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Abstract

Bayesian methods have become extremely popular in molecular ecology studies because
they allow us to estimate demographic parameters of complex demographic scenarios using
genetic data. Articles presenting new methods generally include sensitivity studies that
evaluate their performance, but they tend to be limited and need to be followed by a more
thorough evaluation. Here we evaluate the performance of a recent method, 

 

BAYESASS

 

,
which allows the estimation of recent migration rates among populations, as well as the
inbreeding coefficient of each local population. We expand the simulation study of the
original publication by considering multi-allelic markers and scenarios with varying
number of populations. We also investigate the effect of varying migration rates and 

 

F

 

ST

 

more thoroughly in order to identify the region of parameter space where the method is and
is not able to provide accurate estimates of migration rate. Results indicate that if the demographic
history of the species being studied fits the assumptions of the inference model, and if
genetic differentiation is not too low (

 

F

 

ST

 

 ≥≥≥≥

 

 0.05), then the method can give fairly accurate
estimates of migration rates even when they are fairly high (about 0.1). However, when the
assumptions of the inference model are violated, accurate estimates are obtained only if
migration rates are very low (

 

m

 

 ====

 

 0.01) and genetic differentiation is high (

 

F

 

ST

 

 ≥≥≥≥

 

 0.10). Our
results also show that using posterior assignment probabilities as an indication of how
much confidence we can place on the assignments is problematical since the posterior probability
of assignment can be very high even when the individual assignments are very inaccurate.
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Introduction

 

The study of dispersal processes (colonization and
migration) is central to the fields of population genetics,
molecular genetics and conservation and management of
wildlife. Direct estimates of migration parameters can be
obtained using purely ecological approaches such as
mark-release–recapture methods (MRR), but they have
the inconvenience of being time consuming and impractical
for the study of large and/or spatially extended metapop-
ulations. Indirect methods based on population genetics
models are an attractive alternative because they are easy
to implement in these situations and only require a carefully

planned sampling programme aimed at collecting tissue
samples for DNA extraction and analysis. For many
decades these estimates were obtained from 

 

F

 

-statistics,
but more recently this practice has come under criticism
due to the simplistic assumptions (constancy in demographic
parameters and genetic equilibrium conditions) made by
this approach (e.g. Whitlock & Mccauley 1999). Recent
progress in population genetics theory and statistics has
led to the development of sophisticated methods that
avoid many (and sometimes most) of these unrealistic
assumptions, and there is a growing interest in applying
them to address practical questions in conservation and
evolution.

Methods aimed at estimating migration parameters can
be grouped into two types of approaches: (i) coalescent or
genealogical approaches that use the genealogical information
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contained in DNA sequences, and (ii) multilocus genotype
approaches that use gametic disequilibrium information. It
is important to realize that these two types of methods
differ not only in the type of information they use but also
in the nature of the parameters they estimate. Coalescent
methods (and those based on summary statistics) estimate
long-term evolutionary parameters, while multilocus
genotype methods estimate short-term ecological parameters.

It is a standard practice to publish the statistical genetic
method with a limited validation study that is usually
followed by a much more detailed one. This has indeed
been the case for 

 

migrate

 

 (first published by Beerli &
Felsenstein 2001 and later evaluated by Abdo 

 

et al

 

. 2004),
the most well-known coalescent method for estimating
migration rates. Here we evaluate the performance of a
more recent method, 

 

bayesass

 

 (Wilson & Rannala 2003),
which is the multilocus genotype counterpart of 

 

migrate

 

.
It is based on a Bayesian approach and can estimate rates
of recent immigration among populations. It also estimates
the posterior probability distribution of individual
immigrant ancestries, population allele frequencies and
population inbreeding coefficients.

One of the most enticing features of Wilson & Rannala’s
(2003) method is that it has the potential for estimating
contemporary migration rates among populations. It can
thus be extremely useful for guiding conservation plans
requiring the identification of demographically independent
subpopulations. There is a paucity of studies that address
the question of how small migration rates (

 

m

 

) should be to
insure that subpopulations have independent dynamics
(Waples & Gaggiotti 2006) but a study by Hastings (1993)
suggests that two populations become demographically
independent when 

 

m

 

 falls below about 0.10. The preliminary
simulation study of Wilson & Rannala (2003) suggests that
their method might be capable of accurately estimating
migration rates of this order of magnitude, but a more
thorough evaluation is required to confirm this possibility.

In their sensitivity study, Wilson & Rannala (2003)
considered biallelic markers and a scenario with two
populations and investigated the effect of varying migration
rates (0.01, 0.05, 0.10, or 0.20) and 

 

F

 

ST

 

 (0.01, 0.10, or 0.25).
They also studied the effect of varying sample sizes (20
or 100 individuals) and number of loci (5, 10 or 20).
Here we expand this simulation study by considering
multiallelic markers and scenarios with varying number
of populations. We also investigate the effect of varying
migration rates and 

 

F

 

ST

 

 more thoroughly in order to identify
more precisely the region of parameter space where the
method is and is not able to provide accurate estimates of
migration rate. We studied the effect of deviations to the
assumptions of 

 

bayesass

 

 by generating data using both the
same approach as Wilson & Rannala (2003) and another
method, 

 

easypop

 

, which simulates a different biological
scenario.

 

Methods

 

bayesass

 

 implements a Bayesian approach using Markov
chain Monte Carlo (MCMC) techniques. In the next two
sections, we describe the probabilistic model implemented
by 

 

bayesass

 

 and the simulation techniques we used to
generate the synthetic data. We also provide details of the
parameters used in the MCMC runs and the statistics used
to evaluate the performance of the method.

 

B

 

AYESASS

 

The inference model implemented by 

 

bayesass

 

 assumes
linkage equilibrium but allows for deviations from Hardy–
Weinberg equilibrium by estimating population-specific
inbreeding coefficients. Migration rates among populations
can be asymmetric but are constant over short periods
of time (two generations). Additionally, it is assumed
that migration rates are small (see Appendix A in
Wilson & Rannala 2003). These two latter assumptions
impose a constraint on the range of migration rates
that can be considered by the method. More precisely,
the total proportion of migrant individuals into a population
per generation cannot exceed 1/3. Thus, nonmigrant
proportions must be in the interval 2/3 to 1. The method
also assumes that genetic drift and migration during the
last few generations do not change subpopulation allele
frequencies.

