admissible class

for the original brachistochrone problem might be something like

A =
{
y ∈ C2

(
[a, b]

)
: y(a) = ya, y(b) = yb

}
,

where C2
(
[a, b]

)
denotes the set of all functions from [a, b] into R that have continuous second

derivative.

Now that the problem is set up, we turn to Lagrange’s notion of variations.7 One way to think

of the derivative is as measuring the change in the functional output when we nudge or perturb the

input by a small amount. In one dimensional problems, there’s really only one direction to nudge

the input. But in higher dimensions, it doesn’t really make sense to simply take a derivative. You

must first specify the direction in which you are perturbing the input. Once a point and a vector

are chosen, we can take the derivative of the function in the direction of that vector. The basic idea

of Lagrange’s “first variation” is to extend this notion of a directional derivative to the space of

functions. Suppose we have a path y in the admissible class A. Fix a “point”, y, and a “direction,”

v. Then we nudge the input y a tiny bit in the direction of v, and measure the corresponding change

in the functional J . We call v the variation. To make sure that everything is still well-defined,

we need to choose v carefully: y(x) + εv(x) should still be in the admissible class, as long as ε is
6It turns out that focusing on integration doesn’t limit the scope of inquiry much, since the Riesz Representation

Theorem (Fonseca and Leoni 2007, p. 159) implies that most functionals we care about in this context can be
represented as some kind of integration. See also Buttazzo 1989 for some additional facts about integral representation
of functionals.

7This should not be viewed as a historical account: we are combining Lagrange’s original ideas with some more
modern concepts and terminology here.
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sufficiently small. For example, in the brachistochrone problem, the set of admissible variations is

V =
{
v ∈ C2

(
[a, b]

)
: v(a) = 0, v(b) = 0

}
.

This ensures that the boundary conditions are still satisfied whenever we add some v ∈ V to any

y ∈ A. Figure 1.2 depicts one potential choice of a function y and an admissible variation v.

Figure 1.2: We think of a variation as determining the direction in which we perturb the function.
Image adapted from Hrusa and Foss 2002.

Now we can define a notion of directional derivative that is completely analogous to the familiar

definition of a derivative:

δJ [y; v] := lim
ε→0

J [y + εv]− J [y]

ε
=

d

dε
J [y + εv]

∣∣∣∣
ε=0

.

When this limit exists, we say δJ [y; v] is the Gâteaux derivative of J at y, in the direction of v. Now

suppose that the Gâteaux derivative in the direction of v is nonzero for some y. Then we could

modify y by pushing it slightly in the direction of v and either increase or decrease the value of J

(see Figure 1.3). Thus, y could not be a local extremum of J . So, like in elementary calculus, there

is a simple necessary condition for local extrema in terms of directional derivatives: If y minimizes

(or maximizes) the functional J , then δJ [y, v] = 0 for every admissible variation v ∈ V .

The central result of Lagrange’s variational approach was deriving a differential equation from

the necessary condition listed above. This argument leads to the Euler-Lagrange Equation: If ŷ is
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Figure 1.3: In the finite dimensional case, extreme values of smooth functions must occur at points
where the directional derivative in every possible direction is 0. Image credit: MartinThoma,
WikiMedia Commons.

a minimizer of J over the set A, then it must satisfy

∂f

∂ŷ
− d

dx

∂f

∂ŷ′
= 0. (1.3)

Thus, instead of getting an algebraic equation and solving for a point line in the one dimensional

problem, we have a differential equation and solve for a function. We skip the details of the proof

since they are not needed for the main results of this work. But the derivation is not very difficult

to follow, especially in the particularly nice case considered above, where all our functions live in

C2
(
[a, b]

)
. Many books contain the relevant details; see for example Logan 1977. It is worth noting,

however, that one of the key tools used in the proof is integration by parts. Roughly speaking, as

long as we are working with functions where integration by parts makes sense, the argument goes

through. Thus, it is more natural to study variational problems in a space of functions much larger

than C2
(
[a, b]

)
, called Sobolev space. Again, we skip those details here. See Evans 1998 or Leoni

2009 for more information.

Now that the basic concepts have been introduced, we look at some applications of variational

problems to mechanics to help motivate further study.

https://commons.wikimedia.org/wiki/File:3d-gradient-cos.svg


9

1.1.2 Connections with Mechanics

The development of mechanics is deeply interlinked with the development of variational methods.

Indeed, as Cornelius Lanczos correctly noted: “There is hardly any other branch of the mathemat-

ical sciences in which abstract mathematical speculation and concrete physical evidence go so fully

together and complement each other so beautifully” (Lanczos 1949, p. vii).

Intuitively, we know that nature often ‘takes the path of least resistance.’ This concept is

reflected across many areas of physics: soap bubbles generally for a shape minimizing surface area,

water flows down the hill rather than up, elastic bodies minimize internal energy, and so on. Even

before the brachistochrone problem, minimization problems of the sort studied by the calculus of

variations had found their way into the physical sciences. In 1662, Fermat gave a derivation of

Snell’s Law, which models the refraction of light as it enters a new medium, based on the belief

that “nature operates by means and ways that are ‘easiest and fastest’” (Goldstine 1980, p. 1).8

This is now known as Fermat’s Principle: light travels along paths that minimize total time. This

principle was fundamental to understanding optics at the time, and it serves as the first example

in the European tradition of a variational principle forming the basis for a physical theory. Over

the next few centuries, variational principles of this sort massively influenced advances in physics.

The history here is complicated but fascinating; only a very rough outline is presented here. For

historical detail, Dugas 1955 is a classic text on mechanics, while Goldstine 1980 focuses specifically

on the development of the calculus of variations. For a wonderful overview that includes historical

and philosophical insight in addition to the details of the physical theories, see the classic text

Lanczos 1949. For a more mathematical approach, Levi 2014 presents the intuition and numerous

examples, while Arnold 1989 gives a more rigorous account of the usual physical theories.

In Newtonian mechanics, the fundamental objects of study are vectors, like momentum or force.

The vectorial approach to mechanics surely has it strengths, but it is not the only way to classical

mechanics. Leibniz introduced a notion of vis viva, or ‘living force,’ which is what we know today
8His method was developed as far back as 1629, long before Newton or Leibniz formulated modern calculus.

However, Fermat’s technique is not so different from more recent methods; Goldstine gives the full argument, and
notes “Essentially what Fermat does when he wishes to maximize or minimize a function f of E is to calculate f ′(0)
and set this value to zero” (Goldstine 1980, p. 3). It was Fermat’s method that inspired John Bernoulli’s solution to
the brachristochrone.
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as kinetic energy (only missing the factor of 1
2 , which turns out to be significant). Around the same

time, people were studying work, which is a line integral of force along the path of motion, and is

essentially equivalent to potential energy. These two types of energy formed the foundation of an

alternative approach to Newton’s force and momentum vectors.9 Let’s look at some of the most

important developments in this tradition.

Building on the work of John Bernoulli and others,10 in 1743 the French mathematician

d’Alembert gave a formulation of the Principle of Virtual Work that applied to both static and

dynamic problems (Lanczos 1949, Parts III and IV). We skip the details, but here’s the central

idea: if a particle moves along a trajectory y, we consider virtual displacements, which correspond to

the variations y(t)+ εv(t) introduced in the previous section. The Principle of Virtual Work states

that the net work done along any of these perturbed paths must be 0. Since work is an integral

of force along a path, this principle takes a form like Equation 1.2. Over the next several decades,

Maupertuis, Euler, Lagrange, Hamilton, Jacobi and Gauss all formulated versions of essentially

this same idea. (Many of these turn out to be equivalent in many contexts; see for example page

93 of Arnold 1989.) The most common version involves a quantity known as action. There is no

simple intuition for what exactly action measures, but in most cases it can computed by integrating

the difference between kinetic and potential energy:

S[y] =

ˆ b

a
L(t, y, y′) dt =

ˆ b

a
T − U dt, (1.4)

where T is kinetic energy, generally 1
2my′2, U is potential energy, which usually only depends on y,

and the integrand L is called the Lagrangian. The central variational principle of classical mechan-
9Although it seems so familiar now, there was actually a great deal of controversy around the notion of energy.

See Part Three, Chapter Two of Dugas 1955.
10As usual in the history of the sciences, the standard stories focus on the contributions of men. Thus, the

significance of Émilie du Châtelet has often been overlooked. She was the first to translate Newton’s Principia into
French in 1759, and her version is still the standard used today. It is hard to overstate the significance of bringing
Newton’s work to France. Additionally, she gave three compelling arguments in favor of using kinetic and potential
energy, one philosophical, one empirical and one mathematical. These developments were crucial for the progress
made later by d’Alembert and Maupertuis (Reichenberger 2018). In particular, she helped develop the concept of
conservation of energy, which is absolutely essential to our modern understanding of mechanics. Independent of her
contributions to physics, du Châtelet is quite an interesting character in her own right. She corresponded with John
(the second one) Bernoulli and Euler, was taught by two of John (the first one) Bernoulli’s most notable students, and
was the mistress of Voltaire. Her work in philosophy is significant as well, see her entry in the Stanford Encyclopedia
of Philosophy.

https://plato.stanford.edu/entries/emilie-du-chatelet
https://plato.stanford.edu/entries/emilie-du-chatelet
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ics is the Principle of Stationary Action: a particle will always move along a trajectory y satisfying

δS[y; v] for all admissible variations v. There are various theories built on this fundamental prin-

ciple. We focus on Lagrangian Mechanics, developed around 1789, about 100 years after Newton’s

Principia.

Since the preceding discussion has been rather vague, let’s look at the Principle of Stationary

Action in a simple special case. Suppose that the Lagrangian for a given particle is

L(t, y, y′) =
1

2
my′2 − U(y),

for some potential energy function U and a constant m > 0. Since the particle moves on a path of

stationary action, its trajectory must satisfy the Euler-Lagrange Equation:

∂L

∂y
− d

dt

∂L

∂y′
= 0.

Recall from elementary physics that for conservative forces,

F = − ∂U

∂y
.

Thus, the partial derivative of L with respect to y is just the force F acting on the particle.

Computing the other derivatives, the Euler-Lagrange Equation implies

F − d

dt
(my′) = 0 =⇒ F = my′′.

Thus, we have recovered Newton’s Second Law: force is mass times acceleration.

This may seem like a lot of work just to end up at Newton’s Second Law, which was of course

well-known by the time these variational principles were formulated. So it is natural to wonder why

all the additional work of introducing the calculus of variations is worthwhile. In fact, there are

a number of advantages to Lagrangian mechanics. First, note that the fundamental object of the

theory, the Lagrangian L, is a scalar. Contrast this with the standard Newtonian approach, where

the basic concepts are necessarily vectors. Scalars are usually easier to work with, so for some
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problems the Lagrangian approach is computationally easier. Similarly, Lagrangian mechanics is

usually set up using generalized coordinates. This means that constraints can be viewed as reducing

the number of dimensions of the problem. For example, consider a bead moving along a wire in

three-dimensional space. Newton’s formulation requires computing a normal force at each instant,

which pushes on the bead and keeps it on the wire. But Lagrangian mechanics can describe the same

situation quite simply as a one-dimensional problem, viewing the constraints as removing degrees

of freedom instead of adding new forces. Additionally, Newtonian mechanics is best suited for

individual particles, while the variational methods extend quite naturally to continuous problems

as well (fields, fluids, elastic bodies, etc).

The Lagrangian approach to coordinates turns out to be especially significant. The central ideas

are not committed to the same sort of Euclidean space needed for Newtonian mechanics. Thus, the

techniques of Lagrangian mechanics carry over to modern physics in a way Newtonian mechanics

does not. For example, it is possible to formulate the Lagrangian function in a covariant fashion,

which is one of the requirements of Einstein’s relativity (Lanczos 1949). Even in quantum field

theory, physicists often specify a particular model by simply writing down its Lagrangian. This

can make the symmetry of the problem more apparent, as well. This leads to another significant

advantage of the variational approach to mechanics: Noether’s Theorem.

Emmy Noether was one of the sharpest mathematicians of the early 20th Century. She worked

closely with Klein, Hilbert and Einstein, making significant contributions across multiple fields

of mathematics. In 1918, she published Invariante Variationsprobleme, proving two theorems

on the certain symmetries of variational problems (in particular, regarding the invariance of the

variational problem under the action of a Lie group with a finite number of infinitesimal generators).

Essentially, her work established a one-to-one correspondence between the symmetries and the

conservation laws of a given problem. For example, Euclidean space is isotropic (the same in

all directions), so Lagrangians in this setting are often invariant under rotations. This not so

surprising: the outcome of the experiment doesn’t usually depend on whether the lab is facing East

or West. Noether’s Theorem shows that the law of convservation of angular momentum follows as

an immediate consequence of invariance under rotations. It is difficult to overestimate the impact of
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this work on the progress of theoretical physics in the following years. As relativity was developed

and Klein’s Erlangen Program advanced, the role of symmetry became absolutely essential to our

understanding of space and time. And conservation laws are powerful tools, both mathematically

and philosophically, for understanding problems in dynamics.

Formulating the fundamental principles of mechanics in terms of variational problems was also

crucial to Noether’s insight. David Hilbert was especially enthusiastic about the power of this

formulation. In 1921 Felix Klein wrote to Wolfgang Pauli, a leading physicist, accusing Hilbert of

“a fanatical belief in the variational principles, that they can explain the reality of nature by means

purely of mathematical considerations” (Kosmann-Schwarzbach 2010, p. 27). This commitment to

variational principles as the true, fundamental laws of nature can also be seen in Hilbert’s work

on general relativity: he gave a formulation of Einstein’s theory in terms of a variational principle,

now known as the Einstein-Hilbert Action.11 And the Principle of Stationary Action, along with

Noether’s results, led Richard Feynman to give his path integral formulation of quantum mechanics,

part of what earned him a Nobel Prize in 1965. The insights gained from the calculus of variations

have been absolutely essential to nearly all of the major advances of modern theoretical physics.

For more information on the deep connections between modern physics and Noether’s work,

see Kosmann-Schwarzbach 2010. Logan 1977 discusses some of the relevant mathematical theory

involved. For a physics perspective on the importance of symmetry, see Schwichtenberg 2015. The

path integral formalism is an especially fascinating extension of the Principle of Stationary Action

and has deeply influenced math as well as physics. See Johnson and Lapidus 2002 for a detailed

overview.

Although we have focused on applications of variational principles to problems in classical

mechanics, this is not the only reason to care about the calculus of variations. Applications have
11Although it is usually credited to Einstein, there are thorny historical debates about who exactly should get

credit for the various parts of general relativity. Poincare, Riemann, Minkowski, Hilbert, Weyl and others all made
contributions in one way or another. In fact, in 1923 Hilbert essentially claimed that he found the fundamental field
equations of general relativity, in the form of a variational principle, prior to Einstein: “the final result of Einstein’s
latest work amounts to a Hamiltonian principle that is similar to the one that I had originally proposed. Indeed, it
might be the case that the content of this latest Einsteinian theory is completely equivalent to the theory originally
advanced by myself” (Majer and Sauer 2005). He accused Einstein of taking a “colossal detour” for 8 years before
finally arriving at the same equation Hilbert had suggested, which Hilbert saw as a “a beautiful confirmation” of his
own work. It is not totally clear if Hilbert is correct about this or if he was making self-serving comments with the
benefit of hindsight and a bit of revisionist history. See Majer and Sauer 2005 for discussion.
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been found in economics, fluid dynamics aerodynamics, traffic flow, image processing, machine

learning and thin-film physics (Hardt 2004; Troutman 1996; Calder 2022; Evans 1998). In the

1960s and on, variational methods were applied to problems in nonlinear elastic bodies with great

success (see, for example, Ball 1976). Perhaps the most extensive usage of variational techniques is

found in the modern field of optimal control theory. This is a vast subject in engineering involving

solving differential equations coming from control problems while simultaneously optimizing some

objective function. For example, programming a self-balancing robotic arm while minimizing the

amount of battery power used. For details and examples connecting optimal control and the

calculus of variations, see Troutman 1996 and Levi 2014. A classic text with numerous examples

at a slightly more advanced level is Cesari 1983.

There is plenty of motivation for studying variational problems from within mathematics, inde-

pendent of the many applications mentioned above. The tools of variational calculus are essential

to modern approaches to partial differential equations, through Lax-Milgram theory and Dirichlet’s

Principle for example (Evans 1998). There are also connections to problems in differential geome-

try, where geodesics (paths of minimal distance) play a fundamental role. For a lighthearted and

brief discussion of connections to differential geometry, dynamical systems and Morse theory, see

Hardt 2004, p.13-36. A much more technical discussion of connecting variational methods to other

branches of mathematics can be found in Struwe 2008. Extending the techniques of calculus and

analysis to functionals like 1.2 also motivated the work of Weierstrass, Hilbert, Fréchet, Lebesgue

and others to study abstract metric spaces and function spaces, laying the groundwork for modern

day functional analysis.

Analytical mechanics mostly relies on the tools of the calculus of variations to find a minimizer

of some integral. As we noted in the previous section, questions of existence and uniqueness also

arise in the context of variational problems. In the next section we explore more recent work in

finding sufficient conditions for the existence of a minimizer.



15

1.1.3 Modern Developments and The Direct Method

Throughout most of the history discussed in the previous section, it was simply assumed that

solutions to the variational problems always existed. Especially for nonnegative functionals applied

to problems in nature, there was essentially no question that a unique minimizer would always

exist. That is, it was assumed that functionals always attained their absolute minimum. The first

counterexample was found by Weierstrass. (This discussion is based on Goldstine 1980, p. 391,

and a related case is discussed in Example 4.6 of Dacorogna 2008.) He showed that the functional

W [y] =

ˆ 1

−1
x2y′2 dx (1.5)

does not attain its minimum over the admissible class

A =
{
y ∈ C1

(
[−1, 1]

)
: y(−1) = 0, y(1) = 1

}
.

Since y(−1) 6= y(1), note that y cannot be constant and so y′ cannot be identically zero. However,

Weierstrass showed that the functional J can be made arbitrarily close to 0 using the following

functions:

yε(x) =
1

2
+

1

2
·
arctan

(
x/ε
)

arctan
(
1/ε
) .