The Bayesian formulation implemented by Wilson &
Rannala’s (2003) method is,

ƒ(
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where the parameters to be estimated are 

 

m

 

 

 

=

 

 (

 

m

 

ql

 

), a
matrix of migration rates between populations, 

 

F

 

 

 

=

 

 {

 

F

 

l

 

} a
vector of inbreeding coefficients, 

 

M

 

 

 

=

 

 {

 

M

 

h

 

}, a vector that
contains the source of migrant ancestry of individuals
in the sample, 

 

t

 

 

 

=

 

 {

 

t

 

h

 

}, a vector that gives the generation
at which migrant ancestors of the sampled individuals
arrived, and 

 

p

 

 

 

=

 

 {

 

p

 

lji

 

}, a matrix with the subpopulation allele
frequencies. The estimation is based on the multilocus
genotypes 

 

X

 

 

 

=

 

 {

 

X

 

hj

 

} and population source 

 

S

 

 

 

=

 

 {

 

S

 

h

 

} of indi-
viduals in the sample.

The prior densities 

 

f

 

m

 

(

 

m

 

), 

 

f

 

F

 

(

 

F

 

), 

 

f

 

p

 

(

 

p

 

) and Pr(

 

M

 

,

 

t/m

 

), and
likelihood function Pr(

 

X/S

 

;

 

M

 

,

 

t

 

,

 

F

 

,

 

p

 

), are given in Wilson &
Rannala (2003). The inference model is represented by the
directed acyclic graph (DAG) in Fig. 1.

By default, 

 

bayesass

 

 provides means and variances of
the parameters being estimated. In our case, we modified
the program code in order to obtain the raw MCMC output
and used 

 

R

 

 to estimate the probability density function,
mean and mode of each parameter. The mode was estimated
as the value that corresponds to the maximum of the
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probability density function (pdf), i.e. the value with the
highest posterior probability.

 

Generation of synthetic data for simulations

 

We use two different approaches to generate the synthetic
data. In a first instance, we used the same approach as
Wilson & Rannala (2003), in which the simulation model
follows very closely the inference model. This allowed us
to carry out a detailed sensitivity analysis of the method. In
order to investigate how the method performs when the
scenario considered deviates from the inference model, we
also generated data using the software 

 

easypop

 

 (Balloux
2001).

 

Simulations of the inference model.

 

We simulated samples
from subpopulations exchanging migrants according to
the Wright island model at stationarity. We considered the
general situation of a species with discrete generations
inhabiting 

 

I

 

 islands of constant size and studied 

 

J

 

 marker

loci with 

 

K

 

j

 

 alleles at any given locus 

 

j

 

 (i.e. the number of
alleles can vary among loci). Each generation a fraction 

 

m

 

of the individuals on each island is replaced by immigrants
from a large mainland population with constant allele
frequencies 

 

q

 

 

 

=

 

 {

 

q

 

ji

 

}, where 

 

q

 

ji

 

 is the frequency of allele

 

i

 

 at locus 

 

j

 

. Under these assumptions, the stationary
distribution of allele frequencies in the islands, 

 

p

 

 

 

=

 

 {

 

p

 

lji

 

},
follows a Dirichlet distribution with parameters 4

 

Nm

 

q

 

, i.e.

(2)

where 

 

p

 

lji

 

 is the frequency of allele 

 

i

 

 at locus 

 

j

 

 in population

 

l

 

, 

 

N

 

 is the (constant and equal) size of the subpopulations,
and 

 

m

 

 is the proportion of migrants exchanged among
populations.

In equation 2, 4

 

Nm

 

 can be replaced by its expected value
at stationarity, 4

 

Nm

 

 

 

≈

 

 1/

 

FST – 1, to obtain a pdf for generating
allele frequency distributions at each locus and each local
population with a fixed FST value. This approach does not
allow the simulation of local populations that differ in size.
Thus, to simulate this latter scenario we used the sampling
formula for FST as described in Balding & Nichols (1997).
The global allele frequencies, q, used to generate the simulated
data were those of the grey seal metapopulation studied by
Gaggiotti et al. (2004), and only data sets with FSTs that
were within 10% of the targeted value were kept. We
generated samples of nq individuals from each simulated
local population using the multinomial distribution of
equation 2 in Wilson & Rannala (2003), which gives the
probability of observing M and t given m. To reduce the
number of parameters to be considered in the simulations,
we used symmetric and equal migration rates, i.e.

(3)

From equation 3 and the constraints on migration rates
imposed by the method (see above) we have

(4)

The inference model assumes low migration rates and
considers only possibilities involving at most a single
migrant ancestor at some generation in the past. Thus, there
are three types of individuals: nonmigrants, first generation
migrants and second generation migrants (Wilson &
Rannala 2003). The genotype of nonmigrants are generated
by assigning alleles according to the Hardy–Weinberg
proportions, conditional on the simulated allele frequency
distributions of the population where the individual
was sampled. Since the inference model assumes linkage
equilibrium within each population, alleles are assigned
independently at each locus. Genotypes of first generation
migrants are generated according to Hardy–Weinberg

Fig. 1 The Directed Acyclic Graph (DAG) for the model given in
equation 1. Square nodes denote known quantities (data) and
circles represent parameters to be estimated. Lines between nodes
represent direct stochastic relationships within the model. The
variables within each node correspond to the different model
parameters discussed in the text.
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proportions conditional on the allele frequencies in their
population of origin. Second generation migrant genotypes
are assigned by drawing an allele from each population.

Simulations using EASYPOP. We considered a finite island
model with I subpopulations, each of constant size N and
equal sex ratio. Each generation, random mating was
simulated to produce a diploid genotype for J independent
gene loci for each individual, which then had a probability
m of migrating to another subpopulation. All loci had the
same mutation dynamics, which occurred according to
the k-allele model (KAM; each mutation equally likely to
lead to any of k possible allelic states). We considered 10
allelic states and a mutation rate µ = 5 × 10−4, values that
are representative of highly polymorphic markers like
microsatellites. Simulations were initiated with maximal
genetic diversity (genotypes in initial generation randomly
drawn from all possible allelic states). We ran each replicate
for 5000 generations before collecting data to attain an
approximate mutation-migration-drift equilibrium. In the
final generation of each replicate, samples of nq individuals
were taken from each subpopulation for genetic analysis.