For every ε > 0, the function yε is indeed in the admissible class. But as ε → 0, J [yε] → 0. Figure

1.4 shows plots for two choices of ε.12

As this was the era of increased rigor throughout mathematics, this example motivated the

community to investigate questions like existence and uniqueness of minimizers more deeply. This

is reflected in Hilbert’s famous lecture, “Mathematical Problems,” delivered to the International

Congress of Mathematicians in 1900. Several of his problems concern the calculus of variations;

his final 23rd problem simply calls for “further development of the methods of the calculus of

variations” (Hilbert 1902).

Perhaps the first major result in establishing the existence of a minimizer is also due to Weier-
12To better see the limiting behavior as ε approaches 0, an interactive plot is hosted at https://www.wolframclo

ud.com/obj/michael.pieper/Published/WeierstrassCounterexample.nb.

https://www.wolframcloud.com/obj/michael.pieper/Published/Weierstrass Counterexample.nb
https://www.wolframcloud.com/obj/michael.pieper/Published/Weierstrass Counterexample.nb
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Figure 1.4: For any ε > 0, yε is smooth and satisfies the boundary conditions. As ε → 0, this
family of functions approaches a step function with a discontinuity at 0. This step function makes
the functional W equal to 0, but is not in the admissible class.

strass. His theorem illustrates some of the crucial elements of the direct method needed later, so

we present the theorem and a proof in full. But first, we need to introduce a few definitions.

Recall that in the familiar setting of functions from the real line to itself, one way to ensure

that a function attains its minimum is to require (1) that the domain is compact and (2) that the

function is continuous. These assumptions can be weakened if we introduce the following concept.

Definition 1.1.1: Let X be any topological space, and f be some function from X into R∪{±∞}.

We say that f is lower semi-continuous if the following holds for all x0 ∈ X:

f(x0) ≤ lim inf
x→x0

f(x).

Clearly, if f is continuous it is also lower semi-continuous. Intuitively, we think of the above
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condition as stating that any time f has a discontinuity, any jumps can only decrease the function’s

value. This is illustrated in Figure 1.5.

Figure 1.5: Although f is discontinuous at x0, it still satisfies f(x) < lim infx→x0 f(x). Thus, f
is lower semi-continuous at x0. However, at x1 the function value suddenly increases, so f is not
lower semi-continuous there. Image adapted from Zabarankin and Kurdila 2005.

An equivalent characterization will be useful in proving Weierstrass’ theorem:

Lemma 1.1.2: A function f : X → R ∪ {±∞} is lower semi-continuous if and only if, for every

t ∈ R, the set {
x ∈ X : f(x) ≤ t

}
is closed in X.

For a proof of this fact, see Proposition 3.4 of Fonseca and Leoni 2007. The significance of

lower semi-continuity is demonstrated by the following theorem of Weierstrass which can be found

as Theorem 3.6 in Fonseca and Leoni 2007 or 7.3.1 of Zabarankin and Kurdila 2005.

Theorem 1.1.3 (Weierstrass): Let X be a topological space, K be some compact subspace of X,

and f : X → R ∪ {±∞} be lower semi-continuous. Then there exists some x0 ∈ K such that

f(x0) = inf
x∈K

f(x) = min
x∈K

f(x) = m.
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Proof. Suppose for the sake of contradiction that the infimum is not attained. Then for every

x ∈ K, we can find some mx ∈ R such that m < mx < f(x). For each x ∈ K, define the following

set:

Ux :=
{
y ∈ L : f(y) > my

}
.

First, note that our choice of mx and definition of Ux immediately imply that, for any x ∈ K, x

is in Ux. Lemma 1.1.2 implies that the set
{
y ∈ K : f(y) ≤ r

}
is closed for any r ∈ R. Hence, the

set
{
y ∈ K : f(y) > r

}
is open, since it is the complement of a closed set. Each of our sets Ux are

precisely of this form, so the collection U := {Ux : x ∈ K} forms an open cover of K. Since K is

compact, there must be a finite subcover of {Ux}x∈K . That is, there exist some Ux1 , Ux2 , . . . , Uxn

such that

K ⊆
n⋃

i=1

Uxi .

Each set Uxi corresponds to some real number mxi . Since there are only finitely many, we can take

a minimum:

m0 := min
i≤n

mxi .

Now choose any arbitrary y ∈ K. Since the collection Ux1 , . . . , Uxn covers K, there is some set Uxk

that contains y. Then, by definition,

f(y) > mxk
> m0.

Therefore, m0 is a lower bound for
{
f(y) : y ∈ K

}
. But m0 is one of the numbers we chose satisfying

m0 > m = infx∈K f(x). This means we have found a lower bound greater than the infimum, which

is a contradiction.

The result above shows that a compact domain and a lower semi-continuous functional are

sufficient for the existence of a minimizer. However, in the contexts we are interested in, these two

conditions are too restrictive. This motivates moving to a weaker topology, where the sufficient

conditions are more easily met. Here is the general strategy, as described in Section 3.2 of Fonseca

and Leoni 2007.
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1. Start with a minimizing sequence {xn}∞n=1 in a space X:

lim
n→∞

f(xn) = inf
y∈X

f(y).

As long as degenerate cases are ruled out, such a sequence will always exist.

2. By moving to a weaker topology on X, establish sequential compactness of the domain.

Sequential compactness then implies the existence of a subsequence
{
xnk

}∞
k=1

, converging (in

the weaker topology) to some x0 ∈ X. Also, since this is still a subsequence of a minimizing

sequence, we have

lim
k→∞

f(xnk
) = inf

y∈X
f(y).

3. Prove that f is lower semi-continuous in the weaker topology. This implies

lim
k→∞

f(xnk
) ≥ f(x0).

4. Since x ∈ X, the definition of infimum immediately implies

f(x0) ≥ inf
y∈X

f(y).

Combining the above equations, we have

inf
y∈X

f(y) = lim
k→∞

f(xnk
) ≥ f(x0) ≥ inf

y∈X
f(y).

Thus, x0 minimizes f over X.

This technique is called The Direct Method, and it was built up by Tonelli, Morrey, and many

others in the decades following Weierstrass and Hilbert.13 The two essential ingredients in modern

formulations of the direct method are a convexity condition, and a growth condition called coercivity.

An intuitive sketch of these concepts is below. For a very readable introduction to convex analysis
13See Remarks 3.16 and 3.25 of Dacorogna 2008 and the bibliographic notes at the end of Chapter 2 in Cesari

1983 for a list of contributors.
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and the tools needed for the direct method, see Chapter 7 of Zabarankin and Kurdila 2005 or

Chapter 4 of Calder 2022. Section 8.2 of Evans 1998 introduces the relevant concepts and goes on to

connect the direct method to problems in partial differential equations. A more thorough discussion,

especially concerning different versions of the convexity condition, can be found in Chapters 3 and

4 of Dacorogna 2008. The text Cesari 1983 is a classic, and Fonseca and Leoni 2007 gives a

more modern treatment. Sometimes counterexamples can be more illuminating than cases where

everything goes smoothly. The clear and concise work by Serovaǐskiǐ 2004 gives several natural

problems where the convexity or coercivity conditions are not met and shows that the problems

are ill-posed. Also, section 6 of this book discusses a problem lacking continuous dependence on

parameters (sometimes called Hadamard well-posedness).

Convexity is the key tool needed to ensure lower semi-continuity in the weak topology. In an

introductory calculus course, convexity is usually described in terms of the second derivative test:

f is convex if f ′′ ≥ 0. A similar idea can be captured in terms of the first derivative: f is convex

if the graph of f lies above its tangent line (f(x) ≥ f(x0) + f ′(x0)(x − x0)). However, we will

be working in spaces of functions where the derivative may not be defined. Thus, we use a more

general notion of convexity. First, we need to introduce the notion of a convex set.

Definition 1.1.4: Let V be a vector space. We say that X ⊆ V is a convex set if for all x, y ∈ X

and all t ∈ [0, 1],

tx+ (1− t)y ∈ X.

The expression tx + (1 − t)y in the previous definition should be thought of as a parametric

equation for a line, connecting x and y. This is illustrated in Figure 1.6.

We apply a similar idea to functions: f is convex if every secant line connecting two points on

the curve lies below the curve itself. Note that this definition only makes sense if the domain of f

is a convex set.

Definition 1.1.5: Let X be a convex set and let f : X → R be given. We say f is convex if for
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Figure 1.6: The set on the left is convex. However, the set on the right is not, since there is a point
on the line connecting x and y that outside the set. Image adapted from Zabarankin and Kurdila
2005.

every x, y ∈ X and every t ∈ [0, 1],

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y).

This concept is illustrated in Figure 1.7. This figure also illustrates why it is not so surprising

that convexity would be associated with existence of a minimizer, and why strict convexity is related

to uniqueness of minimizers.14

Figure 1.7: This function is convex, since its graph lies below any secant line.

In many of the relevant cases, convexity implies lower semi-continuity in both the strong and

weak topologies.15 (In some cases convexity and lower semi-continuity even turn out to be equiva-
14There is a lot more to say about convexity. In addition to the citations a few paragraphs above, Rockafellar 1970

is a standard reference. We focus on one dimensional problems, but different convexity conditions (quasiconvexity,
polyconvexity) are more natural choices for problems in high dimensions.

15See Sections 2.18 and 2.19 of Cesari 1983, Proposition 4.26 of Fonseca and Leoni 2007, Theorems 7.2.4-7.2.6 of
Zabarankin and Kurdila 2005, Section 3.2 of Dacorogna 2008, and Theorem 4.22 of Calder 2022. Also, we are leaving
out relevant details from functional analysis here. Related results on the relevant Banach spaces can be found in, for
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lent.) Through methods involving relaxation, the direct method can be extended even to functions

failing to meet our convexity condition, but we do not consider such cases here (see, for example,

Buttazzo 1989).

Now that we have a simple condition to ensure lower semi-continuity, we turn to the other key

component in the direct method: coercivity. This is a growth condition that ensures a certain kind

of boundedness. The term “coercive” is often used to refer to a certain type of property, as opposed

to referring to a single fixed condition. The exact meaning varies based on context; here are a few

examples of coercivity conditions:

• A functional f defined on a normed vector space (X, ‖·‖) is coercive if

‖x‖ → ∞ =⇒
∣∣f(x)∣∣→ ∞.

• A functional f : X → [0,∞) is coercive if there is some λ > infx∈X f(x) such that{
x ∈ X : f(x) < λ

}
is sequentially precompact.

• A functional f : R3 → R is coercive if it satisfies

f(x, y, z) ≥ c1|z|p − c2,

for some c1, c2 > 0 and p > 1.

• A functional f : R3 → R is coercive if it grows superlinearly with respect to its third

argument:

lim
z→∞

f(x, y, z)

|z|
= ∞, ∀x, y.

These are all slightly different ways of capturing the same idea. One way of recognizing the

significance of coercivity is through the following theorem. Intuitively, it states that when looking

for minimizers of f we don’t need to search the entire domain. It is sufficient to restrict out attention

to some relatively closed and bounded subset.
example, V.4.2 and V.13.1 of Conway 2019 or Chapter V of Yosida 1980. We cite the relevant details as needed in
Sections 2.3 and 3.2.
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Theorem 1.1.6: Let X be a normed vector space and M ⊆ X be closed in the norm topology. If

f : M → R is coercive, there exist some z ∈ M and R ∈ R such that

inf
x∈M

f(x) = inf
{
f(x) : x ∈ M ∩BR(z)

}
,

where BR(z) is the closure of a ball centered at z with radius R.

For a proof, see Theorem 7.3.1 of Zabarankin and Kurdila 2005. For some intuition, consider

a simple function from R to R. If we require that f(x) grows rapidly as |x| → ∞, we end up with

a picture like in Figure 1.8. As the graph suggests (and the theorem confirms), any minimizing

sequence of inputs
{
xj
}∞
j=1

will eventually enter a bounded set and stay there.

Figure 1.8: Because f eventually grows very quickly, only finitely many terms of any minimizing
sequence lie outside [z −R, z +R].

The third and fourth characterizations of coercivity give an alternate intuition. Suppose our

function f depends on x, u, and u′. If there is a point where u changes suddenly, like the point

x = 0 in Weierstrass’ Examples (see Figure 1.4), then the derivative u′ will be very large at that

point. Coercivity implies that the function f will penalize these jumps harshly; if the slope u′ is

very large, the functional f is even larger. We see that Weierstrass’ functional fails this condition:

at x = 0, the derivative y′ can grow arbitrarily large without increasing the functional W (Equation

1.5). Thus, the Direct Method does not apply to W and there is no guarantee the minimization
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problem is well-posed.

We give our specific coercivity condition later, and show its precise implications in Section

3.2. The key idea is that it helps establish a uniform bound on the minimizing sequence. We can

then apply some results from functional analysis to see that the minimizing sequence in contained

in a weakly sequentially compact set, and thus there is a weakly convergent subsequence. Since

convexity gives lower semi-continuity even in this weak topology, the direct method described above

can go through.

Aside 1.1.7: There is another subtlety here that would be easily overlooked. The choice of ad-

missible class A can change the behavior of the problem in ways that may not be expected. First,

consider the function q(x) = (x −
√
2)2. The absolute minimum value is 0, and this minimum

occurs at x =
√
2. Although there is no rational number r ∈ Q such that q(r) = 0 = minx∈Q q(x),

we still have

inf
x∈Q

q(x) = inf
x∈R

q(x).

Because the rationals are dense in the reals, we can approximate
√
2 with arbitrarily high precision,

and thus make q(r) as close to 0 as we like. Intuitively, this behavior should carry over to nice

looking functionals. It turns out this does not always hold; sometimes looking at a dense subclass

of the admissible class is not enough to determine the true infimum of the functional. This is called

Lavrentiev’s Phenomenon.

Although it was discovered in the early 1900s, not too long after Tonelli gave his famous theorem,

Lavrentiev’s Phenomenon did not receive much attention until around the 1980s. In this era, Mizel,

Ball, Heinricher and others found fairly natural examples of the phenomenon, renewing interest

in the problem. The literature on the topic is now quite extensive. See Section 4.7 of Dacorogna

2008, the survey Buttazzo and Belloni 1995, or the dissertation Foss 2005 for more information.

We present a single example, from Heinricher and Mizel 1988.

Let A1 =
{
u ∈ W 1,1

(
[0, 1]

)
: u(0) = 0, u(1) = 1

}
, which we think of as the absolutely con-

tinuous functions on [0, 1]. And letA∞ =
{
u ∈ W 1,∞ ([0, 1]) : u(0) = 0, u(1) = 1

}
, the Lipschitz
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functions on that interval. It is well known that A∞ is dense in A1. Then consider the functional

J [u] =

ˆ 1

0
(u2 − x)2(u′)6 dx.

The function û =
√
x is in A1, and satisfies J [û] = 0. It is not too hard to see this is the smallest

possible value of J , so û is a minimizer. Since we can approach û with functions in A∞, we might

expect that the infimum of J over the set A∞ would be 0. However, it can be shown that

inf
u∈A∞

J [u] ≥ 9

210

(
3

5

)6

> 0.

♢

To summarize the main points of this section, coercivity and convexity together give precisely

the conditions need to extend Weierstrass’ theorem to a wider class of functionals. Because most

of the argument in the direct method can be formulated in terms of abstract normed vector spaces,

the same ideas can be applied to a wide variety of cases. As we saw in the previous sections, most

functions of interest are of the form

J [u] =

ˆ
Ω
f(x, u, u′) dx.

Thus, most of the historical work was done in the setting of Sobolev space. Only a few adjustments

are need to apply the direct method to functionals of the form

J [u] =

ˆ
Ω
f(x, u,Du) dx,

where D is some other operator. For example, Bourdin et al. 2013 applies the direct method where

D is a Caputo derivative and Cueto 2021 applies it to the case of Riesz fractional gradients, in

the context of fractional-order Sobolev space. As we see in the next sections, recent advances in

nonlocal modeling give us a reason to move away from Sobolev space and to the larger Lebesgue

spaces, Lp. Most of the work goes into setting up an operator that acts on Lp functions (a very
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general setting), while maintaining the required structural properties as the classical derivative so

that the direct method applies. We establish the relevant results in Chapters 2 and 3.

1.2 Nonlocal Models

In this section, nonlocal models are introduced. This is a very active area of research, and the

literature is vast. The discussion is kept relatively brief, with the main goal of motivating the class

of problems considered in Chapter 2.

1.2.1 Historical Introduction

Once the notion of an nth order derivative was introduced, it is natural to wonder if non-integer-

order derivatives can be defined. Is there an operator T such that

T (Tu) = T 2u = u′?

Is there a sensible way to interpolate between the space of continuous functions and the space of

differentiable functions? Such questions were already discussed in the era of Newton and Leibniz

(Odzijewicz et al. 2012).

Motivated by the Fundamental Theorem of Calculus, one approach to defining fractional order

derivatives is to view them as inverse operators to fractional order integrals. Consider Cauchy’s

iterated integral formula:

ˆ x

a

ˆ t1

a

ˆ t2

a
. . .

ˆ tn−1

a
u(tn) dtn dtn−1 . . . dt1 =

1

(n− 1)!

ˆ x

a
(x− t)n−1u(t) dt.

One might hope this can be extended to a non-integer number of applications of the integral by

simply replacing the factorial with the Gamma function, so that the expression makes sense for

non-integers. It turns out this works quite well, and leads to the Riemann-Liouville integral of

order α ∈ (0, 1):

Iαu(x) :=
1

Γ(α)

ˆ x

a
(x− t)α−1u(t) dt. (1.6)
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From a purely abstract point of view, this is quite a simple generalization of the classic theory.

However, just like in the calculus of variations, the problem was also motivated by a problem in

physics: a generalization of the Tautochrone Problem. The tautochrone (from the Greek for “same

time”) is a curve such that the time for a heavy particle to fall to the bottom of this curve is

independent of the upper starting point (Kot 2014, p. 4). Coincidentally, the solution to this

problem is the cycloid; the exact same curve that solves Bernoulli’s brachistochrone problem!16

In 1823, Abel came across a version of Equation 1.6 in a context completely unrelated to iterated

integrals. He was investigating variant of the tautochrone problem (Wazwaz 2011, p. 238): Given a

function f(y) of vertical position, Abel wanted to find a curve u in the vertical plane such that the

particle takes exactly time f(y) to move from the height y to position 0. He derived the following

integral equation:

f(y) =

ˆ y

0

u(t)√
y − t

dt.

If scaled by a constant 1/Γ(.5), this is just a special case of Equation 1.6. In modern terms, Abel’s

key idea was to solve for u by viewing the right side as an operator applied to u:

f(y) = I1/2u(y)

By applying something like I1/2 to both sides, he found

I1/2f(y) = I1/2I1/2u(y) = I1u(y) =

ˆ y

0
u(t) dt.

He could then isolate u using the Fundamental Theorem of Calculus:

u(y) =
d

dy
I1/2f(y) =

d

dy

1

Γ(1/2)

ˆ y

0

f(t)√
x− t

dt.

Now u is given in terms of an integral equation that is easier to work with.17 Of course, the argument
16Kot 2014 also has a decent bibliography for more reading on the history here. Levi 2014 discusses the problem

on page 55.
17This discussion is based on Luchko 2020. See Cartwright and McMullen 1978 for a short proof that this fractional

integral is the “unique” operator satisfying certain desirable properties.
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takes for granted the fact that I1/2I1/2 = I1, which is not immediately obvious. Developing such

algebraic rules to formalize the idea of a fractional derivative (by defining it in terms of a fractional

integral) took time, and a variety of approaches were found throughout the 1800s (Pooseh 2013).

One important generalization of the Riemann-Liouville conception introduced above is the Riesz

potential; for example, see Cueto 2021 or Malinowska et al. 2015 for more information.

1.2.2 Recent Developments

Although the concept of fractional calculus is quite old, there has been a recent spike in interest in

the analysis of these fractional operators. This is partially due to progress in analytical tools gen-

erally, improvements in numerical methods and computational power, and new found applications

to problems in engineering. For example, some recent connections to partial differential equations

include Shieh and D. E. Spector 2018; Brasco and Lindgren 2017; L . Caffarelli and L. 2007; L.

Caffarelli and Stinga 2016; L. Caffarelli and Silvestre 2009; Di Castro et al. 2016; Kuusi et al.

2014; Kreisbeck and Schönberger 2022; Ros-Oton 2016 and Šilhavỳ 2020. Studying Sobolev spaces

in terms of these fractional operators has also become common; see the influential work Bourgain

et al. 2001. For a nice overview of some recent progress on fractional Sobolev space, see Di Nezza

et al. 2012, and Daoud and Laamri 2022 has a survey on fractional Laplacians.

In the classical case, the derivative of u at x depends only on the behavior of u on some

infinitesimal neighborhood of x. For example, changing the value of u(x + 1) generally has no

impact on the value of u′(x). Thus, we call the classical derivative a local operator. Fractional

derivatives and integrals are examples of nonlocal operators. For many of the formulations of a

fractional derivative Ds, for s ∈ (0, 1), the value of Dsu(x) depends on the behavior of u at some

finite distance away from x. Generalizing from the fractional case, we can consider operators

that transform the value of u at x in a way that is sensitive to points “far” from x. The most

studied nonlocal operators are defined in terms of integrals, since this is a natural tool for collecting

information about a function over some region.

Many laws of nature are formulated locally, often in terms of a differential equation (examples are

abundant; some sort of differential equation appears in nearly every branch of science). Obviously



29

the differential operator has many strengths. However, there are some noticeable drawbacks:

1. the derivative cannot easily capture long-range interactions that occur throughout the natural

world

2. derivatives are only defined for relatively nice functions, so they are not well-suited for contexts

involving discontinuities

3. a more general theory, allowing for fractional order operators and a larger domain of functions,

would be more satisfying.

These reasons are partially what motivated Silling to formulate peridynamics, a nonlocal framework

for continuum mechanics (Silling 2000). In the study of continuous bodies, the local notions of stress

and strain do not always adequately describe the dynamics of the body. The most obvious example

is cases of fracture: if a sharp discontinuity develops in the body, the classical, local theories need

to be modified to accurately model the break. Silling’s idea was to replace the spatial derivatives

in the classical formulation with integral operators. This idea turned out to be quite successful,

and helped drive a flurry of research activity in nonlocal modeling.18

In addition to the success found by applying nonlocal models to continuum mechanics, a stag-

gering array of other applications have been found. None of these applications will be discussed

in detail, but here is a sampling of applications involving fractional derivatives and other nonlocal

operators done in recent years.

• Nonlocal Diffusion (Andreu-Vaillo et al. 2010; Mellet et al. 2011; Vázquez 2012; Metzler and

Klafter 2000; Du, Gunzburger, et al. 2012; S. Jafarzadeh et al. 2020; Vázquez 2017)
• Conservation Laws (Biler, Karch, and Woyczyński 2001)
18It’s worth noting that Silling was not the first to introduce nonlocal elements into a theory of deformation and

elastic bodies. See the introduction of Madenci and Oterkus 2013 for some discussion of the relevant history, as well
as Evgrafov and Bellido 2019. Peridynamics is not necessary for the work developed later in this thesis, so we skip
the details. Bobaru, Foster, et al. 2016 is an excellent resource on the topic; Chapters 1 through 4 are especially
relevant to this project. The editorial Silling and Madenci 2019 is a nice overview of the field, and the dissertation
Cueto 2021 also has some relevant discussion and many great references.
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Figure 1.9: For the nonlocal models we consider, the behavior at x typically depends on the values
at every point inside a ball of radius δ > 0, centered at x. Thus, we usually decompose the relevant
domain into the interior, Ω, and the collar, Γ. This sort of nonlocal operator will only be defined
on Ω.

• Image Processing (Aubert and Kornprobst 2009; Gilboa and Osher 2009a; Gilboa and Osher

2007; Gilboa and Osher 2009b; Buades et al. 2010; Kindermann et al. 2005; Tadmor and

Athavale 2009; Lou et al. 2010; Brezis and Nguyen 2018)
• Materials Science (Silvestre 2007; Weckner and Abeyaratne 2005)
• Stochastic Jump Processes (Barlow et al. 2009; Bass et al. 2010; Applebaum 2009; Du, Huang,

et al. 2014; Burch et al. 2014; D’Elia et al. 2017; Meerschaert and Sikorskii 2019; Metzler and

Klafter 2004)
• Machine Learning (Rosasco et al. 2010; Antil et al. 2020; Pang et al. 2020; Wei et al. 2020)
• Self-Organized Dynamics (Mengesha and D. Spector 2015)
• Particle Systems (Bodnar and Velázquez 2006)
• Multiscale Systems (Askari et al. 2008; Du, Engquist, et al. 2020)
• Traffic Models (Colombo et al. 2021)
• Biology (Carrillo and P. Fife 2005)
• Population Dispersal (Cortazar et al. 2007; Kao et al. 2010)
• Coagulation Models (Fournier and Laurençot 2006)
• Flocking Models (Mogilner and Edelstein-Keshet 1999)
• Prous Media Flow (Cushman and Ginn 1993; Dagan 1994)
• Water Waves (L. Caffarelli, Mellet, et al. 2012; Craig and Groves 1994; Craig and Nicholls

2000; Craig, Schanz, et al. 1997; de la Llave and Panayotaros 1996; Gächter and Grote 2003;

Hu and Nicholls 2005; Uspenskii 1960)
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• Subsurface Transport (Benson et al. 2000; Katiyar et al. 2020)
• Finance (Cont and Tankov 2004; Jakobsen and Karlsen 2005; Sabatelli et al. 2002; Scalas

et al. 2000)
• Magnetihydrodynamics (Schekochihin et al. 2008)
• Phase Transitions (Cabré and Solà-Morales 2005; Farina and Valdinoci 2011; Garroni and

Palatucci 2006; Sire and Valdinoci 2009; Bates and Chmaj 1999; P. Fife 2003; Alberti and

Bellettini 1998; Chen and P. C. Fife 2000; Dayal and Bhattacharya 2006; Cozzi et al. 2017;

Savin and Valdinoci 2012)
• Stratified Materials (Chermisi and Valdinoci 2010)
• Crystal Dislocation (Biler, Karch, and Monneau 2008; Gonzalez and Monneau 2010; Toland

1997)
• Soft Thin Films (Kurzke 2006)
• Corrosion (Siavash Jafarzadeh et al. 2018)
• Nonlocal Heat Conduction (Bobaru and Duangpanya 2010)
• Thin Obstacle Problem (Silvestre 2007)
• Gradient Potential Theory (Mingione 2010)
• Minimal Surfaces (L. Caffarelli, Roquejoffre, et al. 2009; L. Caffarelli and Valdinoci 2011)
• Quasi-geostrophic Flow (L. Caffarelli and Vasseur 2010; Cordoba 1998; Majda and Tabak

1996)
• Scattering Theory (Colton et al. 1998; Duistermaat 1975; Grote and Kirsch 2004)
• Optimization (Duvant and Lions 2012)
• Quantum Mechanics (Fefferman and de la Llave 1986; Laskin 2000)

These numerous examples show the potential strengths of developing an analytic theory that

does not lean so heavily on classical derivatives. In the next chapter, we consider one particular

nonlocal operator, and show that it forms a natural extension of the classical theory.
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Chapter 2

A Nonlocal Operator and Nonlocal Variational Problems

This chapter presents the main notation and assumptions for the central class of variational prob-

lems studied in the next chapter. A nonlocal operator is introduced, and some of its basic properties

are explored. Additionally, some well-known theorems are included for easy reference later on.

2.1 Connecting Nonlocal Models and the Calculus of Variations

In the previous chapter, we saw that variational problems involving functionals of the form

J [u] =

ˆ
Ω
f(x, u, u′) dx

arise throughout physics and engineering. However, we also saw that there are advantages to

formulating problems in terms of nonlocal operators. It is natural to ask what happens when these

two lines of thought are combined: what can we say about minimizing functionals of the form

Jδ[u] =

ˆ
Ω
f(x, u,Dδu) dx, (2.1)

for some nonlocal operator Dδ? Because some nonlocal operators do not even require weak differen-

tiability, functionals of the form Jδ can be defined on function spaces much larger than the classical

Sobolev spaces W 1,p. From a purely mathematical standpoint, then, we would like to know how

much of the classical theory carries over to this new setting. For example, Dirichlet’s Principle

provides a way of translating a partial differential equation into a variational problem. Does some-
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thing similar occur when the classical Laplacian is replaced with its nonlocal counterpart? Is there

an analogous form of the Euler-Lagrange equations providing a necessary condition on minimizers

of Jδ?

Apart from this mathematical motivation, functionals like Jδ have already been shown to have

a wide variety of applications. As mentioned at the end of Section 1.1.2, one recent motivation

for investigating variational methods has come from material science, in the study of nonlinear

elasticity. Peridynamics, the primary motivation of studying nonlocal models, also deals with elastic

bodies. So it should not be surprising that the calculus of variations and nonlocal modeling have

been combined in many recent studies. Section 1.1.2 also discussed the significance of Noether’s

theorem and variational principles like the Principle of Virtual Work (Oterkus et al. 2012; Huang

2019). Analogs to both of these have been found in the nonlocal setting. Some other recent work

connecting nonlocal models and variational problems includes Foss, Radu, and Wright 2018; Bellido

et al. 2020; Cueto 2021; Mengesha and Du 2013 and Hinds and Radu 2012.

2.2 Introducing the Problem

The goal is to find an operator Dδ that behaves like the classical derivative in some ways, but

has the advantages of the nonlocal operators discussed in Section 1.2. We would like Dδ to be a

linear operator, like the derivative, but defined on a larger space of functions. We also want Dδ

to be capable of capturing long-range interactions, of the sort that arise in peridynamics or other

nonlocal models. Finally, as the horizon δ goes to 0, in cases where the classical derivative is well

defined, we should have Dδ →
d

dx
(in some sense). In this chapter, we defined an operator Dδ and

show it has precisely these properties.

The basic idea is to think of the integral as a sort of averaging operator. Integrating collects

information about the behavior of a function over a whole region, while the classical derivative

(defined in terms of a limit) describes the deeper behavior fo the function at a single point. When

δ is very small, we might expect:

 δ

δ

u(x+ z)− u(x)

z
dz ∼ lim

z→x

u(x+ z)− u(x)

z
= u′(x), (2.2)
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where the integral sign
ffl

denotes an average:

 
Ω
g(t) dt =

1

meas(Ω)

ˆ
Ω
g(t) dt.

We can already see one of the features mentioned in the first paragraph coming into play. The left

side of Equation 2.2 requires only that the difference quotient u(x+z)−u(x)
z be integrable. This is a

much weaker requirement than differentiability of u. As δ → 0, we can approximate z ∈ [−δ, δ]

simply by z ∼ δ. So the left side of Equation 2.2 behaves roughly like

 δ

−δ

u(x+ z)− u(x)

z
dz ∼

ˆ δ

δ
u(x+ z)− u(x) · 1

δ2
dz.

This gives the simplest case of the operator defined in Definition 2.2.1, and Example 2.5.1 illustrates

how this simple idea captures the behavior of the derivative.

Generalizing from this example, we might hope that an operator given by

Dδu(x) =

ˆ δ

−δ
[u(x+ z)− u(x)]µδ(z) dz,

for some appropriately chosen kernel µδ, satisfies the properties from the beginning of this subsec-

tion. Different choices of µδ may be motivated by specific modeling considerations. For example,

the kernel may be designed to capture specific long-range interactions within an elastic body. It

turns out that the central existence theorem, Theorem 3.2.1, and the convergence result, 2.4.2,

require very little of the kernel µδ. The theory is surprisingly flexible in this sense.

Motivated by the discussion above, we define the nonlocal operator Dδ.

Definition 2.2.1: Let Ω be some interval in R and fix a δ > 0. Let Γ denote the collar of Ω, with

width δ. Then let p > 1 and u ∈ Lp (Ω ∪ Γ) be given. For any µδ ∈ L1
(
(−δ, δ)

)
, we define the first

order nonlocal differential operator Dδ by

Dδu(x) :=

ˆ δ

−δ
[u(x+ z)− u(x)]µδ(z) dz. (2.3)



35

In cases where it does not create ambiguity, we drop the subscript δ and simply write D and µ.

Remark 2.2.2: We focus on the one-dimensional case, but the hope is that these concepts and

results extend easily to higher dimensions.

We can finally state the central question of this thesis: when do functionals like the one given

in Equation 2.1 have minimimzers? When are they unique? Theorems 3.2.1 and 3.3.2 answer these

questions.

In the rest of this chapter, we show that this choice of operator does in fact have the desired

properties from the beginning of this section. Proposition 2.4.1 shows that Dδ is a bounded linear

operator between Lp spaces. Theorem 2.4.2 and its corollary show that, under some additional

hypotheses, Dδ converges to the classical derivative as δ goes to 0. And Section 2.5 presents a few

examples of the behavior of Dδ for different choices of µδ and u.

2.3 Some Helpful Facts

We collect some useful theorems needed for later discussion. Since these are all classic results, we

provide references instead of complete proofs. Throughout, we assume p > 1.

Lemma 2.3.1 (Minkowski’s Integral Inequality): If A and B are measurable subsets of R and

g : A×B → R is a measurable function,

(ˆ
A

(ˆ
B
g(x, y) dy

)p

dx

)1/p

≤
ˆ
B

(ˆ
A

(
g(x, y)

)p
dx

)1/p

dy

(Hardy et al. 1952, Theorem 202).

Lemma 2.3.2 (Hölder’s Inequality): Let u ∈ Lp (X) and v ∈ Lq (X), where q := p
p−1 denotes the
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Hölder conjugate of p. If X is a measurable subset of R, then

ˆ
X

∣∣u(x)v(x)∣∣ dx ≤
(ˆ

X

∣∣u(x)∣∣p dx) 1
p
(ˆ

X

∣∣v(x)∣∣q dx) 1
q

(Hardy et al. 1952, Theorem 189)

Lemma 2.3.3 (A Special Case of Jensen’s Inequality (integral form)): For u ∈ Lp (−δ, δ), we have

(ˆ δ

−δ

∣∣u(x)∣∣ dx)p

≤ (2δ)p−1

ˆ δ

−δ

∣∣u(x)∣∣p dx
(Dacorogna 2008, Theorem 2.28).

Proof. Set g = 1 in Hölder’s Inequality. For an alternative proof of a much more general result, see

(Fonseca and Leoni 2007, Theorem 4.80)

Lemma 2.3.4 (Lebesgue-Fatou Lemma): Let un be a sequence of real-valued, integrable functions

on a measurable subset X ⊆ R. If there exists a real-valued integrable function g such that, for all

n ∈ N, g(x) ≤ un(x) for almost all x ∈ X, then

ˆ
X
lim inf
n→∞

un(x) dx ≤ lim inf
n→∞

ˆ
X
un(x) dx

(Yosida 1980, p. 17).

Lemma 2.3.5 (Fubini-Tonelli Theorem): Let g : X×Y → R be a measurable function over X×Y ,

a measurable subset of R2. Then g is integrable over X ×Y if and only if at least of of the iterated

integrals ˆ
X

ˆ
Y

∣∣g(x, y)∣∣ dy dx, or
ˆ
Y

ˆ
X

∣∣g(x, y)∣∣ dx dy
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is finite. In that case, we have

ˆ
X

ˆ
Y

∣∣g(x, y)∣∣ dy dx =

ˆ
Y

ˆ
X

∣∣g(x, y)∣∣ dx dy
(Yosida 1980, p. 18).

Lemma 2.3.6: For any 1 ≤ p < ∞ and h ∈ R, define the translation operator τh : Lp (R) → Lp (R)

by

τhf(x) := f(x− h).

Then translation is continuous in h with respect to the Lp norm: for any f ∈ Lp (R),

lim
h→0

‖τhf − f‖Lp(R) = 0

(Folland 1999, Proposition 8.5).

Proof. The trick is to use density of continuous functions with compact support and the triangle

inequality. See

Lemma 2.3.7: A bounded sequence in a reflexive Banach space contains a weakly convergent

subsequence (Zabarankin and Kurdila 2005, Theorem 7.3.3).

Lemma 2.3.8: For a measurable set X ⊆ R and for p > 1, Lp(X) is reflexive.

Proof. This follows from the Riesz Representation Theorem. See for example Conway 2019,

p. III.11.3 or Fonseca and Leoni 2007, Theorem 2.37.