Accuracy and bias. We are particularly interested in the
ability of bayesass to accurately estimate migration rates,
but we also investigated the accuracy of the estimated
inbreeding coefficients and the individual assignments.
We used the posterior means and modes of the posterior
distributions of mql and Fl as estimators of these parameters
and evaluated accuracy using the relative mean square
error (RMSE) for estimates of mql and the mean square
error (MSE) for estimates of Fl. This was carried out in
order to be able to compare the accuracy when varying
migration rate. In the case of inbreeding coefficient, we
limited ourselves to scenarios that assumed Hardy–
Weinberg equilibrium (Fl = 0) so we use MSE instead
of RMSE. We also calculated the relative bias for the
estimators of migration rates and bias for estimates of
inbreeding coefficient. In order to calculate these statistics,
we simulated N = 10 independent data sets for each
scenario and used the following equations:

(5)

(6)

(7)

(8)

where  is the estimated migration rate from population
l into population q obtained for the replicate data set k, and

 is the estimated inbreeding coefficients for population
l obtained from data set k. Note that equations 5–8 give
overall measures of bias and accuracy for the matrix of
migration rates m and the vector of inbreeding coefficients
F, which are obtained by averaging across all the matrix/
vector elements.

We obtained the 95% credible intervals (CI) for each
element of the migration matrix and calculated its width.
We also recorded the number of times that the true value
fell within the CI. The results represent the average across
all the elements of the migration matrix and replicates.

We evaluated the accuracy of migrant ancestry assign-
ments using the proportion of individuals that were
assigned to their correct (simulated) ancestral class and
report the mean across all 10 replicates. We also use the
maximum posterior probability with which these assignments
were carried out. For each individual we recorded the popu-
lation with the highest posterior assignment probability
(irrespective of it being correct or false). These values were
then averaged across all individuals in a data set and
across all data sets. This was carried out only for data sets
simulated under the inference model because in this case
we knew how genotypes were drawn, which was not the
case for data sets generated using easypop.

Simulated scenarios. We chose a set of default values for the
parameters of the simulation models and then studied
the effect of varying only one of them at a time. For each
simulation method and combination of parameters settings,
we simulated 10 replicate data sets.

Table 1 presents the range of parameter values that we
investigated with the simulations of the inference model.
We looked at the influence of the level of genetic differen-
tiation FST, number of individuals sampled per population
n, number of loci J, number of alleles per locus K, number
of populations I, and proportion of migrants m = m*.

Table 2 presents the parameter sets considered using
easypop. In this case, we investigated the effect of varying
population sizes N, migration rates m, and numbers of
populations I. The characteristics of the samples were kept
constant: sample size of 50 individuals per population, 20
loci each with 10 allelic classes.

MCMC runs. We analysed the simulated data sets using
MCMC runs of 21 × 106 iterations, to insure convergence.
We discarded the first 106 iterations as burn-in and used a
thinning interval of 2000 iterations. Instead of using the
default values, we used delta values of 0.10 for all
parameters because they resulted in acceptance rates that
varied between 20 and 60%. We identified MCMC runs
with convergence problems using two different approaches,
depending on the method used to generate the data. In the
case of data sets generated under the inference model, we
considered as suspect any MCMC run that resulted in a
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very low proportion of individuals correctly assigned
(less than 40%). In the case of data sets generated using
easypop, we focused on the quadratic error defined as

 and considered as suspect any
MCMC run that resulted in a quadratic error one order of
magnitude larger than that of the best run (i.e. the one with
the lowest error). We discarded MCMC runs with converge
problems and repeated the analysis using different starting
conditions until the proportion of individuals correctly
assigned (for simulations under the inference model) or the
migration rate quadratic error (for easypop simulations) was
the same order of magnitude as that of the best run. We
also calculated the Bayesian deviance (see Appendix and
Discussion) for all MCMC runs in order to establish if it
could be used as a criterion to identify suspect runs when
bayesass is applied to real data sets (see below). Low
deviance values indicate a good fit of the data to the model

(see Spiegelhalter et al. 2002) and therefore it may be
possible to identify runs with convergence problems as
those that lead to a high deviance.

Results

Here we present separately the results for the two types of
data sets generated. We start by discussing convergence
problems and then discuss the quality of the estimates
using bias and RMSE. For each simulation method and
parameter set (Tables 1 and 2), we plot relative bias (or
bias) and RMSE (or MSE) of posterior means and modes.
For data simulated under the inference model, we also plot
proportion of individuals correctly assigned and assignment
probability.

Simulations of the inference model

We detected convergence problems in 31 MCMC runs
out of a total of 290. In these 31 cases, the MCMC chain
got trapped in a region of high posterior probability and
did not sample the whole parameter space, leading to
estimates that deviated strongly from the true parameter
values. We observed convergence problems more frequently
for scenarios with low genetic differentiation (FST = 0.01,
0.02) or high migration rates (m = 0.15).

As explained in the Appendix, in the present case the
Bayesian deviance can be decomposed into a term based
on the likelihood of a genotype given a particular migra-
tion ancestry, Dgen, and a term based on the probability of
a particular assignment given a migration rate, Dassign. For
each replicate, we estimated both components and also the
overall deviance. Interestingly, lack of convergence was
better identified using Dassign instead of the overall devi-
ance. In all cases, Dassign of MCMC runs with convergence
problems was much higher than that of ‘good’ runs (see
Table S1, Supplementary material for an example), indicat-
ing that this statistic can be used for identifying suspect
runs when the method is applied to real data sets.

Table 1 Parameters for data generated with the inference model. The first column gives the parameter that was allowed to vary, and the range
of values considered, the six that follow give the values assigned to the parameter that were fixed. The last column indicates the figure that
show the results obtained for each scenario. FST = genetic differentiation, m = migration rate, I = number of populations, n = number of individuals
sampled per population, J = number of loci, K = number of alleles per loci

Parameter () true values 
considered

Fixed parameter

Figure FST m I n J K

FST (0.01, 0.02, 0.05, 0.075, 0.1, 0.25) 0.05 3 100 10 11 2, 4
m (0, 0.01, 0.02, 0.05, 0.1, 0.15) 0.1 3 100 10 11 2, 4
I (2, 3, 5, 7) 0.1 0.05 100 10 11 2, 4
n (20, 40, 60, 80, 100) 0.1 0.05 3 10 11 3, 5
J (5, 10, 15, 20) 0.1 0.05 3 100 11 3, 5
K (2, 5, 8, 11) 0.1 0.05 3 100 10 3, 5

Table 2 Parameters for data generated with easypop. We
generated data for J = 20 loci with K = 10 possible allelic classes.
A number of n = 50 individuals was sampled per population.
I = number of populations, N = common population size, m =
migration rate. The last column indicates figures where cor-
responding results are shown

Parameter 
set

Input parameters

I N m Nm Figure 

m5 4 500 0.01 5 6(a), 7(a)
m1n2 4 200 0.01 2 6(a), 6(b)
m1n5 4 50 0.01 0.5 6(a)
m2n2 4 200 0.05 10 6(b)
m3n2 4 200 0.10 20 6(b)
m3n5 4 50 0.10 5 7(a)
n5 4 100 0.05 5 7(a)
2–25 2 500 0.05 25 7(b)
m25 4 500 0.05 25 7(b)
8–25 8 500 0.05 25 7(b)

∑ −≠q l lq
k m m((   *)/ *)µ 2
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The effect of genetic differentiation is very important;
the accuracy of individual assignments and estimated
migration rates increases with increasing FST values (Fig. 2a).
Note that when genetic differentiation is low (FST = 0.01,
0.02), the individual assignments are very inaccurate but
the maximum posterior probability with which individuals
are wrongly assigned is very high. Thus, a high posterior
assignment probability is not necessarily a good indication
of how much confidence we can place on the assignments.