Lemma 2.3.9 (Mazur’s Lemma): Let (X, ‖·‖) be a normed space and {xn}∞n=1 be a sequence in X

converging weakly to x0 ∈ X. Then there is a sequence of convex combinations {yn}∞n=1 converging

strongly to x0 such that yn =
∑Nk

k=n λkxk where
∑Nk

k=n λk = 1 and λk ≥ 0 for n ≤ k ≤ Nk, (Ekeland
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and Temam 1976, p. 6)

Lemma 2.3.10 (Jensen’s Inequality (finite form)): Suppose that X ⊆ Rn is convex and f is a

convex function on X. If λ1, . . . , λr are non-negative scalars such that
∑r

i=1 λi = 1 and x1, . . . , xr

are points in X, then

f(λ1x1 + λ2x2 + . . . λrxr) ≤ λ1f(x1) + λ2f(x2) + · · ·+ λrf(xr)

(Hardy et al. 1952, Theorems 86 and 90).

2.4 Continuity of D and Convergence to the Classical Derivative

The following result establishes some central structural properties of the operator D.

Proposition 2.4.1: The operator D is linear, and it continuously sends elements of Lp (Ω ∪ Γ)

into the space Lp (Ω).

Proof. First, note that the domain of the function Du must be Ω. The function u is defined on

(a − δ, b + δ), so the term u(x + z) is only well-defined when x ∈ Ω (since z ranges from −δ to

δ). We need to establish that Du is in fact in Lp (Ω), but first we show that D is linear. Let

u, v ∈ Lp (Ω ∪ Γ) and α ∈ R be given. Then for all x ∈ Ω,
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D(u+ v)(x) =

ˆ δ

−δ
[(u+ v)(x+ z)− (u+ v)(x)]µ(z) dz

=

ˆ δ

−δ
[u(x+ z)− u(x) + v(x+ z)− v(x)]µ(z) dz

=

ˆ δ

−δ
[u(x+ z)− u(x)]µ(z) + [v(x+ z)− v(x)]µ(z) dz

=

ˆ δ

−δ
[u(x+ z)− u(x)]µ(z) dz +

ˆ δ

−δ
[v(x+ z)− v(x)]µ(z) dz

= Du(x) +Dv(x).

Similarly,

D(αu)(x) =

ˆ δ

−δ
[(αu)(x+ z)− (αu)(x)]µ(z) dz

= α

ˆ δ

−δ
[u(x+ z)− u(x)]µ(z) dz

= αDu(x).

These equalities hold for all x ∈ Ω, so we see D(u+ v) = Du+Dv and D(αu) = αDu. Hence, D is

a linear operator.

Now we show that ‖Du‖Lp(Ω) ≤ 2 ‖u‖Lp ‖µ‖L1 . This means that Du ∈ Lp, but is also establishes

that the operator norm ‖D‖ = sup
{
‖Du‖Lp(Ω) : ‖u‖Lp(Ω∪Γ) = 1

}
is finite. Hence, D is continuous.

Fix any u ∈ Lp (Ω ∪ Γ). Applying Minkowski’s Integral Inequality (Lemma 2.3.1) to the defini-
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tion of D, we have

‖Du‖Lp(Ω) =

ˆ
Ω

∣∣∣∣∣
ˆ δ

−δ
[u(x+ z)− u(x)]µ(z) dz

∣∣∣∣∣
p

dx

1/p

≤
ˆ δ

−δ

(ˆ b

a

∣∣[u(x+ z)− u(x)]µ(z)
∣∣p dx)1/p

dz

=

ˆ δ

−δ

∣∣µ(z)∣∣p/p(ˆ b

a

∣∣u(x+ z)− u(x)
∣∣p dx)1/p

dz

=

ˆ δ

−δ

∣∣µ(z)∣∣ ∥∥u(·+ z)− u(·)
∥∥
Lp(Ω)

dz

Now we apply the triangle inequality for the Lp norm (which is sometimes also called the Minkowski

inequality) to find

‖Du‖Lp(Ω) ≤
ˆ δ

−δ

∣∣µ(z)∣∣ (∥∥u(·+ z)
∥∥
Lp(Ω)

+ ‖u‖Lp(Ω)

)
dz

=

ˆ δ

−δ

∣∣µ(z)∣∣ ∥∥u(·+ z)
∥∥
Lp(Ω)

dz +

ˆ δ

−δ

∣∣µ(z)∣∣ ‖u‖Lp(Ω) dz

=

ˆ δ

−δ

∣∣µ(z)∣∣ (ˆ
Ω

∣∣u(x+ z)
∣∣p dx)1/p

dz + ‖u‖Lp(Ω) ‖µ‖L1((−δ,δ))

Consider the inner integral of this first term. Changing variables to y = x+ z, we have

ˆ b

a

∣∣u(x+ z)
∣∣p dx =

ˆ b+z

a+z

∣∣u(y)∣∣p dy
Clearly

∣∣u(y)∣∣ is never negative, so increasing the size of the domain of integration will never make

the integral smaller. Since z ∈ [−δ, δ], this implies

ˆ
Ω

∣∣u(x+ z)
∣∣p dx ≤

ˆ
Ω∪Γ

∣∣u(y)∣∣p dy.
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Combining this with what we had above produces

‖Du‖Lp(Ω) ≤
ˆ δ

−δ

∣∣µ(z)∣∣ (ˆ
Ω∪Γ

∣∣u(y)∣∣p dy)1/p

dz + ‖u‖Lp(Ω) ‖µ‖L1((−δ,δ))

=

ˆ δ

−δ

∣∣µ(z)∣∣ ‖u‖L1(Ω∪Γ) dz + ‖u‖Lp(Ω) ‖µ‖L1((−δ,δ))

= ‖µ‖L1((−δ,δ)) ‖u‖Lp(Ω∪Γ) + ‖u‖Lp(Ω) ‖µ‖L1((−δ,δ))

= 2 ‖µ‖L1((−δ,δ)) ‖u‖Lp(Ω∪Γ)

Each operator D is determined by fixing a kernel µ and a horizon δ, so ‖µ‖L1((−δ,δ)) is some

constant that depends on D but not on u. Thus, D is bounded (and therefore continuous), with

operator norm ‖D‖ ≤ 2 ‖µ‖L1((−δ,δ)).

For an interval Ω = (a, b), the operator Dδ discussed above is defined on all of Lp
(
(a− δ, b+ δ)

)
,

which includes many functions which are not even weakly differentiable. To motivate the definition

of Dδ, we show that in cases where u′ is well defined, Dδu converges to u′ as the horizon δ shrinks

to 0. This justifies the intuition given above for thinking of Dδ as a kind of differential operator.

Theorem 2.4.2: Suppose that u ∈ W 1,1 (R), and that {µδ}δ>0 ⊆ L1 (R) is a family of integrable

kernels satisfying the following:

1. For each δ, the kernel µδ is zero outside the interval (−δ, δ).

2. The first moments are uniformly bounded in the L1 norm: there is some M > 0 such that,

for all δ > 0, ˆ δ

−δ

∣∣zµδ(z)
∣∣ dz < M. (2.4)

3. As δ approaches 0 from the right,

ˆ δ

−δ
zµδ(z) dz → 1. (2.5)



42

Then Dδu converges to u′ in the L1 norm:

lim
δ→0+

∥∥Dδu− u′
∥∥
L1(R) = 0.

Proof. Fix any ε > 0. Since u ∈ W 1,1 (R), both u and its weak derivative u′ are in L1 (R). If the

L1 norm of u′ is 0, then for almost all x ∈ R,

∣∣u(x+ z)− u(x)
∣∣ = ∣∣∣∣∣

ˆ x+z

x
u′(s) ds

∣∣∣∣∣ ≤
ˆ x+z

x

∣∣u′(s)∣∣ ds ≤ ˆ
R

∣∣u′(s)∣∣ ds = 0.

Hence, [u(x+ z)− u(x)] = 0 almost everywhere and so Dδu(x) = 0 for all δ. Then convergence in

L1 is immediate. So we suppose that
∥∥u′∥∥

L1(R) 6= 0. From Equation 2.5, there is some δ1 > 0 such

that

δ ≤ δ1 =⇒

∣∣∣∣∣
ˆ δ

−δ
zµ(z) dz − 1

∣∣∣∣∣ < ε

2 ‖u′‖L1(R)
. (2.6)

Additionally, Lemma 2.3.6, implies there is some δ2 > 0 such that

|δ| ≤ δ2 =⇒
∥∥τδu′ − u′

∥∥
L1(R) <

ε

2M
. (2.7)

Now select any positive δ ≤ min {δ1, δ2}. We show that
∥∥Dδu− u′

∥∥
L1(R) < ε.

The idea is to express Dδu in terms of an integral involving u′, so that we can more easily

compute the distance between the two functions. We do this by applying the tal Theorem of

Calculus. If we introduce the parameter s, note that

d

ds
u(x+ sz) = u′(x+ sz)z, so

ˆ 1

0
u′(x+ sz)z ds =

[
u(x+ sz)

∣∣s=1

s=0
= u(x+ z)− u(x),

which is exactly the difference occurring inside the integrand of Dδ (Equation 2.3). Thus, for any

x ∈ R,

Dδu(x) =

ˆ δ

−δ
[u(x+ z)− u(x)]µδ(z) dz =

ˆ δ

−δ

[ˆ 1

0
u′(x+ sz)z ds

]
µδ(z) dz.
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Next, add and subtract u′(x)z inside the innermost integral:

Dδu(x) =

ˆ δ

−δ

[ˆ 1

0
u′(x+ sz)z − u′(x)z + u′(x)z ds

]
µδ(z) dz

=

ˆ δ

−δ

[ˆ 1

0

(
u′(x+ sz)− u′(x)

)
z ds+

ˆ 1

0
u′(x)z ds

]
µδ(z) dz

Since
´ 1
0 u′(x)z ds = u′(x)z, we have

Dδu(x) =

ˆ δ

−δ

(
zµδ(z) ·

ˆ 1

0
u′(x+ sz)− u′(x) ds

)
dz + u′(x)

ˆ δ

−δ
zµδ(z) dz. (2.8)

We are now ready to compute the L1 distance. Using the triangle inequality repeatedly yields

∥∥Dδu− u′
∥∥
L1(R) =

ˆ
R

∣∣∣∣∣∣
ˆ δ

−δ

(
zµδ(z) ·

ˆ 1

0
u′(x+ sz)− u′(x) ds

)
dz + u′(x)

(ˆ δ

−δ
zµδ(z) dz − 1

)∣∣∣∣∣∣ dx
≤
ˆ
R

∣∣∣∣∣∣
ˆ δ

−δ

(
zµδ(z) ·

ˆ 1

0
u′(x+ sz)− u′(x) ds

)
dz

∣∣∣∣∣∣+∣∣u′(x)∣∣
∣∣∣∣∣
ˆ δ

−δ
zµδ(z) dz − 1

∣∣∣∣∣ dx
≤
ˆ
R

ˆ δ

−δ

∣∣zµδ(z)
∣∣ ˆ 1

0

∣∣u′(x+ sz)− u′(x)
∣∣ ds dz +∣∣u′(x)∣∣∣∣∣∣∣

ˆ δ

−δ
zµδ(z) dz − 1

∣∣∣∣∣ dx
Hence,

∥∥Dδu− u′
∥∥
L1(R) =

ˆ
R

ˆ δ

−δ

∣∣zµδ(z)
∣∣ ˆ 1

0

∣∣u′(x+ sz)− u′(x)
∣∣ ds dz dx+ˆ

R

∣∣u′(x)∣∣∣∣∣∣∣
ˆ δ

−δ
zµδ(z) dz − 1

∣∣∣∣∣ dx
(2.9)

We handle each of the two terms separately.

Applying Fubini’s Theorem (Lemma 2.3.5) to the first term of Equation 2.9, we obtain

ˆ
R

ˆ δ

−δ

∣∣zµδ(z)
∣∣ ˆ 1

0

∣∣u′(x+ sz)− u′(x)
∣∣ ds dz dx =

ˆ δ

−δ

ˆ 1

0

ˆ
R

∣∣u′(x+ sz)− u′(x)
∣∣ dx ds∣∣zµδ(z)

∣∣ dz.
(2.10)

From the definition of the translation operator and the L1 norm,

ˆ
R

∣∣u′(x+ sz)− u′(x)
∣∣ dx =

∥∥τ−szu
′ − u′

∥∥
L1(R) .
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Since z ∈ [−δ, δ] and s ∈ [0, 1], |sz| ≤ δ. We chose δ ≤ δ2, so Equation 2.7 implies

∥∥τ−szu
′ − u′

∥∥
L1(R) <

ε

2M
.

This bound is independent of s, so integrating from s = 0 to s = 1 doesn’t change anything.

Therefore, Equation 2.10 becomes

ˆ
R

ˆ δ

−δ

∣∣zµδ(z)
∣∣ ˆ 1

0

∣∣u′(x+ sz)− u′(x)
∣∣ ds dz dx <

ε

2M

ˆ δ

−δ

∣∣zµδ(z)
∣∣ dz.

Finally, apply Equation 2.4 to conclude

ˆ
R

ˆ δ

−δ

∣∣zµδ(z)
∣∣ ˆ 1

0

∣∣u′(x+ sz)− u′(x)
∣∣ ds dz dx <

ε

2M

ˆ δ

−δ

∣∣zµδ(z)
∣∣ dz <

ε

2
.

Now for the second term in Equation 2.9. Since δ ≤ δ1, Equation 2.6 implies that

ˆ b

1

∣∣u′(x)∣∣∣∣∣∣∣
ˆ δ

−δ
zµδ(z) dz − 1

∣∣∣∣∣ dx <

ˆ
R

∣∣u′(x)∣∣ ε

2 ‖u′‖L1(R)
dx

=
ε

2 ‖u′‖L1(R)

ˆ
R

∣∣u′(x)∣∣ dx
=

ε

2
.

Putting things back together, we have shown

∥∥Dδu− u′
∥∥
L1(R) ≤

ˆ
R

ˆ δ

−δ

∣∣zµδ(z)
∣∣ ˆ 1

0

∣∣u′(x+ sz)− u′(x)
∣∣ ds dz dx+

ˆ
R

∣∣u′(x)∣∣∣∣∣∣∣
ˆ δ

−δ
zµδ(z) dz − 1

∣∣∣∣∣ dx
<

ε

2
+

ε

2

= ε.

Thus, whenever δ ≤ min {δ1, δ2},
∥∥Dδu− u′

∥∥ < ε. This proves the theorem.

Remark 2.4.3: In the previous theorem, the choice of R for the domain was primarily for conve-
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nience. For example, the same argument holds if u ∈ W 1,1
(
(a− C, b+ C)

)
(for any C > 0) and

we only consider kernels {µδ}δ∈(0,C). Alternatively, it is possible to extend u : Ω → R to a function

ū : R → R such that ū(x) = u(x) for all x ∈ Ω and ‖ū‖W 1,1(R) ≤ Cu ‖u‖W 1,1(R) for some constant

Cu (Evans 1998, p. 254). So there is no real loss of generality by assuming u ∈ W 1,1 (R).

With a stronger assumption on u and a slight modification on the behavior of µδ, we get

pointwise convergence as well.

Corollory 2.4.4: Suppose that u ∈ C1,α (R), and that {µδ}δ>0 ⊆ L1 (R) is a family of integrable

kernels satisfying the following:

1. For each δ, the kernel µδ is zero outside the interval (−δ, δ).

2. The first moments are uniformly bounded in the L1 norm: there is some M > 0 such that,

for all δ > 0, ˆ δ

−δ

∣∣zµδ(z)
∣∣ dz < M. (2.11)

3. For all δ > 0, ˆ δ

−δ
zµδ(z) dz = 1. (2.12)

Then there is a constant C ∈ R such that, for all x ∈ R and δ > 0,

∣∣Dδu(x)− u′(x)
∣∣ < Cδα.

In particular, for any x ∈ R,

lim
δ→0+

Dδu(x) = u′(x).

Proof. Select any δ > 0 and x ∈ R. Since u ∈ C1,α, there is some C0 such that
∣∣u′(x)− u′(y)

∣∣ ≤
C0|x− y|α for any y ∈ R. This is a special case of the previous theorem, so Equation 2.8 still holds:

Dδu(x) =

ˆ δ

−δ

(
zµδ(z) ·

ˆ 1

0
u′(x+ sz)− u′(x) ds

)
dz + u′(x)

ˆ δ

−δ
zµδ(z) dz. (2.13)
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Thus,

∣∣Dδu(x)− u′(x)
∣∣ =
∣∣∣∣∣∣
ˆ δ

−δ

(
zµδ(z) ·

ˆ 1

0
u′(x+ sz)− u′(x) ds

)
dz + u′(x)

ˆ δ

−δ
zµδ(z) dz − u′(x)

∣∣∣∣∣∣
≤
ˆ δ

−δ

∣∣zµδ(z)
∣∣ · ˆ 1

0

∣∣u′(x+ sz)− u′(x)
∣∣ ds dz +∣∣u′(x)∣∣∣∣∣∣∣

ˆ δ

−δ
zµδ(z) dz − 1

∣∣∣∣∣
≤ C0

ˆ δ

−δ

∣∣zµδ(z)
∣∣ · ˆ 1

0

∣∣(x+ sz)− x
∣∣α ds dz

Note that we used both assumption 3 in the statement of the Corollary and the Hölder continuity

of u′ to get this last line. Since s ∈ [0, 1] and z ∈ [−δ, δ], |sz| ≤|δ|. Thus,

∣∣Dδu(x)− u′(x)
∣∣ ≤ C0

ˆ δ

−δ

∣∣zµδ(z)
∣∣ · ˆ 1

0
δα ds dz = C0

ˆ δ

−δ

∣∣zµδ(z)
∣∣ δα dz

By assumption 4, it follows that

∣∣Dδu(x)− u′(x)
∣∣ < C0Mδα =: Cδα,

as desired.

2.5 Examples

The following examples demonstrate how different choices of kernel can approximate the behavior

of the classical derivative. Note that if each µδ is symmetric about the origin, Equation 2.5 will

never be satisfied. One way to ensure the correct limit is to appropriately scale each kernel so that

each first moment is exactly one. Also, there is no need to consider all δ > 0 since we are primarily

interested in cases where δ is very small. Thus, the condition given in Equation 2.4 really only

needs to apply once δ is sufficiently close to 0. (See also Remark 2.4.3.)

Example 2.5.1: This simple case illustrates the procedure for properly scaling the kernels. Let

u(x) = ax2+bx+c for some a, b, c ∈ R. Suppose that each kernel µδ is an antisymmetric, piecewise
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constant function:

µδ(z) :=


−Cδ, z < 0,

Cδ, z ≥ 0,

where Cδ is a scaling constant to be determined. We find the scaling using Equation 2.5:

ˆ δ

−δ
zµδ(z) dz = 2Cδ

ˆ δ

0
z dz = 2Cδ

(
δ2

2
− 0

)
= Cδδ

2.

Setting Cδ equal to 1
δ2

for each δ, ensures that Equation 2.5 is satisfied.

Now we compute the nonlocal derivative. Using the definition of Dδ, we have

Dδu(x) =

ˆ δ

−δ

[(
a(x+ z)2 + b(x+ z) + c

)
−
(
ax2 + bx+ c

)]
µδ(z) dz

=

ˆ δ

−δ

[
az2 + (2ax+ b)z

]
µδ(z) dz

Then plugging in our choice of µδ yields

Dδu(x) =

ˆ 0

−δ

[
az2 + (2ax+ b)z

](
− 1

δ2

)
dz +

ˆ δ

0

[
az2 + (2ax+ b)z

]( 1

δ2

)
dz

=

(
− 1

δ2

)[
a

3
z3 +

2ax+ b

2
z2
∣∣∣∣0
−δ

+

(
1

δ2

)[
a

3
z3 +

2ax+ b

2
z2
∣∣∣∣δ
0

=

(
− 1

δ2

)(
a

3
δ3 − 2ax+ b

2
δ2
)
+

(
1

δ2

)(
a

3
δ3 +

2ax+ b

2
δ2
)

=

(
−a

3
δ +

2ax+ b

2

)
+

(
a

3
δ +

2ax+ b

2

)
= 2ax+ bx

Thus, we see that antisymmetric kernels behaving like ∼ 1
δ2

successfully recover the classical deriva-

tive. 4

Remark 2.5.2: The basic idea of proof of Theorem 2.4.2 was to use the Fundamental Theorem

of Calculus to relate the difference inside the definition of D to the classical derivative u′. One
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advantage of this process is that it provides an expression depending on s, a scalar quantity whose

values we can control. When working in higher dimensions, this turns out to be a handy trick for

establishing bounds. Another point about the procedure: there was no reason we needed to stop

at the first derivative. We could continue the steps above, adding and subtracting a term and then

applying the Fundamental Theorem of Calculus. This can be used to ensure D captures the higher

order behavior of u. For example, if u ∈ C6(R), say, we can add the following constraints on the

family {µδ}δ>0:

∀δ > 0, ∀z ∈ (−δ, δ), µδ(−z) = −µδ(z) (2.14)

lim
δ→0+

ˆ δ

−δ
µδ(z)z

3 dz = 0 (2.15)

lim
δ→0+

ˆ δ

−δ
µδ(z)z

5 dz = 0. (2.16)

Then our nonlocal operator does an even better job of approximating the behavior of the classical

derivative.

The same idea can be captured (perhaps more intuitively) in terms of Taylor Series. Suppose

that µδ is odd and u is sufficiently smooth in the relevant domain. Then we replace u with a Taylor

polynomial centered at x:

Dδu(x) =

ˆ δ

−δ
[u(x+ z)− u(z)]µδ(z) dz

=

ˆ δ

−δ

(
u′(x)z +

u′′(x)z2

2
+

u′′′(x)z3

6
+

u(4)(x)z4

4!
+

u(5)(x)z5

5!
+ . . .

)
µδ(z) dz

And so

Dδu(x) = u′(x)

ˆ δ

−δ
zµδ(z) dz +

u′′(x)

2

ˆ δ

−δ
z2µδ(z) dz +

u′′′(x)

6

ˆ δ

−δ
z3µδ(z) dz

+
u(4)(x)

4!

ˆ δ

−δ
z4µδ(z) dz +

u(5)(x)

5!

ˆ δ

−δ
z5µδ(z) dz + . . . (2.17)

Since µδ is odd, and we are integrating over the interval [−δ, δ], the terms with even powers of z
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cancel out. This leaves

Dδu(x) = u′(x)

ˆ δ

−δ
zµδ(z) dz +

u′′′(x)

6

ˆ δ

−δ
z3µδ(z) dz +

u(5)(x)

5!

ˆ δ

−δ
z5µδ(z) dz + . . . .

If Equations 2.15 and 2.16 hold, then in the limit δ → 0+ we get

Dδu(x) → u′(x) + 0 + 0 + (higher order terms).

Thus, by choosing the kernels µδ appropriately, we can approximate the classical derivative to any

degree of accuracy. This computation also demonstrates why the choice of anti-symmetric kernels

is natural for approximating first-order behavior. (We also saw this in Example 2.5.1.) Notice, for

example, that if µ is symmetric about the origin
´
zµ(z) dx = 0, so Equation 2.5 is never satisfied.

Radially symmetric kernels would be better suited for second-order operators like the Laplacian,

since the odd-degree terms in the above Taylor expansion all drop out.

Example 2.5.3: A classic set of examples in analysis is given by

f(x) =


xa sin

(
1
xb

)
, x 6= 0,

0, x = 0,

for some a, b > 0. As x → 0, xa goes to 0 and 1
xb blows up to infinity. So the behavior near

0 depends on the relative sizes of a and b. If a � b > 1, we might expect the amplitude of the

oscillations to decay much quicker than the increase in frequency, making the function differentiable.

Consider, for example, setting a = 2 and b = 1. Then it can be shown f is continuous at 0, but

not differentiable: for any x 6= 0,

f ′(x) = 2x sin

(
1

x

)
− cos

(
1

x

)
.

As x goes to zero, the cosine term oscillates too rapidly, so that limx→0 f
′(x) does not exist. The
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functions f and f ′ are illustrated in Figure 2.1.
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f'(x)

Figure 2.1: Near x = 0, the oscillations in f decay (left), but not fast enough for the derivative
(right) to converge.

But how will the nonlocal derivative Dδf behave? Let µ be the same piecewise constant kernel

from tExample 2.5.1. Note that

Dδf(0) =

ˆ δ

−δ
[f(0 + z)− f(0)]µδ(z) dz =

ˆ δ

−δ
f(z)µδ(z) dz

Substituting in our choice of µδ, then changing variables, this becomes

Dδf(0) = − 1

δ2

ˆ 0

−δ
z2 sin

(
1

z

)
dz +

1

δ2

ˆ δ

0
z2 sin

(
1

z

)
dz

=
2

δ2

ˆ δ

0
z2 sin

(
1

z

)
dz.

We can then get an upper bound on Dδf(x) in terms of δ:

∣∣Dδf(0)
∣∣ ≤ 2

δ2

ˆ δ

0

∣∣∣∣∣z2 sin
(
1

z

)∣∣∣∣∣ dz.
Since z ∈ (0, δ),

∣∣sin(y)∣∣ ≤ 1 for all y ∈ R, and
´ δ
0 dz = 1,

∣∣Dδf(0)
∣∣ ≤ 2

δ2
· δ2 · 1 · δ = 2δ.

Thus, as δ → 0, Dδf(x) → 0.



51

Let

g(δ) = Dδf(0) =
2

δ2

ˆ δ

0
z2 sin

(
1

z

)
dz.

Then we can plot g as a function of δ to see how the nonlocal derivative behaves when δ is near 0.

The numerical approximation is shown in Figure 2.2.

-0.2 -0.1 0.1 0.2
δ

-0.02

-0.01

0.01

0.02

0.03

0.04

g
Viewing theNonlocal Derivative at 0 as a function of δ

Figure 2.2: When δ is small, g(δ) = Dδf(0) is small.

The preceding discussion has focused on the strengths of using the operator Dδ. But this

example illustrates a potential drawback, depending on the point of view. Our choice of kernel

leads to a lot of cancellation when computing Dδu(0). There is a sense in which, compared with

the classical derivative, we lose a lot of information about the behavior of the function near the

origin. 4

This example illustrates one case where Dδu is well-defined even though the classical does not

exist. The next two examples demonstrate what happens in other cases where u′ does not exist.

In each of the following plots, δ = 0.05, and we consider the interval [0, 1]. Also, we use an

appropriately scaled and truncated version of z−1/3 for our kernel, shown below in Figure 2.3. Note

that the figures below use a discretized version of u and the trapezoid rule to compute the nonlocal

derivative, with a spacing of h = 0.005 between points. This dramatically reduces computation

time, since the integrals involved in computing Dδ can sometimes be challenging for systems like

Mathematica to handle efficiently. Any loss in precision should not be enough to obscure the main
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point of these examples. More details on numerical approximation can be found in Chapter 4 and

Appendix A.

-0.06 -0.04 -0.02 0.02 0.04 0.06

-1500
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1000

1500

Kernel

mu(z)

Figure 2.3: Inside the interval (−0.05, 0.05), the kernel is given by µ(z) = 122.801
z1/3

. This kernel is in
L1 and has been scaled to meet the conditions of Theorem 2.4.2.

Example 2.5.4: For functions with cusps, the classical derivative u′(x) blows up. In some cases,

however, the nonlocal derivative Dδu(x) stays well-behaved. This is illustrated by the following

plots. The function u(x) = (x− 1
2)

2/3, shown in Figure 2.4, has a cusp at x = 1
2 .

The nonlocal derivative collects up information about the function over a whole interval, and

acts as a sort of average of the slopes in that region. Thus, Dδu smoothly interpolates between the

values of u′(x) at points where u is not differentiable. 4

Example 2.5.5: Using the same kernel as in Figure 2.3, consider the function u(x) =
∣∣∣x− 1

2

∣∣∣.
Once again, we see that far from the corner, the nonlocal and classical deriavtives are nearly

indistinguishable. But at the corner, the nonlocal derivative continuously joins the two branches

of u′, while the classical derivative jumps.

4
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Figure 2.4: A function with a cusp.
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Comparing Classical and Nonlocal Derivatives

D u(x)

u'(x)

Figure 2.5: Away from the cusp, the nonlocal and classical derivatives agree. Near x = 1
2 , however,

u′ blows up, while Dδu connects the two branches relatively smoothly.
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Figure 2.6: A function with a corner.
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Figure 2.7: Just like with the cusp, the nonlocal derivative doesn’t have the same sort of disconti-
nuity that we see in u′.
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Chapter 3

Existence and Uniqueness of Minimizers

Now we set up the minimization problem introduced in Section 2.2 in more detail. Immediate

consequences of the initial assumptions are established in Section 3.1 for convenient reference later.

The main results concerning existence and uniqueness are given in Theorems 3.2.1 and 3.3.2.

3.1 Notation and Assumptions

Fix any p ∈ (1,∞) and δ > 0. Let Ω = (a, b) and Γ = (a − δ, a] ∪ [b, b + δ). Suppose that

µ : (−δ, δ) → R is a function in L1
(
(−δ, δ)

)
. Let D denote the nonlocal differential operator given

by Equation 2.3. We drop the subscript µ in this section since the kernel is fixed.

We consider a functional of the form

J [u] =

ˆ
Ω
f(x, u,Du) dx,

where f : Ω ∪ Γ × R × R → R ∪ {±∞} is in L1 (Ω ∪ Γ× R× R). We are interested in problems

where behavior on the collar is fixed, so let u0 : Ω ∪ Γ → R be a given function in Lp (Ω ∪ Γ) and

let A denote the admissible class of the functional J :

A :=
{
u ∈ Lp (Ω ∪ Γ) : u(x) = u0(x) a.e. on Γ

}
.

Remark 3.1.1: There are other possible choices for the boundary conditions. For example, in

numerical experiments (see Chapter 4), we found cases where boundary conditions of the type
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above did not admit minimizers converging to the classical minimizer. Instead, we fixed the values

just at the endpoints a and b, then extended the function u onto the collar via linear reflection.

More on this later.

Before moving on to the main theorem of this section, we note a few properties that follow

immediately from the assumptions made so far.

Lemma 3.1.2: Recall that f is defined on an open set, so every point in its domain is also in the

interior of that set. By assumption 3, f is convex in its second and third arguments. It is therefore

continuous in those arguments as well. (See Dacorogna 2008, Theorem 2.31 or Fonseca and Leoni

2007, Theorem 4.36.)

Lemma 3.1.3: The admissible class A is a convex set and the functional J : A → R is convex: for

all t ∈ [0, 1],

J [tu1 + (1− t)u2] ≤ tJ [u1] + (1− t)J [u2].

Proof. To see that A is convex, select any u, v ∈ A and choose t ∈ [0, 1]. Since u, v ∈ Lp (Ω ∪ Γ),

and Lp is a vector space, any convex combination of u and v will stay in Lp. The only thing to

check is that they agree with u0 on the collar. By assumption, u(x) = v(x) = u0(x) for almost

every x ∈ Γ. Thus, on the set Γ,

tu(x) + (1− t)v(x) = tu0(x) + (1− t)u0(x) = u0(x) a.e.

So any convex combination of u and v agrees with the boundary values and is therefore an element

of A.

Now we show that J is convex. Choose u, v ∈ A. Using Assumption 3 and the linearity of D
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(see Proposition 2.4.1), we compute

J [tu+ (1− t)v] =

ˆ b

a
f
(
x, tu+ (1− t)v,D

(
tu+ (1− t)v

))
dx

=

ˆ b

a
f
(
x, tu+ (1− t)v, tDu+ (1− t)Dv

)
dx

≤
ˆ b

a
t · f (x, u,Du) + (1− t) · f (x, v,Dv) dx

= t

ˆ b

a
f (x, u,Du) dx+ (1− t)

ˆ b

a
f (x, v,Dv) dx

= tJ [u] + (1− t)J [v].

Lemma 3.1.4: If there is at least one function v ∈ A such that J [v] < ∞, then there exists a

minimizing sequence
{
uj
}∞
j=1

in A such that

lim
j→∞

J [uj ] = inf
{
J [u] : u ∈ A

}
.

Proof. This is immediate from the definition of a minimizing sequence.

3.2 Existence of a Minimizer: The Direct Method

Now we are ready to apply the direct method, described in Section 1.1.3 to the problem set up in

Sections 2.2 and 3.1.

Theorem 3.2.1: In addition to the definitions and assumptions given in 3.1, suppose that the

following conditions hold:

1. There is a Poincaré Inequality for the operator D. That is, there exists a constant Cp,

depending only on p, such that

ˆ
Ω
|u|p dx ≤ Cp

ˆ
Ω
|Du|p dx, for all u ∈ Lp (Ω ∪ Γ) such that u = 0 a.e. on Γ. (3.1)
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2. There exists a function v ∈ A such that J [v] < ∞.

3. For every x ∈ Ω ∪ Γ, the map (u, ξ) 7→ f(x, u, ξ) is jointly convex on all of R × R: for all

t ∈ [0, 1],

f
(
x, tu1 + (1− t)u2, tξ1 + (1− t)ξ2

)
≤ tf (x, u1, ξ1) + (1− t)f (x, u2, ξ2) . (3.2)

4. The function f is coercive: there exists a constant M > 0 and a function P ∈ L1 (Ω ∪ Γ) such

that

f(x, u, ξ) ≥ M |ξ|p + P (x), for all (x, u, ξ) ∈ Ω ∪ Γ× R× R. (3.3)

Then there exists a minimizer of J over the set A. That is, there is some û ∈ A such that

J [û] = infu∈A J [u].

Before proving the theorem, a few comments on the assumptions made above.

Remark 3.2.2: We chose p > 1 to ensure that Lp is a reflexive Banach space. Since the dual of

L1 is L∞, but the dual of L∞ is not generally L1, the argument given below does not go through

for p = 1. However, using the Dunford-Pettis theorem (Fonseca and Leoni 2007, Theorem 2.54),

equi-integrability, and our coercivity condition, it should be possible to make the argument work

for p = 1 as well.

Remark 3.2.3: The joint convexity condition is needed to ensure lower semi-continuity of the

functional J . In higher dimensions, this assumption can be weakened. For further discussion of

convexity in the classical case, see Dacorogna 2008 or Sections 2.19 and 2.20 of Cesari 1983. More

recent work on lower semi-continuity in the nonlocal setting includes Elbau 2011, Kreisbeck and

Schönberger 2022, Bellido et al. 2020, Cueto 2021, and Kreisbeck and Zappale 2020.

Remark 3.2.4: Assuming that there is a Poincaré-type Inequality for this particular nonlocal

setting is a nontrivial assumption. This type of bound is essential for the standard arguments, but
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it is unclear whether any existing results would apply to this context (without further assumptions,

for example, on the kernel µ). For some examples of classical Poincaré-tpe inequalities, see Leoni

2009, Theorems 7.21. 7.23, and Section 12.2 or Ziemer 2012, Chapter 4. For some examples of

nonlocal analogs, see Bobaru, Foster, et al. 2016, p. 78 and the associated references, Mengesha

and Du 2014, Proposition 2.7, Mengesha and Du 2013, Proposition 2, Cueto 2021, Theorem 6.4.2,

and Andreu-Vaillo et al. 2010, Propositions 5.3, 5.5, 6.19, and 6.25.

Now onto the proof of Theorem 3.2.1. The goal is to construct an element û ∈ A so that

J [û] = inf
u∈A

J [u]. (3.4)

The general idea is to establish uniform bounds on our minimizing sequence
{
uj
}∞
j=1

so we can

extract a weakly convergent subsequence. Then Mazur’s Lemma provides a related (strongly)

convergent sequence. Applying convexity, we show that the limit of that new sequence is in fact a

minimizer of J over A.

Proof. Let
{
uj
}∞
j=1

be any minimizing sequence given by Lemma 3.1.4. Since f is coercive, for

each j ∈ N and all x ∈ Ω we have

P (x) +M
∣∣Duj(x)

∣∣p ≤ f(x, uj ,Duj).

Since this holds for the whole interval, we can integrate both sides to obtain

ˆ
Ω
P (x) dx+M

ˆ
Ω

∣∣Duj(x)
∣∣p dx ≤

ˆ
Ω
f(x, u,Du) dx = J [uj ].