As proportion of correct assignments increases, the bias of
estimated migration rates decreases and their accuracy
increases. In general, estimates of migration rates based on
the mode are less biased than those based on the mean but
their RMSE is larger, indicating that their variance is higher
(RMSE = RBias2 + variance).

The effect of varying migration rates (Fig. 2b) is less
pronounced than that of varying FST, probably due to the
fact that m* and FST are decoupled in these simulations. As

Fig. 2 Results for the data sets simulated under the inference model. Assignments, relative bias and RMSE of migration rate estimates when
varying (a) level of genetic differentiation keeping m* = 0.05, (b) migration rate with FST fixed at 0.10 and (c) number of populations I with
m* = 0.05 and FST = 0.10. Values of all other parameters are listed in Table 1.
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migration rate increases, the proportion of correct assign-
ments decreases but it is still above 60% for migration rates
as high as 0.15 (when FST is fixed at 0.1). It is not possible to
calculate the relative bias and RMSE when there is no
migration (m* = 0), so for this particular case we calculated
the bias and MSE (results not shown), which show that the
mean produces overestimates while the mode has no bias
at all. For low and intermediate migration rates, the mean
gives overestimates while the mode gives underestimates;
for large values both underestimate the true value. The
bias and RMSE of both estimators decrease as migration
rate increases. The observed change of sign in the bias of
estimates based on the mean is due to the fact that the
method sets an upper limit of 1/3 for the total proportion
of migrants in a population. Thus, when the true migration
rate is close to this upper limit, the parameter space becomes
very asymmetric around the true value and the MCMC
will visit more often smaller than larger values. This also
has the effect of decreasing the RMSE because the MCMC
will not be able to visit values that are much larger than the
true value.

Increasing the number of populations decreases the
accuracy of individual assignments and estimates of
migration rates (Fig. 2c). With only two populations, bias
is much larger for the mean than for the mode but as more
populations are added, the bias of the latter increases
rapidly while that of the mean decreases. The accuracy of
both estimators of migration rates decreases rapidly as the
number of population increases but more so for the mode
than for the mean.

Another important aspect to investigate is the effect of
size differences among local populations, since large
differences are likely to increase the strength of genetic
drift, and therefore have an effect on the accuracy of migration
rate estimates. Table 3 compares the results for a scenario
with equal local sizes (200 individuals) and another with
two populations of size 50, one of size 200 and two others
of size 500. When all local populations are equal in size,
77% of individuals are correctly assigned with a posterior
probability of 0.77. However, when they differ in size, the

proportion of individuals correctly assigned drops to 51%
but the posterior probability remains high (0.75). The
estimates of migration rate are also strongly affected and
more so for the mean than for the mode. The relative bias
of the mean for the scenario with unequal population sizes
is one order of magnitude higher than that with equal
sizes. Note that in the case of the mode, there is an under-
estimation of migration rates when all populations have
equal sizes but an overestimation when they differ in size.
The RMSE of both mean and mode is one order of magni-
tude larger when populations differ in size.

It is also important to investigate the effect of the amount
of the data used for the estimation, which can be character-
ized in terms of sample sizes, number of loci scored and
their degree of polymorphism (number of allelic classes).
Sample size does not seem to have much of an effect on the
accuracy of individual assignments, but this is not the case
for estimates of migration rates (Fig. 3a). As sample size
increases, the bias and RMSE of both the mode and the
mean decrease. The mode always underestimates migration
rates while the mean overestimates them, but the absolute
value of the bias is more or less the same for both. The
RMSE is much larger for the mode for sample sizes of 20
individuals, but for larger sample sizes it is the same as that
of the mean. The quality of the estimates does not seem to
improve a lot for sample sizes of 60 or more.

Increasing the number of loci increases the accuracy of
the individual assignments and sharply decreases the bias
of the mean but does not have much of an effect on the
mode; on the other hand, the RMSE of both estimators
decreases sharply initially but does not change much after
15 loci (Fig. 3b). Again, the mode underestimates the
migration rates while the mean overestimates them. The
accuracy of individual assignments is higher for multiallelic
markers than for biallelic ones but not much is gained by
using loci with more than five alleles (Fig. 3c). This is also
true for the bias and RMSE of both the mode and the mean.
As was the case before, the mode underestimates migration
rates wile the mean overestimates them. It should be noted
that these results correspond to a scenario with strong

Table 3 Posterior estimates obtained when varying local population sizes in both simulation schemes with overlapping parameter spaces.
We compare two scenarios: the first one with equal local sizes (200 individuals) and another with two populations of size 50, one of size
200 and two others of size 500. We report both relative bias and RMSE of mean and mode estimates and credible interval statistics

Simulation 
scheme Island sizes

RBias(m) RMSE(m) 95% CI width 
Proportion of times true 
value falls within CI 

mean mode mean mode Migration rate Migration rate

Inference Equal 4.1E−01 −4.0E−01 1.2E+00 1.2E+00 0.07 99%
model Unequal 1.2E+00 6.3E−01 1.2E+01 1.4E+01 0.07 75%
easypop Equal 8.5E−01  −1.2E−01 1.2E+01 1.1E+01 0.07 66%

Unequal 1.2E+00 7.4E−01 1.8E+01 2.0E+01 0.06 63%
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genetic differentiation (FST = 0.1); with lower FST values,
accuracy is likely to continue to increase as the number of
loci and their variability increases.

We also investigated the effect of varying the different
model parameters on the width of credible intervals, CIs,
of immigration rate estimates and on the proportion of
times the true value fells within the CIs. As expected,
increasing the information content of the data set (i.e.
increasing FST, sample size, number of loci and/or number
of alleles per locus) decreases the width of the CIs (Table 4).
The proportion of times the true value is within the CIs is
almost always 100%; only very low FSTs (less than 0.05) can

lead to much lower values. Increasing migration rates
increases the width of the CIs but does not have an effect
on the proportion of times they contain the true value
(Table 4). The number of populations does not seem to
have an effect on either measure (Table 4). Finally, size
differences among local populations do not influence the
width very much but it can greatly decrease the proportion
of times the true value falls within the CI (Table 3).