Since P ∈ L1 (Ω), we can find K ∈ R such that
´
Ω P (x) dx < K. Thus, we can rearrange to find

the following inequality for each j ∈ N:

ˆ
Ω

∣∣Duj(x)
∣∣p dx ≤ J [uj ]−K

M
.
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Since
{
uj
}

is a minimizing sequence and Assumption 2 guarantees J [uj ] is not always infinite, the

J [uj ] can be bounded independently of j. That is, there exists a constant R < ∞ such that, for all

j, J [uj ]−K
M < R. Thus, we see that coercivity ensures

ˆ
Ω

∣∣Duj(x)
∣∣p dx < R, ∀j ∈ N. (3.5)

We’d like to use this to get a uniform bound on our minimizing sequence. Recall that our

Poincaré Inequality only applied to functions that are 0 on the collar. Thus, for each j ∈ N we

introduce a new function wj defined by

wj := uj − u0. (3.6)

Since each uj ∈ A, we know uj(x) = u0(x) for any x ∈ Γ. Thus, wj = 0 on the collar, and we can

apply Poincaré’s Inequality (Assumption 1):

ˆ
Ω

∣∣wj(x)
∣∣p dx ≤ Cp

ˆ
Ω

∣∣Dwj(x)
∣∣p dx. (3.7)

We’d like to express the right side in terms of uj so that we can apply Equation 3.5. In Proposition

2.4.1, we saw that the operator D is linear, so

ˆ
Ω

∣∣Dwj(x)
∣∣p dx =

ˆ
Ω

∣∣Duj(x)−Du0(x)
∣∣p dx. (3.8)

Since p > 1, the map x 7→ |x|p is convex. Thus, viewing the right hand side of the above equation

as a convex combination, we can further break up the integral:

∣∣Duj(x)−Du0(x)
∣∣p = ∣∣∣∣12 (2Duj(x)

)
+

1

2

(
−2Du0(x)

)∣∣∣∣p
≤ 1

2

∣∣2Duj(x)
∣∣p + 1

2

∣∣−2Du0(x)
∣∣p

= 2p−1
∣∣Duj(x)

∣∣p + 2p−1
∣∣Du0(x)

∣∣p
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(This is a standard trick; see for example Fonseca and Leoni 2007, p. 259.) Plugging this back into

Equation 3.8 yields

ˆ
Ω

∣∣Dwj(x)
∣∣p dx ≤ 2p−1

ˆ
Ω

∣∣Duj(x)
∣∣p dx+ 2p−1

ˆ
Ω

∣∣Du0(x)
∣∣p dx.

The rightmost term, involving
´
Ω

∣∣Du0(x)
∣∣p dx, is some finite constant determined by the boundary

conditions, call it C0. Putting this back together with the inequality given in Equation 3.7, we have

ˆ
Ω

∣∣wj(x)
∣∣p dx ≤ Cp2

p−1

(ˆ
Ω

∣∣Duj(x)
∣∣p dx+ C0

)
. (3.9)

Combining this with Equation 3.5, we obtain a bound independent of j:

ˆ
Ω

∣∣wj(x)
∣∣p dx < Cp2

p−1 (R+ C0) < ∞, ∀j ∈ N. (3.10)

Now that we have a uniformly bounded sequence
{
wj

}∞
j=1

in Lp(Ω ∪ Γ), we apply Lemmas 2.3.7

and 2.3.8 to find a weakly convergent subsequence. Now we can apply Mazur’s Lemma (2.3.9) to

find a sequence {yn}∞n=1 of convex combinations of the elements of
{
wjk

}∞
k=1

such that yn converges

strongly to ŷ. More precisely, for every n, there exists a set of nonnegative real numbers
{
λ
(n)
k

}Mn

k=n

such that

1. yn =
∑Mn

k=n λ
(n)
k wjk ,

2.
∑Mn

k=n λ
(n)
k = 1, and

3. yn → ŷ in the Lp norm.

Note that applying the operator D to this sequence yields a strongly convergent sequence in Lp (Ω):

Proposition 2.4.1 shows D is linear and bounded, so

‖Dyn −Dŷ‖Lp(Ω) =
∥∥D(yn − ŷ)

∥∥
Lp(Ω)

≤ ‖D‖ ‖yn − ŷ‖Lp(Ω) ,

which can be made arbitrarily small by Property 3 above.
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Recall that we defined each wj by subtracting off u0 from the corresponding uj , which was a

member of the original minimizing sequence. We can rewrite Property 1 of the yn above as follows,

yn =

Mn∑
k=n

λ
(n)
k wjk =

Mn∑
k=n

λ
(n)
k (ujk − u0) =

Mn∑
k=n

(
λ
(n)
k ujk

)
−

Mn∑
k=n

(
λ
(n)
k u0

)

But u0 is independent of the indices we are summing over, so we can pull it out of the last summation

and use the fact that
∑Mn

k=n λ
(n)
k = 1 to obtain

yn =

Mn∑
k=n

(
λ
(n)
k ujk

)
− u0. (3.11)

Next, for each n define

ûn := yn + u0 =

Mn∑
k=n

λ
(n)
k ujk (3.12)

These ûn are all in the admissible class A, since they are finite linear combinations of elements of

A. Next, define û = ŷ + u0, so that

û = ŷ + u0 = lim
n→∞

yn + lim
n→∞

u0 = lim
n→∞

(yn + u0) = lim
n→∞

ûn.

Note that A is a closed subset of a complete vector space, and û is defined as the limit of elements

of A. Thus, û ∈ A. Our goal now is to show this û we’ve constructed is the minimizer of J :

J [û] = inf
{
J [u] : u ∈ A

}
.

Evaluating J using Equation 3.12 and the linearity of D, we have the following for every n ∈ N:

J [ûn] =

ˆ
Ω
f(x, ûn,Dûn) dx

=

ˆ
Ω
f

x,

Mn∑
k=n

λ
(n)
k ujk ,D

Mn∑
k=n

λ
(n)
k ujk


 dx

=

ˆ
Ω
f

x,

Mn∑
k=n

λ
(n)
k ujk ,

Mn∑
k=n

λ
(n)
k Dujk

 dx

From the convexity of J (Lemmas 2.3.10 and 3.1.3), we can pull the sums out to get an upper
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bound:

J [ûn] ≤
Mn∑
k=n

λ
(n)
k

ˆ
Ω
f
(
x, ujk ,Dujk

)
dx =

Mn∑
k=n

λ
(n)
k J [ujk ]. (3.13)

Now fix an ε > 0. Since
{
ujk
}∞
k=1

is a subsequence of a minimizing sequence, we know there is

some N = N(ε) ∈ N such that J [ujk ] < inf
u∈A

J [u] + ε whenever k ≥ N . Setting n = N in Equation

3.13, we see that

J [ûN ] ≤
Mn∑
k=N

λ
(n)
k J [ujk ]

<

Mn∑
k=N

λ
(n)
k

(
inf
u∈A

J [u] + ε

)

=

(
inf
u∈A

J [u] + ε

) Mn∑
k=N

λN
k

= inf
u∈A

J [u] + ε,

where we used Property 2 of the coefficients λN
k . Since this holds for all ε > 0, we conclude

lim
n→∞

J [ûn] ≤ inf
u∈A

J [u].

From the definition of infimum, we also have limn→∞ J [ûn] ≤ infu∈A J [u]. Hence,

lim
n→∞

J [ûn] = inf
u∈A

J [u]. (3.14)

Next we use the fact that D is a continuous linear operator and that f is continuous in its second
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and third arguments (Lemmas 2.4.1 and 3.1.2, respectively) to obtain the following

J [û] =

ˆ
Ω
f(x, û,Dû) dx

=

ˆ
Ω
f(x, lim

n→∞
ûn,D

(
lim
n→∞

ûn

)
) dx

=

ˆ
Ω
f(x, lim

n→∞
ûn, lim

n→∞
Dûn) dx

=

ˆ
Ω

lim
n→∞

f(x, ûn,Dûn) dx

The growth condition of assumption 4 implies that f(x, ûn(x),Dûn(x)) is bounded below by

the measurable function M
∣∣Dûn(x)

∣∣p +P (x). Thus, for each n, P (x) ≤ f(x, ûn(x),Dûn(x)). Then

we apply a variant of Fatou’s Lemma (2.3.4) and Equation 3.14 to obtain

J [û] =

ˆ
Ω

lim
n→∞

f(x, ûn,Dûn) dx ≤ lim
n→∞

ˆ
Ω
f(x, ûn,Dûn) dx = lim

n→∞
J [ûn] = inf

u∈A
J [u].

Therefore, û ∈ A minimizes the functional J over our chosen admissible class.

3.3 Uniqueness

There is no reason to think that a convex functional will have a unique minimum. To ensure

uniqueness, a stronger convexity assumption is needed.

Definition 3.3.1: We say a function f : Ω∪ Γ×R×R → R is strictly convex in its second and

third arguments if, for all x ∈ Ω ∪ Γ and all u1, u2, ξ1, ξ2 ∈ R such that u1 6= u2 and ξ1 6= ξ2, the

function f satisfies

f(x, tu1 + (1− t)u2, tξ1 + (1− t)ξ2) < tf(x, u1, ξ1) + (1− t)f(x, u2, ξ2). (3.15)

Theorem 3.3.2: Suppose that the conditions of Theorem 3.2.1 hold. Further assume that f is

strictly convex in its second and third arguments. Then there exists a unique (up to equivalence

almost everywhere) û minimizing J over the set A.
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Remark 3.3.3: The proof given below is no different than what happens in the classical case. See

for example page 108 of Dacorogna 2008 or page 449 of Evans 1998.

Proof. Suppose that û and v̂ are two minimizers of the functional J over the set A:

J [û] = J [v̂] = inf
u∈A

J [u].

Then let w = 1
2(û + v̂). From Lemma 3.1.3, A is a convex set (so w ∈ A) and J is a convex

functional, so

J [w] = J

[
1

2
û+

1

2
v̂

]
≤ 1

2
J [û] +

1

2
J [v̂] = inf

u∈A
J [u].

Thus, w is a minimizer of J . It immediately follows that

ˆ
Ω

1

2
f(x, û,Dû) dx+

ˆ
Ω

1

2
f(x, v̂,Dv̂) dx−

ˆ
Ω
f(x, ŵ,Dŵ) dx = 0. (3.16)

Now, for every x, the map (u, ξ) 7→ f(x, u, ξ) is convex. With the linearity of D, this implies

f(x,w,Dw) = f

(
x,

û+ v̂

2
,D
(
û+ v̂

2

))
≤ 1

2
f(x, û,Dû) +

1

2
f(x, v̂,Dv̂).

So
1

2
f(x, û,Dû) +

1

2
f(x, v̂,Dv̂)− f(x, ŵ,Dŵ) ≥ 0,

and Equation 3.16 implies that the integral of the left side quantity is 0. Therefore,

1

2
f(x, û,Dû) +

1

2
f(x, v̂,Dv̂)− f(x, ŵ,Dŵ) = 0 a.e. in Ω. (3.17)

Now suppose for the sake of contradiction that there is a set of strictly positive measure, S,

such that û(x) 6= v̂(x) for all x ∈ S. Then the strict convexity of f (Equation 3.15) implies

f(x,w,Dw) = f

(
x,

û+ v̂

2
,D
(
û+ v̂

2

))
<

1

2
f(x, û,Dû) +

1

2
f(x, v̂,Dv̂),
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for all x ∈ S. In particular, 1
2f(x, û,Dû) + 1

2f(x, v̂,Dv̂) − f(x,w,Dw) > 0 on a set of positive

measure, contradicting Equation 3.17. Thus, if û and v̂ differ at all, it cannot be on a set of

positive measure.
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Chapter 4

Numerical Examples and Discussion

In Theorems 3.2.1 and 3.3.2, we showed the minimization problems of 2.2 are well-posed in a fairly

general setting: the kernel was only required to be in L1 and the values on the collar were required

to match some function u0 ∈ Lp. Now we would like to explore the consequences of different choices

of µ and different boundary conditions to get a better grasp of the problems at hand. For this,

we turn to numerical simulations performed in Mathematica. The details of the numerical scheme

along with the complete code can be found in Appendix A. Rather than optimizing for numerical

precision or computational speed, the algorithm used was chosen due to its simplicity and ease of

presentation. Additionally, we will only discuss relatively nice problems, where additional precision

is unlikely to grant any additional insight. Thus, these results should be seen as suggestive at most;

the investigation was not sufficiently thorough to come to any firm conclusions.

When comparing classical and nonlocal variational problems, there is a question of how to extend

the classical boundary conditions to the new problem. We consider two possibilities: constant

extensions and linear reflections. Details of this implementation can be found in the code itself;

Figure 4.1 should be sufficiently clear to illustrate the basic concepts.

In this section, the notation ‖u− v‖ without a subscript denotes the Euclidean norm, mea-

suring distance between finite dimensional vectors u, v ∈ Rn. The symbol ‖u− v‖∞ measures the

maximum difference between the entries of u and v. Throughout, ûc refers to the minimizer of

the classical problem and ûn is the approximate minimizer of the nonlocal problem. The plots la-

beled “Final” show the conclusion of the gradient descent algorithm, with the blue function labeled

“u” denoting the approximate minimizer to the nonlocal problem. In the plots labeled “Nonlocal
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Figure 4.1: Linear versus constant extensions. Image adapted from Foss, Radu, and Yu 2022.

Derivative,” the blue data, “w”, denotes the approximate nonlocal derivative.

4.1 Constant Extensions

Consider the classical functional

J [u] =

ˆ 1

0
u2 + u′2 dx,

with admissible class

A =
{
u ∈ W 1,1

(
[0, 1]

)
: u(0) = 0, u(1) = 1

}
.

From the Euler-Lagrange Equation, it can be shown that the minimizer is given by

ûc(x) =
ex − e−x

e− e−1
. (4.1)

To convert this to a nonlocal problem, we replace u′ with Du and adjust the admissible class.

Instead of only fixing the endpoints, Theorem 3.2.1 requires specifying the values of u on the entire

collar, (−δ, 0]∪ [1, 1+ δ). Perhaps the simplest way to convert the classical boundary conditions to

the nonlocal setting is by constant extension. So we first consider the following nonlocal variation

problem.

Example 4.1.1: Select δ ∈ (0, 1] and consider the domain Ω = [0, 1] with collar Γ = (−δ, 0] ∪
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[1, 1 + δ). Let µ : (−δ, δ) → R be given by

µδ(z) =


0, x ≤ 0

2
δ2
, x > 0.

(4.2)

No matter which δ is chosen, this kernel satisfies

1. the corresponding Dδ given by Equation 2.3 satisfies the Poincaré Inequality in Equation 3.1

(See Example 3.1 in Foss 2019),

2.
´ δ
−δ

∣∣zµδ(z)
∣∣ dz < ∞, and

3.
´ δ
−δ zµδ(z) dz = 1.

Thus, the conditions of Theorem 2.4.2, its corollary, and Theorem 3.2.1 are all satisfied. Then

define the functional

Jδ[u] =

ˆ 1

0
u2 + (Dδu)

2 dx

with admissible class

A :=
{
u ∈ Lp

(
[−δ, 1 + δ]

)
: u(x) = 0 for all x ≤ 0, and u(x) = 1 for all x ≥ 1

}
.

What is the minimizer of Jδ over the set A? How does it compare to the classical minimizer as δ

approaches 0? 4

The functional Jδ satisfies the conditions of Theorems 3.2.1 and 3.3.2, so there should be a

unique minimizer. Using the numerical methods described in Appendix A, we can approximate

this minimizer by converting the problem into a finite dimensional optimization problem.

Remark 4.1.2: Besides the many possible sources of error within the specific algorithm used, one

should be skeptical of even this basic concept. For general functions in Lp, we have very little

reason to think that a finite sampling of points will do a very good job of capturing the behavior of
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the function. The hope is that, for small δ, the nonlocal problem behaves like the classical problem.

(This is suggested, but not guaranteed, by Corollary 2.4.4.) Since the minimizer to the classical

problem is quite smooth, it can be approximated reasonably well via finite sampling.

Remark 4.1.3: Extremely limited initial testing suggests that changing the initial function for the

gradient descent algorithm does not change the outcome much. For simplicity, and to control this

potential variable, all of the figures shown in this chapter use the following function as the initial

data:

u(x) =



0, x ≤ 0

x+ sin(2πx), x ∈ (0, 1)

1, x ≥ 1.

All parameters, like δ and the step size, are also fixed. These values can be found in Appendix A.

Example 4.1.1 fixes the value of u on the collar independent of what the function u is doing

inside the interval [0, 1]. Thus, in general, the nonlocal derivative does not agree well with the

classical derivative for points near 0 or 1. Also, the kernel chosen in Equation 4.2 is only non-zero

to the right of z = 0. Hence, the operator Dδ can only “see” what happens to its right; points to

the left of x make no contribution to the integral in the definition of Dδ. This can be see in Figure

4.2(c): the values of Dδu are shifted and the collar values for x < 0 make no impact at all.

Because of this last observation, there is nothing enforcing the boundary conditions near 0: u

can be discontinuous at 0 with a large jump without being “penalized.” Figure 4.2(d) shows the

result of the gradient descent method applied to Example 4.1.1. The nonlocal minimizer behaves,

in an extremely rough sense, qualitatively similarly to the classical minimizer. But it is not clear

that the nonlocal minimizer converges to the classical as δ → 0. More testing is needed.

Keeping the constant collar values and the same kernel, let’s look at the behavior of a different

(but similar) functional. The action functional (recall Equation 1.4) for a simple harmonic oscillator
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(a)

∥∥Du− u′
∥∥ ≈ 13.2991∥∥Du− u′
∥∥
∞ ≈ 7.28319

J [ûc] ≈ 1.31305

Jδ[ûn] ≈ 1.16373

‖ûc − ûn‖ ≈ 1.49413

‖ûc − ûn‖∞ ≈ 0.187401

(b)

(c)

(d)

Figure 4.2: An approximate minimizer for the problem in Example 4.1.1. Near x = 1, the nonlocal
derivative does not accurately capture the classical derivative. The gradient descent method did
converge to something, but it doesn’t look like the nonlocal minimizer is converging to the classical
minimizer.
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is given by

H[u] =

ˆ 1

0
2u′2 − π2

2
u2 dx. (4.3)

The corresponding Euler-Lagrange Equation (which is just Hooke’s Law) gives the minimizer as

ûc(x) = sin

(
πx

2

)
.

Now we convert this to a nonlocal problem as in the previous example

Example 4.1.4: Select δ ∈ (0, 1] and consider the domain Ω = [0, 1] with collar Γ = (−δ, 0] ∪

[1, 1 + δ). Let µ : (−δ, δ) → R be given by

µδ(z) =


0, x ≤ 0

2
δ2
, x > 0.

(4.4)

Define the functional

Hδ[u] =

ˆ 1

0
2(Dδu)

2 − π2

2
u2 dx

with admissible class

A :=
{
u ∈ Lp

(
[−δ, 1 + δ]

)
: u(x) = 0 for all x ≤ 0, and u(x) = 1 for all x ≥ 1

}
.

How does the minimizer of Hδ compare to the classical minimizer of H? 4

The result of the numerical approximation is shown in Figure 4.3. Again, the nonlocal minmizer

does not satisfy limx→0+ u(x) = 0, because Dδ does not pick up this discontinuity. Apart from this

difference, the nonlocal and classical minimizers are qualitatively similar.

For the same constant collar values, it is interesting to see the effects of different choices of kernel.

As noted in Example 2.5.1, an anti-symmetric kernel likely does a better job of behaving like the

classical derivative. Thus, return to Example 4.1.1 but replace the kernel with the anti-symmetric,
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(a)

∥∥Du− u′
∥∥ ≈ 13.2991∥∥Du− u′
∥∥
∞ ≈ 7.28319

J [ûc] ≈ 0.0

Jδ[ûn] ≈ −1.22377

‖ûc − ûn‖ ≈ 3.59452

‖ûc − ûn‖∞ ≈ 0.393176

(b)

(c)

(d)

Figure 4.3: For the harmonic oscillator functional of Example 4.1.4, with constant extensions, the
nonlocal variational problem has a solution roughly similar to the local problem. Again, the graph
is qualitatively similar but not particularly close to the classical minimizer, especially near x = 0.
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piece-wise constant kernel shown in Figure 4.4.

Note that this kernel satisfies the hypotheses of Theorem 2.4.2, so it should behave like u′ for

small δ. In fact, the examples of Section 2.5 suggest that an anti-symmetric kernel should do an

even better job of approximating the classical problem than the asymmetric kernl of the previous

figures. However, the corrsponding nonlcoal operator may not have a Poincaré Inequality, so the

existence and uniqueness of a minimizer is not guaranteed by Theorem 3.2.1. Either a more general

Poincaré Inequality or some other further justification is needed.

As Figure 4.4(c) shows, this kernel does a better job of approximating the derivative than the

asymmetric kernel of Example 4.1.1. However, the nonlocal minimizer found by the iterative process

behaves surprisingly differently from the classical minimizer. This is shown in Figure 4.4(d).

More research is needed to determine what exactly is going on here. The oscillations shown

do not seem to depend on the size of δ or the mesh size h. A similar phenomenon occurs for

other choices of anti-symmetric kernel as well; it is unclear why. Additionally, when the same

anti-symmetric, piecewise-constant kernel is applied to the simple harmonic oscillator problem, the

algorithm does not converge at all. It runs indefinitely, producing sharply discontinuous values of

u. Curiously, similar oscillations do not occur when the function is linearly reflected onto the collar,

as we see in the next section.

4.2 Linear Reflections

As seen in the figures from the last section, extending u by a constant generally causes sharp

corners in the graph of u. This means Du(x) is not a good approximation to u′(x) for x near the

end points. One way to mitigate this effect is by reflecting the values of u across the endpoint. This

reduces the spike in Du near the endpoints, but it also comes at a cost. Since the values on the

collar now depend on the values of u inside the interval, Theorem 3.2.1 no longer applies. However,

the numerical results are somewhat promising in this case. Fewer strange cases have been found,

motivating the following conjecture.

Conjecture 4.2.1: Theorem 3.2.1 can be extended to variational problems where the function
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(a)

∥∥Du− u′
∥∥ ≈ 8.34289∥∥Du− u′
∥∥
∞ ≈ 3.6676

J [ûc] ≈ 1.31305

Jδ[ûn] ≈ 0.754286

‖ûc − ûn‖ ≈ 3.59502

‖ûc − ûn‖∞ ≈ 2.11912

(b)

(c)

(d)

Figure 4.4: Applying an anti-symmetric kernel to Example 4.1.1. This kernel better approximates
the derivative. But for some reason does not approach the classical minmizer like the asymmetric
kernel does. Note that this behavior appears only for the constant extensions.
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u is extended to the collar via linear reflection and the kernel µ is anti-symmetric. Additionally,

in cases where the classical problem is well-defined and the kernel of D satisfies Theorem 2.4.2,

the minimizer of the nonlocal variational problem converges to the minimizer of the corresponding

classical problem. ♢

To see some potential evidence of this claim, we return to the functional from Example 4.1.1.

Now the admissible class has changed; the values at 0 and 1 are fixed, and the values of u on the

collar must be linear reflections of the values of u inside the interval. We consider 6 different kernels

and corresponding operators. All of these functions are set to zero outside (−δ, δ), and the scaling

constants C are selected so that
´ δ
−δ zµ(z) dz = 1.

1.

µ1(z) :=


C1, x ∈ (0, δ),

0, x /∈ (0, δ)

2.

µ2(z) :=



−C2, x ∈ (−δ, 0),

0, x = 0,

C2, x ∈ (0, δ)

3.

µ3(z) := C3z

4.

µ4(z) :=
C4

z1/3

5.

µ5(z) := C5z
5



77

6.

µ6(z) :=
C6

z

Note that µ1 and µ2 are the same kernels used in the previous section. The fourth kernel was

also mentioned previously, in Section 2.5. Intuitively, it gives points near x a nearly infinite amount

of weight, while points further away contribute less to the value of Du(x). Compare this to µ5,

which has nearly the opposite effect: points close to x contribute almost nothing. One might expect

that µ4 gets much close to the classical derivative and therefore the classical minimizer. This turns

out not to be the case; the two behave somewhat similarly. Finally, note that µ6 is not in L1, so

none of the results from the previous sections apply. However, it is still interesting to see how the

functional behaves for this sort of singular kernel.

A summary of results is given in Table 4.1, though the plots are likely more informative. Many

of the nonlocal minimizer graphs develop small ripples near x = 1. The cause of this effect is not

yet clear. Unlike the oscillations in Figure 4.4, they stay contained near the right endpoint and the

amplitudes remain relatively small. Also, note that the plots of the nonlocal derivatives stay closer

to the classical derivative near x = 0 and x = 1 compared to the plots of the previous section.

Kernels µ2 through µ6 are all anti-symmetric. Despite the kernels behaving quite differently from

one another, the resulting minimizers are fairly close to each other and fairly close to the classical

minimzer. This suggests the possibility of a Poincaré type inequality for these anti-symmetric

kernels, though we have no proof of this fact so far.

∥∥Du− u′
∥∥ ∥∥Du− u′

∥∥
∞ Jδ[ûn] ‖ûc − ûn‖ ‖ûc − ûn‖∞

µ1 6.60044 0.659946 1.19439 1.71542 0.191849

µ2 0.522794 0.05202 1.31451 0.195205 0.00554286

µ3 0.322977 0.0364033 1.32474 0.190166 0.0531383

µ4 0.771154 0.081053 1.30554 0.167338 0.0260365

µ5 1.44124 0.16924 1.38671 0.194979 0.0310755

µ6 3.58004 0.398679 1.21586 0.139082 0.0168013

Table 4.1: Summary of results for different choices of the kernel µ.
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(a)

∥∥Du− u′
∥∥ ≈ 6.60044∥∥Du− u′
∥∥
∞ ≈ 0.659946

J [ûc] ≈ 1.31305

Jδ[ûn] ≈ 1.19439

‖ûc − ûn‖ ≈ 1.71542

‖ûc − ûn‖∞ ≈ 0.191849

(b)

(c)

(d)

Figure 4.5: (µ1) A constant, asymmetric kernel. Compare with Figure 4.4 which applied the same
kernel to the same functional, with different boundary conditions. Note that the nonlocal functional
value is lower than the classical.
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(a)

∥∥Du− u′
∥∥ ≈ 0.522794∥∥Du− u′
∥∥
∞ ≈ 0.05202

J [ûc] ≈ 1.31305

Jδ[ûn] ≈ 1.31451

‖ûc − ûn‖ ≈ 0.195205

‖ûc − ûn‖∞ ≈ 0.0554286

(b)

(c)

(d)

Figure 4.6: (µ2) An anti-symmetric, piece-wise constant kernel, which gets closer to both the
classical derivative and the classical minimizer than µ1. Compare with Figure 4.4 which applied
the same kernel to the same functional, with different boundary conditions.
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(a)

∥∥Du− u′
∥∥ ≈ 0.322977∥∥Du− u′
∥∥
∞ ≈ 0.0364033

J [ûc] ≈ 1.31305

Jδ[ûn] ≈ 1.32474

‖ûc − ûn‖ ≈ 0.190166

‖ûc − ûn‖∞ ≈ 0.0531383

(b)

(c)

(d)

Figure 4.7: (µ3) A simple linear kernel.
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(a)

∥∥Du− u′
∥∥ ≈ 0.771154∥∥Du− u′
∥∥
∞ ≈ 0.081053

J [ûc] ≈ 1.31305

Jδ[ûn] ≈ 1.30554

‖ûc − ûn‖ ≈ 0.167338

‖ûc − ûn‖∞ ≈ 0.0260365

(b)

(c)

(d)

Figure 4.8: (µ4) The cuberoot kernel used in Section 2.5.
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(a)

∥∥Du− u′
∥∥ ≈ 1.44124∥∥Du− u′
∥∥
∞ ≈ 0.16924

J [ûc] ≈ 1.31305

Jδ[ûn] ≈ 1.38671

‖ûc − ûn‖ ≈ 0.194979

‖ûc − ûn‖∞ ≈ 0.0310755

(b)

(c)

(d)

Figure 4.9: (µ5) Surprisingly, the quintic kernel doesn’t produce results all that different from the
inverse cuberoot kernel, despite having essentially opposite structures.
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(a)

∥∥Du− u′
∥∥ ≈ 3.58004∥∥Du− u′
∥∥
∞ ≈ 0.398679

J [ûc] ≈ 1.31305

Jδ[ûn] ≈ 1.21586

‖ûc − ûn‖ ≈ 0.139082

‖ûc − ûn‖∞ ≈ 0.0168013

(b)

(c)

(d)

Figure 4.10: (µ6) This kernel doesn’t reproduce the derivative as well as some of the other anti-
symmetric kernels. Yet it looks like the nonlocal minimizer still approaches the classical minimizer.
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Chapter 5

Concluding Remarks and Further Questions

5.1 Summary of Main Results

We introduced a class of nonlocal operator, and showed that it is a natural extension of the classical

derivative. It is linear, bounded, and preserves the integrability of functions. The flexibility of µ

makes the operator D potentially useful in a wide variety of settings. In cases where both are

defined, we showed that D acts as a good approximation to the classical derivative.

Because of the structural similarities between Du and u′, it is natural to investigate variational

problems involving this nonlocal operator. One goal is to extend as much as possible of the classical

theory on Sobolev spaces to the more general Lp setting, replacing d

dx
with D. Establishing

existence and uniqueness of minimization problems is a good first step in this direction. However,

many questions are left open. We present some of these problems here.

5.2 Further Research

As noted, a crucial assumption made for the proof of Theorem 3.2.1 was the existence of a Poincaré

type inequality. As far as I am aware, no general result has been found for this particular set-

ting. Establishing such a bound would be an important step in advancing the theory of nonlocal

variational problems of the sort discussed above.

We showed that Dδu converges to u′, but this alone is not enough to show that the minimizer

of the nonlocal problem

Jδ[u] =

ˆ b

a
f(x, u,Dδu) dx



85

converges to the corresponding classical minimizer of the local problem

J [u] =

ˆ b

a
f(x, u, u′) dx.

The numerical results of Chapter 4 suggest that establishing this convergence may be tricky, but

it does hold in some special cases.

A related notion is that of Γ-convergence, which concerns the convergence of the functionals

themselves. (See Braides 2002 or Dal Maso 2012 for an introduction. Bellido et al. 2021 applies

these techniques to a problem very similar to the work done in this thesis.) It would be interesting

to know when Jδ Γ-converges to J .

A deeper numerical study of the relevant class of nonlocal variational problems is needed. The

results above are based on a rough, inefficient algorithm. In addition to giving deeper insight

into the nature of the problem, more advanced numerical techniques would help in applying the

theoretical framework to real-world problems.

An essential property of the classical derivative is its integration by parts rule. It is not clear if

the operator D satisfies something analogous. If so, this would provide a useful tool in establishing

other key results about the operator and related variational problems.

As noted in Section 1.1, the Euler-Lagrange Equations form large part in the usefulness of

variational problems. Additionally, nonlocal analogs of the Euler-Lagrange Equations have been

found in numerous other settings; see Foss, Radu, and Wright 2018 and Bellido et al. 2020 for

example. Do analogous equations hold in our context?

Finally, recall the Lavrentiev Phenomenon introduced in Aside 1.1.7. Can the same phenomenon

occur for the nonlocal functionals we discussed? What are some conditions to rule out that possi-

bility?
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Appendix A

Mathematica Code and Additional Data

We lay out the general process of the numerical approximations presented in Chapter 4 and record

the complete Mathematica implementation.

A.1 Description of Methods

We used a simple gradient descent algorithm to approximate minimizers to the nonlocal variational

problem. See https://blog.skz.dev/gradient-descent for an intuitive explanation of the

general gradient descent method, including some very nice interactive visuals.

First, the setup. To translate the infinite dimensional problem into something a computer can

handle, we sample the functions in question at discrete points xi. For simplicity, we choose a

regular step size xi+1 − xi = h, for some fixed h > 0. To appropriately capture the behavior of the

operator D, we need several data points inside the interval (xi− δ, xi+ δ) for each i. For simplicity,

we assume δ is an integer multiple of h and call this number r := δ
h . This way the same number of

sampled points fall within each interval of length 2δ. The problems below only consider the interval

[0, 1], with collar (−δ, 0] ∪ [1, 1 + δ); in theory the code is set up so this can be changed easily.

For a given map u : [0, 1] → R, let ui = u(xi) whenever xi ∈ [0, 1]. Of course, as h → 0,

we sample more and more points, the vector U = (u1, . . . , uN ) does a better and better job of

approximating the function u. As mentioned in Chapter 4, we apply a linear reflection to extend

u onto the collar. For example, suppose that uL = u(xL) = u(1) = 1, where L denotes the last

index corresponding to a point in [0, 1]. Then we compute the value of uL+1, the first point on the

collar, by drawing a line connecting uL−1 and uL. We set uL+1 to whatever the value of this line

https://blog.skz.dev/gradient-descent
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is at the point xL+1. In general, the value of uj for j > L (thus, xj is a point to the right of the

interval [0, 1]) is given by

uj = 2 · uL − u2L−j .

To specify the operator Dδ, we need to know the kernel. Since we want it to behave like the

classical derivative, the kernel should satisfy the conditions of Theorem 2.4.2. It is sufficient to

enter the basic structure; the code will automatically re-scale it the kernel so that
´
zµ(z) dz = 1.

The nonlocal derivative Du is approximated by the finite-dimensional vector W , which we

compute using the trapezoidal rule. A change of variables y = xi + z centers the integral at xi and

makes the computation clearer:

Du(xi) =

ˆ δ

−δ
[u(xi + z)− u(xi)]µ(z) dz =

ˆ xi+δ

xi−δ
[u(y)− u(xi)]µ(y − xi) dy.

Using the fact that xi − δ = xi−r and xi + δ = xi+r, the trapezoidal rule gives

Du(xi) ≈ wi :=
h

2

(
[ui−r − ui]µ(xi−r − xi) + [ui+r − ui]µ(xi+r + xi)

)
+ h ·

r−1∑
l=1−r

[ui+l − ui]µ(xi+l − xi) =: wi

Now that we have a way of computing the nonlocal derivative at each point, we need to set up

for the gradient descent algorithm. Thus, we need to find the gradient of the functional. This part

needs to be done by hand. We illustrate the process by considering

J [u] =

ˆ 1

0
u2 + u′2 dx.

We convert this integral into a trapezoidal approximation and replace the classical derivative with

the approximate nonlocal derivative:

Jn[U ] =
h

2

(
u2F + w2

F + u2L + w2
L

)
+ h ·

L−1∑
l=F+1

(
u2l + w2

l

)
,
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where F is the first index such that xj is in [0, 1], and L is the last such index. The gradient is a

vector whose jth entry is ∂J

∂uj
. So we need to find the partial derivatives using the chain rule. Two

things to keep in mind here: usually ui will not depend on uj unless i = j. But the linear extension

to the collar means that the points outside [0, 1] do depend on points inside [0, 1]. Thus, the values

of ∂ui
∂uj

(and therefore the gradient of J) depend on the type of boundary conditions. Also, each

wi is a function of many of the ui, so we need to compute the partial derivatives ∂wi

∂uj
as well. The

partial derivatives of U and W are stored as matrices, so that when we compute the gradient of

J we can just call those values. This means that nothing in the code computing these Jacobian

matrices needs to change if the functional J is changed, although the formula for the gradient of J

will of course need to be updated. As an example, the jth entry of the gradient vector with linear

extensions is given by

∂Jn
∂uj

=
h

2

(
2uF

∂uF
∂uj

+ 2wF
∂wF

∂uj
+ 2uL

∂uL
∂uj

+ 2wL
∂wL

∂uj

)
+ h ·

L−1∑
l=F+1

(
2ul

∂ul
∂+

2wl
∂wl

∂uj

)
.

Once we have a way of computing the gradient of the functional J , we can proceed with the

gradient descent method. This is an iterative process, continuing until the difference between

successive values falls under the user-inputted error value ε. Here is the process of the While loop:

1. Using the current value of U on the interval [0, 1], extend U to the collar.

2. The extended U is then used to compute the nonlocal derivative wj at each point xj in [0, 1].

3. The gradient of Jn is computed using these updated values of U and W as inputs.

4. The gradient is scaled by the user-inputted parameter “step”, then added to the current value

of U . This gives the new values of U inside the interval.

5. Return to step 1.

The remaining code is used to save the output to a given directory, so that the process can be

analyzed. The loop saves a plot of the current U values once every m steps. Then, once the loop

terminates, the final plots and various data are saved.
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A.2 The Code

The parameters used in the examples of Chapter 4 are:

• horizon: δ = .05

• sample rate or mesh size: h = .0015

• step size in the gradient descent algorithm: .001

• cutoff distance between two consecutive values: .000001

A.2.1 The Gradient Descent Algorithm

Here is the full code for computing the nonlocal functional and approximating the minimizer with

the gradient descent algorithm described above.