Overall, these results indicate that if the assumptions of
the inference model are not violated, the method can
estimate migration rates fairly accurately when genetic
differentiation is at least moderate (FST ≥ 0.05) and samples

Fig. 3 Results for the data sets simulated under the inference model. Assignments, relative bias and RMSE of migration rate estimates when
varying (a) number of individuals sampled per population, (b) number of loci and (c) number alleles per locus. We fixed FST = 0.10 and
m* = 0.05. Values of all other parameters are listed in Table 1.
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are of good quality (40 individuals or more and 15 multiallelic
markers). In general, it is preferable to use as estimator the
posterior mean migration rate, which is more accurate than
the mode of the migration rate (but see Discussion).

We investigated the quality of estimators of the inbreeding
coefficient only for the case of scenarios with random
mating within populations (Fl = 0) and therefore we report
the results using the MSE instead of the RMSE  (Figs 4 and
5). Contrary to what was observed for migration rates, the
mode is a much better estimator than the mean because
posterior distributions of F are very asymmetric. Also, both
the mean and the mode overestimate F. As FST increases,
the bias and MSE decrease, being fairly low for an FST of
0.05 or more (Fig. 4a). Increasing migration rates increases
the bias and decreases the accuracy of the estimates of F
(Fig. 4b). On the other hand, increasing the number of popu-
lations does not have much of an effect on the mode but
does increase the bias and MSE of the mean (Fig. 4c). The

effect of the quality of the samples on estimates of F is less
important than for the estimates of migration rates (see
Fig. 5). Increasing the sample size does improve the esti-
mates based on the mean but does not have much effect on
those based on the mode (Fig. 5a). A similar pattern is
observed when increasing the number of loci (Fig. 5b).
However, the effect of increasing the number of allelic
classes is rather different, since the bias does not seem to
depend on how polymorphic the markers are, while the
MSE is much lower for multiallelic markers than for bial-
lelic ones (Fig. 5c).

Simulations using EASYPOP

In the case of easypop data sets, we observed convergence
problems even for runs with the lowest quadratic error.
We observed that the MCMC chain got trapped in regions
that corresponded to the bounds of the prior distribu-
tion used for the migration rates. More precisely, the
proportion of nonmigrants was either close to 2/3 or to 1;
conversely, the proportion of immigrants from deme q into
deme l was either very close to 0 or very close to 1/3 (see
examples in Figure S1, Supplementary materials). The
results we present in what follows correspond to MCMC
runs that had a quadratic error of the same order of
magnitude as the run with the lowest error of the
corresponding scenario, but it should be noted that this
does not guarantee convergence. Moreover, we found only
one scenario (m1n2, see Table 2) for which the RMSE of
data sets generated with easypop is of the same order
of magnitude as those observed for data sets generated
under the inference model. This scenario corresponds to
N = 200 and m = 0.01 in which case, the FST is high (0.11).
The RMSE observed for all other scenarios are at least
one order of magnitude larger than those obtained for
data sets simulated under the inference model. It should
be noted that even if there were convergence problems, the
relationship between the quadratic error and the Bayesian
deviance for the assignments, Dassign, was as expected, that
is, runs with the lowest quadratic error had the lowest
deviance (see Table S2, Supplementary material).

In the simulations of the inference model, we could
fix FST and the migration rates separately because it is
assumed that we start with subpopulations with a certain
level of genetic differentiation, which then exchange
migrants for two generations. In the case of easypop, this is
not possible since migrants are exchanged from the very
beginning of the simulations and the degree of differenti-
ation (at equilibrium) is determined by Nm, the effective
number of migrants. Thus, increasing subpopulation
sizes, N, while keeping migration rates fixed at m = 0.01,
decreases genetic differentiation and this leads to an
increase in bias and RMSE (Fig. 6a). Nm can also be
increased by increasing m while keeping N = 200 constant.

Table 4 Credible intervals (CI) of migration rates for data simulated
with the inference model. We report the width of the 95% CIs and
the proportion of times the real value of the parameter falls within
them when varying parameters

Parameter Values CI width

Proportion of 
times true value 
falls within CI Figure

FST 0.010 0.10 38% 2(a)
0.020 0.07 27%
0.050 0.08 92%
0.075 0.06 100%
0.100 0.06 100%
0.250 0.05 100%

m* 0.01 0.03 100% 2(b)
0.02 0.04 100%
0.05 0.06 100%
0.10 0.07 100%
0.15 0.08 100%

I 2 0.05 100% 2(c)
3 0.06 100%
5 0.06 100%
7 0.06 100%

n 20 0.13 100% 3(a)
40 0.09 100%
60 0.07 100%
80 0.06 100%

100 0.06 100%
J 5 0.08 100% 3(b)

10 0.06 100%
15 0.05 100%
20 0.05 100%

K 2 0.11 98% 3(c)
5 0.06 100%
8 0.06 100%

11 0.05 100%
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In this case, however, the results differ from those obtained
when N increases and m is kept constant. As m increases,
the relative bias and RMSE first increase and then decrease
(Fig. 6b). If we keep Nm constant by increasing N while
decreasing m, then relative bias increases while the RMSE
first increase and then decrease (Fig. 7a). Thus, the quality
of the estimates does not necessarily depend on FST. In fact,
the explanation for these results (Figs 6b and 7a) is that, as
mentioned before, convergence problems result in esti-
mates of mql that tend to be either very close to 0 or very
close to 1/3. Thus, the distance between the estimate and
the true value is larger for m* = 0.05 than for m* = 0.01, 0.10.
We also explored the effect of increasing the number of
populations when the effective number of migrants per
generation Nm equals 25 (Fig. 7b). As I increases, the bias

and the RMSE of estimates based on both the mean and the
mode decrease.

Finally, we explored the effect of unequal population
sizes on migration rate estimates (Table 3). The relative
bias of the mean increases with respect to that of the sce-
nario with equal sizes but remains within the same order
of magnitude. The bias of the mode goes from negative
with equally sized populations to positive with unequal
sizes. The RMSE of both mean and mode increases with
unequal population sizes but remains within the same
order of magnitude.

Varying m or N does not have much of an effect on the
width of the CIs; on the other hand the proportion of times
the true value falls within them is more sensitive to the
migration rate than to the population size (Table 5). In

Fig. 4 Results for the data sets simulated under the inference model. Bias and MSE of inbreeding coefficient estimates when varying (a)
level of genetic differentiation keeping m* = 0.05, (b) migration rate with FST fixed at 0.10 and (c) number of populations with m* = 0.05 and
FST = 0.10. Values of all other parameters are listed in Table 1.
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Fig. 5 Results for the data sets simulated under the inference model. Bias and MSE of inbreeding coefficient estimates when varying (a)
number of individuals sampled per population, (b) number of loci and (c) number alleles per locus. We fixed FST = 0.10 and m* = 0.05. Values
of all other parameters are listed in Table 1.