1 (*Set file directory to save the outputs, and title the current dataset*)

2 dir = "ENTER DIRECTORY HERE";

3 title="TITLE THE RUN\n";

4 initial=AbsoluteTime[];

5 ClearAll[i, j, k, l, firstIndex , lastIndex , X, L, a, b, ua, ub, \

6 delta, h, step, eps, r, int, c, mu, trapJ, gradJ, gradient , u, U, W, \

7 diff, eps]

8

9 (*Set parameters. Delta and h need to be integer multiples of each other for this to

work*)

10 a=0;

11 b=1;

12 ua=0;

13 ub=1;

14 delta=.05;

15 h=.0015;

16 step=.001;

17 eps=.000001;

18 r=(delta)/(h);

19
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20 param = "a = "<>ToString[DecimalForm[a]]<>"\nb= " <>ToString[DecimalForm[b]] <>"\nua

= " <>ToString[DecimalForm[ua]] <>"\nub= " <>ToString[DecimalForm[ub]] <>"\ndelta=

" <>ToString[DecimalForm[delta]] <>"\nh= " <>ToString[DecimalForm[h]] <>"\nr= " <>

ToString[DecimalForm[r]] <>"\nstep= " <>ToString[DecimalForm[step]] <>"\neps= " <>

ToString[DecimalForm[eps]];

21

22

23 (*Create the mesh,and store some helpful index values for later*)

24 X = Range[a - delta,b +delta,h];

25 L = Length[X];

26 firstIndex = Part[Flatten[Position[X,_?(#>=a&)]],1]; (*This is the index of the

first x value that falls inside [a,b]*)

27 lastIndex = Part[Flatten[Position[X,_?(#<= b&)]],-1]; (*This is the index of the

last x value that falls inside [a,b]*)

28 trimX=Take[X,{firstIndex ,lastIndex}];

29

30

31 (*Input the kernel. Use ctrl enter to add a new line.:*)

32 unscaledMu[z_]:=\[Piecewise] 0 z<-delta

33 -1 -delta <=z<0

34 0 z==0

35 1 0<z<=delta

36 0 z>delta

37

38 ;

39

40

41 (*Need to find appropriate scaling*)

42 int=NIntegrate[unscaledMu[z]*z,{z,-delta,delta}];

43 c=1/int;

44 mu[z_]:=c*unscaledMu[z];

45

46 (*Use this if you want to see the kernel to make sure it's working*)

47 Plot[mu[x],{x,-delta -.5*delta,delta+.5delta},PlotLabel ->"Kernel"]
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48

49 kernel="unscaledMu[x]:=" <>ToString[Definition[unscaledMu]];

50

51 (*Enter the functional (as a trapezoidal approximation), the classical solution , and

the initial data. Maybe later I will do this symbolically but for now: IF YOU

CHANGE THE FUNCTIONAL YOU MUST ALSO UPDATE THE GRADIENT*)

52

53 (*This is the functional discussed in the document

54 (*trapJ[x_,y_]:=h*(.5*(x[[firstIndex]]^2+y[[firstIndex]]^2+x[[lastIndex]]^2+y[[

lastIndex]]^2)+Sum[x[[i]]^2+y[[i]]^2,{i,firstIndex+1, lastIndex -1}]);

55 gradient[x_,dx_,y_,dy_,i_]:=h*(x[[firstIndex]]*dx[[firstIndex ,i]]+y[[firstIndex]]*dy

[[firstIndex ,i]]+x[[lastIndex]]*dx[[lastIndex ,i]]+y[[lastIndex]]*dy[[lastIndex ,i]])

+ 2*h*(Sum[x[[l]]*dx[[l,i]]+y[[l]]*dy[[l,i]],{l,firstIndex+1,lastIndex -1}]);

56 sol[x_]:=(\[ExponentialE]^(1-x) (-1+\[ExponentialE]^(2 x)))/(-1+\[ExponentialE]^2);

*)

57

58 (* This is the functional , gradient and classical minimizer for the simple harmonic

oscillator with m=4,k=(Pi^2). *)

59 trapJ[x_,y_]:=h/2 (2*y[[firstIndex]]^2-Pi^2/2*x[[firstIndex]]^2+2y[[lastIndex]]^2-Pi

^2/2*x[[lastIndex]]^2) + h * Sum[2y[[i]]^2-Pi^2/2*x[[i]]^2,{i,firstIndex+1,

lastIndex -1}];

60 gradient[x_,dx_,y_,dy_,i_]:=h/2 (4*y[[firstIndex]]*dy[[firstIndex ,i]]-Pi^2*x[[

firstIndex]]*dx[[firstIndex ,i]]+4*y[[lastIndex]]*dy[[lastIndex ,i]]-Pi^2*x[[

lastIndex]]*dx[[lastIndex ,i]]) + h*Sum[4*y[[l]]*dy[[l,i]]-Pi^2*x[[l]]*dx[[l,i]],{l,

firstIndex+1,lastIndex -1}];

61 sol[x_]:=Sin[(\[Pi] x)/2];

62

63 (* Enter the inital function u.*)

64 u[x_]:=x;

65

66 functional ="trapJ[x_,y_]:="<> ToString[Definition[trapJ]];

67 gradString="gradient[x_,dx_,y_,dy_,i_]:= "<>ToString[Definition[gradient]];

68 solString="sol[x_]:= "<>ToString[Definition[sol]];

69 uString="u[x_]:= "<>ToString[Definition[u]];
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70

71

72 (*This produces the discretized version of the initial function u, using linear

extensions at the endpoints :*)

73 U=ConstantArray[0,L];

74 For[

75 i=1,i<=L,i++,

76 Which[

77 i< firstIndex , U[[i]]= 2*ua-u[X[[2*firstIndex -i]]] ,

78 i>=firstIndex && i<lastIndex , U[[i]]=u[X[[i]]] ,

79 i>=lastIndex , U[[i]]=2*ub-u[X[[2*lastIndex -i]]]

80 ];

81 ];

82

83

84 (*Now we can produce the list of approximate nonlocal derivatives , using the

trapezoidal rule:*)

85 W=ConstantArray[0,L];

86 nonlocalDeriv[U_,i_]:=h/2 ((U[[i-r]]-U[[i]])*mu[X[[i-r]]-X[[i]]]+(U[[i+r]]-U[[i]])*

mu[X[[i+r]]-X[[i]]])+h*Sum[(U[[i+l]]-U[[i]])*mu[X[[i+l]]-X[[i]]],{l,1-r,r-1}];

87

88 For[

89 i=firstIndex ,i<=lastIndex ,i++,

90 W[[i]]=nonlocalDeriv[U,i]

91 ];

92 trimW=Take[W,{firstIndex ,lastIndex}];

93

94 (*Make sure the nonlocal deriv. approximation is behaving correctly:*)

95 ListPlot[Transpose @ {X,U} , PlotLabel ->"u"]

96 trimW=Take[W,{firstIndex ,lastIndex}];

97 ListPlot[{Transpose @ {trimX,trimW} , Transpose @ {trimX,Map[u',trimX] }}, PlotLabel

->"w in blue,u' in orange"]

98 ListPlot[Transpose @ {trimX,Map[u',trimX]/trimW }, PlotLabel ->"u'/w" ]

99
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100

101 (*To compute the gradient of the functional J, we need to know the partial

derivatives of all the u_i's and w_i's with respect to each u)j. We store these

values in the matrices below.

102

103 Due to the linear reflection/extension , note that the values of U on the collar will

depend on the values of U just inside the interval. Thus, the matrix will look

like the identity , except for some symmetric behavior at the corners. This matrix

will only change if we implement different boundary conditions.

104 *)

105 JacobU=SparseArray[{

106 {i_,j_}/;i==j ->1, (*the partial of u_i with respect to u_i is always 1*)

107 {i_,j_}/; (i<firstIndex && j==firstIndex ) || (i>lastIndex && j==lastIndex)->2, (*

values of u on the collar depend on the endpoint*)

108 {i_,j_}/; (i<firstIndex && j==(2*firstIndex -i))||(i>lastIndex && j==(2*lastIndex -i

))->-1} , (*from the reflection: as U[[firstIndex+1]] moves up, U[[firstIndex -1]]

moves down*)

109 {L,L}];

110

111 JacobW = ConstantArray[0,{L,L}];

112 For[

113 i=firstIndex ,i<=lastIndex ,i++,

114 For[

115 j= firstIndex , j<=lastIndex , j++,

116 Which[

117 j<i-r, JacobW[[i,j]] =0,

118 j>=i-r&& j<= i+r, JacobW[[i,j]] =h/2*((JacobU[[i-r,j]]-JacobU[[i,j]])*mu[X[[i-r]]-X

[[i]]]+(JacobU[[i+r,j]]-JacobU[[i,j]])*mu[X[[i+r]]-X[[i]]])+h*Sum[mu[X[[i+l]]-X[[i

]]]*(JacobU[[i+l,j]]-JacobU[[i,j]]),{l,1-r,r-1}],

119 j>i+r, JacobW[[i,j]] =0

120 ];

121 ];

122 ];

123
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124 rules=ArrayRules[JacobW];

125 JacobW=SparseArray[rules,{L,L}];

126

127

128 (*With these partial derivatives , we can compute the gradient of the functional.*)

129 gradJ= ConstantArray[0,L];

130 For[

131 i=firstIndex+1,i< lastIndex ,i++, (*Only store values of the gradient for points

strictly inside the interval, so that the endpoints cannot move.*)

132 gradJ[[i]] = gradient[U,JacobU,W,JacobW,i]

133 ];

134

135

136 (*Now we have everything we need for the gradient descent algorithm.*)

137

138 curU = U; (*initialize variables*)

139 newW=ConstantArray[0,L];

140 curW=W;

141 newGrad = gradJ;

142 (* The size of the difference between functional values is what determines when the

loop stops. I initialize it at something higher than the error, so that the loop

runs at least once. *)

143 diff=2*eps;

144 loopTracker=0;

145

146

147 (*This is one massive While loop. It iterates until diff <=eps and implements a

basic gradient descent algorithm.*)

148 While[diff >eps,

149

150 (*using the gradient , we can find the next U*)

151 newU = curU - (step)(newGrad);

152
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153 (*Since the gradient vector is zero at the endpoints and on the collar, we need to

update the values of U on the collar manually, using linear extensions as above.*)

154 For[

155 i=1,i<=L,i++,

156 Which[

157 i< firstIndex , newU[[i]]= 2*ua-newU[[2*firstIndex -i]] ,

158 i>=lastIndex , newU[[i]]=2*ub-newU[[2*lastIndex -i]]

159 ];

160 ];

161

162 (*Now we use the new U to update the nonlocal derivative W.*)

163 For[

164 i=firstIndex ,i<=lastIndex ,i++,

165 newW[[i]]=nonlocalDeriv[newU,i]

166 ];

167

168 (*Then we can update the gradient using the new U and W values.*)

169 For[

170 i=firstIndex+1,i< lastIndex ,i++,

171 newGrad[[i]] = gradient[newU,JacobU,newW,JacobW,i]

172 ];

173

174 (*Now we have the previous values of U and W stored in the "cur" variables , and

these updated ones in the "new" variables. So we can check the difference in

corresponding functional values, then update the variables before the next loop. *)

175 diff=Abs[trapJ[curU,curW]-trapJ[newU,newW]];

176 curU=newU;

177 curW=newW;

178 loopTracker=loopTracker+1;

179

180 (*For debugging , this block produces graphs once every m cycles.*)

181 m=500;

182 If[Element[loopTracker/m,Integers] || loopTracker == 1,

183
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184 trimNewU=Take[newU,{firstIndex ,lastIndex}];

185 trimNewW=Take[newW,{firstIndex ,lastIndex}];

186 trimNewGrad=Take[newGrad ,{firstIndex ,lastIndex}];

187

188 Export[dir<>"Plot "<>ToString[loopTracker]<>".svg",ListPlot[{Transpose @ {trimX,

trimNewU} ,Transpose @ {trimX,Map[sol,trimX] }} , PlotLabel ->"LoopTracker="<>

ToString[loopTracker],PlotLegends ->{"u","Classical Minimizer"}]];

189

190 (*ListPlot[{Transpose @ {trimX,trimNewU} ,Transpose @ {trimX,Map[sol,trimX] }} ,

PlotLabel\[Rule]"LoopTracker="<>ToString[loopTracker],PlotLegends ->{"newU","sol"}]

191

192 ListPlot[Transpose @ {trimX,trimNewGrad} , PlotLabel\[Rule]"New Gradient "]//Print;

193 Print[trapJ[newU,newW]]*)

194 ];

195 ];

196 Export[dir<>"Final.svg",ListPlot[{Transpose @ {trimX,trimNewU} ,Transpose @ {trimX,

Map[sol,trimX] }} , PlotLabel ->"Final",PlotLegends ->{"u","Classical Minimizer"}]];

197 Export[dir<>"Initial U.svg",ListPlot[Transpose @ {X,U} , PlotLabel ->"Initial Values"

]];

198 Export[dir<>"Kernel.svg", Plot[mu[x],{x,-delta -.5*delta,delta+.5delta},PlotLabel ->"

Kernel"]];

199 Export[dir<>"Nonlocal Derivative.svg",ListPlot[{Transpose @ {trimX,trimW} ,

Transpose @ {trimX,Map[u',trimX] }}, PlotLabel ->"Nonlocal Derivative",PlotLegends

->{"Nonlocal Derivative","Classical Derivative"}]];

200 Export[dir<>"Ratio.svg",ListPlot[Transpose @ {trimX,Map[u',trimX]/trimW }, PlotLabel

->"Classical to Nonlocal Ratio", PlotLegends ->{"u'/D"} ]];

201 trapJ[newU,newW];

202 trapJ[sol[X],sol'[X]];

203 Norm[newU-sol[X]];

204 Norm[newU-sol[X],Infinity];

205 loopTracker;

206 final=AbsoluteTime[];

207
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208 output="trapJ[newU,newW]= "<>ToString[DecimalForm[trapJ[newU,newW]]]<>"\ntrapJ[sol[X

],sol'[X]]= "<>ToString[DecimalForm[trapJ[sol[X],sol'[X]]]]<>"\nNorm[trimW-Map[u',

trimX]]= "<>ToString[DecimalForm[Norm[trimW-Map[u',trimX]]]]<>"\nNorm[trimW-Map[u',

trimX],Infinity]= "<>ToString[DecimalForm[Norm[trimW-Map[u',trimX],Infinity]]]<>"\

nNorm[newU-sol[X]]= "<>ToString[DecimalForm[Norm[newU-sol[X]]]]<>"\nNorm[newU-sol[X

],Infinity]= "<>ToString[DecimalForm[Norm[newU-sol[X],Infinity]]]<>"\nloopTracker=

"<>ToString[loopTracker];

209 summary=title<>"\n"<>param<>"\n"<>kernel<>"\n"<>functional <>"\n"<>gradString <>"\n"<>

solString <>"\n"<>uString<>"\n"<>output<>"\nTotal computation time= "<>ToString[

DecimalForm[(final-initial)/60]]<>" minutes";

210 Export[dir<>"Data and Parameters.txt",summary];

A.2.2 Nonlocal Derivative Approximator

Here is the code just for approximating and plotting nonlocal derivatives. This was used to produce

the plots of Dδ for functions like absolute value or the map with a cusp.

1 ClearAll[i, j, k, l, firstIndex , lastIndex , X, L, a, b, ua, ub, \

2 delta, h, step, eps, r, int, c, mu, trapJ, gradJ, gradient , u, U, W, \

3 diff, eps]

4

5 (*Set parameters. Note that delta and h need to be integer multiples of each other

for this to work*)

6 a=0;

7 b=1;

8 ua=0;

9 ub=1;

10 delta=.05;

11 h=.005;

12 step=.001;

13 eps=.000001;

14 r=(delta)/(h);

15

16 (*This creates the mesh and stores some helpful index values for later. *)

17 X = Range[a - delta,b +delta,h];
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18 L = Length[X];

19 firstIndex = Part[Flatten[Position[X,_?(#>=a&)]],1]; (*This is the index of the

first x value that falls inside [a,b]*)

20 lastIndex = Part[Flatten[Position[X,_?(#<= b&)]],-1]; (*This is the index of the

last x value that falls inside [a,b]*)

21 trimX=Take[X,{firstIndex ,lastIndex}];

22

23 (*Input the kernel. It must satisfy mu[z] = 0 for z outside [-delta, delta], and the

integral of mu cannot be 0 (so mu cannot be symmetric).*)

24

25 unscaledMu[z_]:=z^5;

26

27

28 (*This automatically scales the kernel for you, to ensure convergence to the

classical derivative.*)

29 int=NIntegrate[unscaledMu[z]*z,{z,-delta,delta}];

30 c=1/int;

31 mu[z_]:=c*unscaledMu[z];

32

33 (*Use this if you want to see the kernel to make sure it's working*)

34 Plot[mu[x],{x,-delta -.5*delta,delta+.5delta},PlotLabel ->"Kernel",PlotLegends ->"mu(z)

"]

35

36

37 (*Enter the function you want to differentiate.*)

38 u[x_]:=CubeRoot[(x-1/2)^2];

39

40 (*Now we can produce the list of approximate nonlocal derivatives , using the

trapezoidal rule:*)

41 U=Map[u,X];

42 W=ConstantArray[0,L];

43 nonlocalDeriv[U_,i_]:=h/2 ((U[[i-r]]-U[[i]])*mu[X[[i-r]]-X[[i]]]+(U[[i+r]]-U[[i]])*

mu[X[[i+r]]-X[[i]]])+h*Sum[(U[[i+l]]-U[[i]])*mu[X[[i+l]]-X[[i]]],{l,1-r,r-1}];

44
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45 For[

46 i=firstIndex ,i<=lastIndex ,i++,

47 W[[i]]=nonlocalDeriv[U,i]

48 ];

49 trimW=Take[W,{firstIndex ,lastIndex}];

50

51 (*Make sure the nonlocal deriv. approximation is behaving correctly:*)

52 Plot[u[x],{x,-delta ,1+delta}, PlotLabel ->"u(x)"]

53 trimW=Take[W,{firstIndex ,lastIndex}];

54 ListPlot[{Transpose @ {trimX,trimW} , Transpose @ {trimX,Map[u',trimX] }}, PlotLabel

->"Comparing Classical and Nonlocal Derivatives", PlotLegends ->{"D u(x)", "u'(x)"}]
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