Parameter Values CI width

Proportion of 
times true value 
falls within CI Figure

N 50 0.02 78% 6(a)
200 0.02 97%
500 0.05 83%

m 0.01 0.02 97% 6(b)
0.05 0.02 0%
0.10 0.02 1%

Nm = 5 N = 50 m = 0.10 0.08 22% 7(a)
N = 100 m = 0.05 0.07 23%
N = 500 m = 0.01 0.05 83%

I 2 0.03 15% 7(b)
4 0.02 0%
8 0.02 0%

Table 5 Credible interval (CI) of migration
rates for data sets generated with easypop.
We report the width of the 95% CIs and the
proportion of times the real value of the
parameter falls within them
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particular, this latter measure is close to 0% for migration
rates higher than 0.05. Keeping Nm = 5 while decreasing
m and increasing N decreases the width of the CIs and
increases sharply the proportion of times they contain
the true value. Increasing the number of populations
does not change much the width of the CIs while the
proportion of time the true value falls within them is very
low and drops to 0% when more than two populations are
considered (Table 5). It should be noted here that Nm
was kept constant at 25, which explains the low values
observed for this measure. Finally, size differences among
local populations do not change much either measures
(Table 3).

easypop does not allow the user to choose a fixed value
for the inbreeding coefficient. Instead, it provides three
choices for the mating system: random, polygyny, and
monogyny. We chose random mating but it is clear that
small populations will exhibit inbreeding even under
random mating. Similarly, exchanging migrants can lead
to a Wahlund effect increasing F. Thus, it is difficult to
establish whether a positive bias in the estimates of
this parameter is not in fact due to real inbreeding and
Wahlund effects. For all these reasons, we do not present
results for F for data sets generated with easypop.

There is little agreement between the results obtained for
the data sets simulated under the inference model and
those generated using easypop. For example, when varying
the number of populations, the RMSE increased in the first
case but decreased in the second. Moreover, as previously
mentioned, there is only one scenario where the quality of
the estimates obtained for easypop data sets was similar to
those observed for data sets simulated under the inference
model. Even when parameters values were the same for
both sets of simulations (Table 3), the quality of estimates
were better for data simulated under the inference model
than for data generated with easypop. The deterioration
due to unequal population sizes is more pronounced for
data sets generated under the inference model than for
those from easypop. However, RMSE is still lower for the
former than for the latter. These differences suggest that if
the assumptions of the inference model are violated, the
estimations of migration rate obtained should be inter-
preted with caution.

Discussion

The results indicate that if the demographic history of the
species being studied fits the assumptions of the inference

Fig. 6 Results for the data sets generated using easypop. Relative bias and RMSE of migration rate estimates when varying (a)
subpopulation sizes while keeping migration rate constant (m = 0.01) and varying (b) migration rates while keeping subpopulation sizes
(N = 200). Values of all other parameters are listed in Table 2.
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model, and if genetic differentiation is not too low (FST ≥ 0.05),
then the method can give fairly accurate estimates of
migration rates even when they are close to the threshold
(about 0.1) that leads to correlated dynamics between
populations. However, when the assumptions of the inference
model are violated, accurate estimates are obtained only
if migration rates are very low (m = 0.01) and genetic
differentiation is high (FST ≥ 0.10). Our results also show
that using posterior assignment probabilities as an indication
of how much confidence we can place on the assignments
is problematical since the individual assignments can be
very inaccurate but the maximum posterior probability
with which individuals are (wrongly) assigned can still be
very high, as illustrated by the results for scenarios with
low genetic differentiation (FST = 0.01, 0.02; cf. Fig. 2a). This
is a rather unexpected result since in principle, when
genetic differentiation is low (FST = 0.01, 0.02), the actual
conditional marginal likelihood function for different
assignments is relatively flat. The true conditional post-
erior assignment probabilities should reflect this, by being
pushed towards the uniform distribution among the local
populations. However, bayesass results indicate high
certainty in the assignments. A closer look at the MCMC
output indicates that there is always a population with a

very low immigration rate to which individuals from the
other populations are assigned mainly as second-generation
migrants. The other populations tend to have a proportion
of nonmigrant individuals close to 2/3 (which corresponds
to the lower bound of the prior distribution for m). Thus,
the population to which an individual is assigned does not
change much during an MCMC run, leading to a high
posterior probability. It is important to note that as opposed
to other methods such as structure (Pritchard et al. 2000),
bayesass is not only carrying out assignments but is also
estimating migration rates. Thus, the prior used for the
migration rate can have an effect on the assignment of
individuals. More precisely, although the prior for the
vector of migration rates for any given population is
uninformative, the marginal prior distribution for any
given migration rate, mlq, is not flat at all but l-shaped with
a mode at zero (see Figure S2, Supplementary material).
This type of prior might limit the mixing of the MCMC
chain, forcing it to remain for very long periods of time at
the same value of M (origin of migrant ancestor). Such
a problem could be avoided by running extremely long
MCMCs, or (probably more realistically) by improving
the procedure with Metropolis-coupled MCMC (Geyer
1991).

Fig. 7 Results for the data sets generated using easypop. Relative bias and RMSE of migration rate estimates when varying (a) migration
rate and subpopulation size while effective number of migrants per generation is fixed (Nm = 5) and varying (b) number of populations
with m = 0.05 and N = 500. Values of all other parameters are listed in Table 2.
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We extended the simulation study of Wilson & Rannala
(2003) by considering a larger number of populations and
multiallelic markers. We also considered more values of
migration rate and FST values. Our results confirm their
suggestion that the use of multiallelic markers should
increase accuracy of the estimates. However, as the number
of populations increases, accuracy decreases. Within limits,
increasing the quantity of information contained in the sample
by increasing the number of loci and/or sample sizes also
increases accuracy of estimates. Note, however, that with
up to three populations, not much is gained by using more
than 15 loci and/or more than about 40 individuals.

The results of our simulations with easypop suggest that
the performance of the method is rather sensitive to deviations
from the assumption of negligible change in allele frequencies
due to migration and/or genetic drift over a few generations.
This assumption is likely to be violated when migration
rates are close to the 0.10 value considered as threshold for
demographic independence. Thus, bayesass is unlikely
to be useful for the identification of demographically
independent units for borderline cases, which are the most
interesting since it is very easy to identify demographic
independence when migration rates are much smaller
than 0.1.

The posterior mean of the migration rates seems to be a
better estimator than the posterior mode because in general
its RMSE is lower and its bias only a little bit higher than
that of the mode. However, sometimes there is a need to be
conservative. For example, we might prefer to err on the
side of keeping two populations as separate management
units rather than combining them; if this is the case, then it
is better to use the mode. Additionally, when only two
populations are involved (as is often the case in applications
to management), the mode is always a better estimator of
migration rates than the mean.

In general, although users of methods for the estimation
of demographic parameters focus on point estimates rather
than CIs, the latter can be a better way of evaluating the
performance of Bayesian methods. In general, we expect
that when data sets are highly informative, the width of the
CIs will be narrow, while poor data sets will produce very
wide CIs. In both cases, however, we expect that the
proportion of times the true value falls within the CIs be
very high. This is in general what we observe for the data
sets simulated under the inference model; however,
easypop data sets give rather narrow CIs that in general do
not contain the true value. This is another indication that
we should be extremely cautious in the interpretation of
results provided by bayesass when we suspect that the
species being studied does not fit very well the assumptions
of the method. One way of identifying unreliable results is
to verify if the CIs are narrow and very close to one of the
boundaries of the prior used for the migration rates. For
example, one may obtain immigration rate estimates that are

very close to 1/3 or 0, and correspondingly estimates of the
proportion of nonmigrants that are close to either 2/3 or 1.
If this is indeed the case, it is necessary to carry out many
replicate analyses using very long MCMC runs (see below).

A practical problem associated with the use of MCMC is
that of establishing whether or not the chain has converged.
The basic principle implemented by the MCMC method is
to construct an aperiodic and irreducible Markov chain
whose stationary distribution (the ‘target’ distribution) is
that given by the Bayesian formulation (in our case eq. 1).
The estimation procedure consists of running the chain for
‘sufficiently’ long and treating the simulated values as a
dependent sample from the target distribution (Brooks
1998). The underlying logic here is that the chain will visit
more often regions of parameter space with a high posterior
probability. In principle, the initial state of the chain (i.e.
the initial values of the parameters we need to estimate) is
arbitrary because we only start collecting data after the
chain has reached equilibrium (i.e. converged). In practice,
however, it is difficult to be sure that the chain has indeed
converged. This is particularly the case with complex data
sets and models, in which case the posterior probability is
likely to be multimodal. The chain can then converge to
one of the modes and remain in its vicinity for extremely
long periods of time, giving the impression that it has con-
verged. Running a second MCMC on the same data but
with a different initial state can give very different results.
Running longer chains is unlikely to solve this problem; for
example, in our case we used runs of 21 × 106 iterations and
still observed that many of them produced estimates that
were very different from those obtained from runs that
gave estimates very close to the true parameter values. In
a simulation study such as ours it is easy to identify MCMC
chains that did not converge because we know the true
parameter values. However, in real applications this is not
possible. One potential solution is to carry out multiple
MCMC runs of the same data set and then compute a
measure of model fit for each one of the runs, discarding
those that provide a poor fit. One such measure of model
fit is the Bayesian deviance (see References in Spiegelhalter
et al. 2002); we explain how it is calculated in the Appendix.

In the present study, we analysed several replicates for
each scenario and found that some posterior estimates
departed strongly from the real values. Repeating the
MCMC run on the same data set but with different initial
conditions led to estimates that were much closer to the
true values used as input for the simulations and to much
lower statistical deviances. Thus, we suggest that in order
to minimize convergence problems, it is advisable to carry
out many MCMC runs, say 10, and select the one with the
lowest deviance for obtaining the parameter estimates.
Given that using extremely long MCMC runs does not
seem to solve the convergence problem, we suggest using
runs of 21 × 106, discarding the first 2 × 106 as burn-in. We
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have applied this strategy to one of the scenarios generated
using easypop (data set m1n2; see Table 2). Of the 10 repli-
cate runs, three (6, 7 and 10) have a very high deviance for
the assignment component, Dassign (Table S3, Supplemen-
tary material) and relative bias and RMSE at least one
order of magnitude larger than the other runs (all of which
have very similar low values). Table 6 presents the results
taken from the best and from one of the worst runs (runs 1
and 6, respectively). In the chosen example, the true migra-
tion rate was 0.01 and the best run provides estimates that
are almost identical to this value. On the other hand, the
estimates obtained from run 6 contain many migration rate
estimates that are very different from the true value (m11,
m14, m41 and m44). In both cases, the CIs are very narrow
regardless of whether the estimates are accurate or not. In
this case, 10 replicates allowed discrimination between good
and bad runs. However, if there are reasons to think that
the species under study departs strongly from the assumptions
of the inference model, then it would be appropriate to
increase the number of replicate runs.

The most likely cause of the convergence problem we
observed is the prior used for the migration rates, which
sets bounds of 0 and 1/3 for the immigration rates and,
equivalently, 2/3 and 1 for the proportion of nonimmigrants.
Our simulation study shows that the chain gets trapped in
regions of parameter space that correspond to these values.
In this regard, it is interesting to note that in the example
of the grey wolf provided by Wilson & Rannala (2003;

Table 2), the estimated proportion of nonimmigrants into
each population is close to either 1/3 or to 1. It is possible
to avoid this convergence problem if the assumptions of
the model (e.g. migration does not change the allele
frequencies over the two generations considered) are not
violated, in which case, following the advice provided
above will suffice to insure convergence. However, if the
assumptions are violated it is very difficult to avoid the
biases introduced by the convergence problem.

Convergence problems have been reported for many
recently developed Bayesian methods such as structure,
geneland (Guillot et al. 2005) and baps (Corander et al.
2004). In the case of structure, Evanno et al. (2005)
proposed a method based on running several MCMCs and
calculating an ad-hoc statistic, ∆k, based on the rate of
change in the log probability of data between successive k
values. The problem with this method is that there is
always the potential of including in the calculation of ∆k
several chains that have not converged, leading to results
that are unreliable. We observed this type of behaviour in
a previous study (Waples & Gaggiotti 2006) and concluded
that, for the simple finite island model that we considered,
Evanno et al.’s (2005) method does not perform better
than the original approach proposed by Pritchard et al. (2000).
We think that it is better to use the same strategy used by
Pritchard et al. (2000), namely run several chains for each
value of k, say 20, and for each select the MCMC run that
gives the smallest value of −2 log Pr(X/k). Using these

Table 6 Comparison of two runs of the same replicate of data set m1n2 (see Table 2). True value for migration rate is m = 0.01. We used
MCMC runs 1 and 6 of Table S3. The former provide accurate estimates while the latter presents convergence problems. Migration rate
estimates with such problems are highlighted

Migration 
matrix

Chain 1 Chain 6

Estimates
Credible 
interval bounds Estimates

Credible 
interval bounds 

Mean Mode Lower Upper Mean Mode Lower Upper

m11 0.98 0.99 0.95 1.00 0.67 0.67 0.67 0.69
m12 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.03
m13 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02
m14 0.00 0.00 0.00 0.02 0.31 0.32 0.29 0.33
m21 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.02
m22 0.99 1.00 0.97 1.00 0.99 1.00 0.97 1.00
m23 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
m24 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01
m31 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.01
m32 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
m33 0.99 1.00 0.97 1.00 0.99 1.00 0.97 1.00
m34 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.02
m41 0.01 0.00 0.00 0.01 0.31 0.32 0.29 0.33
m42 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
m43 0.00 0.01 0.00 0.04 0.00 0.00 0.00 0.03
m44 0.98 0.99 0.95 1.00 0.67 0.67 0.67 0.69
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chains one can then select the value of k that best fits the
data set and base all estimations on the results of the best
MCMC run. It should be noted that, as stated by Pritchard
et al. (2000), −2 log Pr(X/k) is simply the mean of the
Bayesian deviance penalized by a quarter of its variance.

In the case of geneland, Guillot et al. (2005) proposed a
similar approach to that used by Pritchard et al. (2000) for
structure, but in this case they used the mode of the
posterior distribution for the number of populations as the
criterion to choose the best MCMC runs. Finally, in the case
of baps, Corander et al. (2004) proposed a similar strategy
to that used by Pritchard et al. (2000) and Guillot et al.
(2005) but using the posterior probability of the partition as
the basis to select the best run.

Clearly, Bayesian methods such as the one we evaluate
in this article are very powerful and offer an opportunity
for answering difficult questions in ecology, population
genetics, evolution and conservation biology, but we
should be aware that their application is not as straightforward
as that of the frequentist methods that have been used in
past. Thus, users of these new methods should endeavour
to follow very closely the recommendations provided by
the software manuals and also seek the advice of colleagues
competent in Bayesian methods. Furthermore, users should
be aware that the models can have limited power to provide
meaningful estimates under many realistic real-world
scenarios, especially those that involve low levels of
genetic differentiation.
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Fig. S1 Results for data generated with easypop. We represent
posterior distributions of proportion of (a) nonmigrants and (b),
(c) and (d) various immigration rates from typical output files
corresponding to the three parameter sets presented in Fig. 6(b).
Subpopulation sizes are fixed at N = 200 while varying m (0.01,
0.05, and 0.10). The chains with migration rates equal to 0.05 or
0.10 are trapped in modes corresponding to the bounds of the
prior for migration rates (0 and 1/3). This explains the pattern
observed on Figs 6(b) and 7(a) where RMSE is larger for a
moderate value (0.05) of true migration rate than for extreme
values (0.01, 0.10).

Fig. S2 Plot of the Dirichlet prior distribution used by baye-
sass for the migration rates. In this case, we consider a scenario
with I = 4 populations so that the migration matrix contains
16 elements. Although the prior is uniform in the multidimensional
space and nonmigrant proportion uniformly distributed on the
interval (2/3,1), the marginal prior for the immigration rates are
l-shaped with a mode at 0.

Table S1 Results of the analyses of data sets simulated with the
inference model. Simulated data sets consist of 10 repetitions with
I = 3 populations with high level of genetic differentiation (FST =
0.10) and low migration rate (m* = 0.05). We used J = 10 loci with
K = 11 allele states and n = 80 individuals per population. High-
lighted replicate presents convergence problems

Table S2 Results of the analyses of easypop m1n2 data sets.
Simulated data sets consist of I = 4 populations of constant size
N = 200. We used low migration rate m = 0.01, J = 20 loci with
K = 10 allele states and n = 50 individuals per population. High-
lighted replicates present convergence problems

Table S3 Results for 10 MCMC runs for the same replicate of
m1n2 data set (see Table 2). We highlight runs that have a large
value for the assignment component of the Bayesian deviance
Dassign. The corresponding chains and their posterior estimates or
credible intervals (CI) provide very different results than the
others.
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Appendix: Bayesian deviance

In this section we outline the calculation of the Bayesian
deviance, which we use to discriminate between MCMC
runs that converged from those that did not. We base our
discussion on the work of Spiegelhalter et al. (2002), who
used the deviance statistic to define the DIC, a measure for
choosing the model that provides the best fit among a group
of alternative models. In our case we are not comparing
models and therefore we simply use the Bayesian deviance,
which has been proposed as a measure of model fit by a num-
ber of authors (see References in Spiegelhalter et al. 2002).

In Bayesian statistical modelling of data y we specify
a prior distribution f(θ), θ ∈ Θ, and a likelihood Pr(y/θ),
which give rise to a marginal distribution

(9)

The Bayesian deviance is then defined as:

(10)

where g(y) is some fully specified standardizing term
which is function of the data alone. We can assume without
loss of generality that g(y) = 1, so

(11)

We can thus estimate the expected deviance, Eθ/y[D(θ)]
from a MCMC run by taking the sample mean, ¡D(θ) of the
simulated values of D(θ).

In order to calculate the deviance for a hierarchical
model such as that implemented in bayesass, we need to
define the parameter on which we want to focus. Hierarchical
Bayesian models further parameterize the prior(s) with
unknown ‘hyper-parameters’ Ψ to obtain a full probability
model

(12)

Then, depending on the parameters in focus, we can
specify the model in terms of the likelihood Pr(y/θ) and

prior  or in terms of the likelihood

 and prior f (Ψ). In our case,

we are interested in using bayesass to estimate migration
rates so we will focus on m and thus consider the
likelihood, which is Pr(X/S; M,t,F,p) Pr(M,t/m), and
the prior fm(m). Thus, the deviance is composed of two
terms, the first one, Dgen, concerns the likelihood of the
genotypes and the second one, Dassign, the probabilities of
assignments:

(13)

p y y f d( )   Pr( / ) ( )= �Θ
θ θ θ

D y g y( )    log Pr( / )   log ( ),θ θ= − +2 2

D y( )    log Pr( / )θ θ= −2

p y p y f( , , )  ( , )Pr( / ) ( )θ ψ θ θ ψ ψ=

f f d( )  Pr ( / ) ( ) ,θ θ ψ ψ ψ= �
Pr( / )  Pr( / )Pr( / )y y dψ θ θ ψ θ= �Θ

D
D D
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gen gen
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