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Abstract: Blockchain has emerged as a decentralized and trustable ledger for recording and storing
digital transactions. The mining process of Blockchain, however, incurs a heavy computational
workload for miners to solve the proof-of-work puzzle (i.e., a series of the hashing computation),
which is prohibitive from the perspective of the mobile terminals (MTs). The advanced multi-access
mobile edge computing (MEC), which enables the MTs to offload part of the computational workloads
(for solving the proof-of-work) to the nearby edge-servers (ESs), provides a promising approach
to address this issue. By offloading the computational workloads via multi-access MEC, the MTs
can effectively increase their successful probabilities when participating in the mining game and
gain the consequent reward (i.e., winning the bitcoin). However, as a compensation to the ESs
which provide the computational resources to the MTs, the MTs need to pay the ESs for the
corresponding resource-acquisition costs. Thus, to investigate the trade-off between obtaining the
computational resources from the ESs (for solving the proof-of-work) and paying for the consequent
cost, we formulate an optimization problem in which the MTs determine their acquired computational
resources from different ESs, with the objective of maximizing the MTs’ social net-reward in the
mining process while keeping the fairness among the MTs. In spite of the non-convexity of the
formulated problem, we exploit its layered structure and propose efficient distributed algorithms for
the MTs to individually determine their optimal computational resources acquired from different
ESs. Numerical results are provided to validate the effectiveness of our proposed algorithms and the
performance of our proposed multi-access MEC for Blockchain.

Keywords: multi-access; mobile edge computing; computational power allocation; optimization;
Blockchain

1. Introduction

Blockchain, a distributed and trustable architecture for recording and storing digital transactions,
has been considered as one the promising mechanisms for enabling the secure cyber-physical
systems [1]. In the framework of Blockchain, the miners participate in a mining game [2], and all miners
compete with each other to be the first winner to solve the proof-of-work puzzle (which corresponds to
executing a series of hashing computation). After solving the proof-of-work puzzle and broadcasting
the mined block to other miners to reach the consensus, the winner can claim the consequent reward.
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Nowadays, there exist several different mining pools (e.g., Slush Pool and AntPool), in which the
miners can select to join and participate in the mining game/process [3]. Thanks to the nature of
distributed management and independence from the central authorities, Blockchain has been expected
to play a crucial role as a distributed and trustable ledger for recording and storing a variety of
transactions and resource exchange, e.g., the crypto-currency and peer-to-peer electronic payment
system [4], energy trading in smart grid [5,6], computation offloading in vehicular networks [7],
radio resource exchange in wireless networks [8], and Internet of Things (IoTs) [9–12].

However, solving the proof-of-work puzzle requires consuming a significant amount of
computational resources, which are prohibitive from the perspective of the mobile terminals (MTs).
To address this difficulty, the MTs can exploit the recent advanced mobile edge computing (MEC)
to enhance their computational capability [13,14]. In particular, the MEC enables the MTs to offload
their computational workloads to the edge servers (ESs) equipped with sufficient computational
resources and deployed at the edge of the radio access networks (e.g., the cellular base stations,
BSs), which thus reduces the computation time and improves the resource utilization efficiency.
As a result, MEC has been considered as one of the enabling technologies for realizing the future
IoTs and the fifth generation (5G) visions which aim at providing massive connectivity, high access
speed, and low latency [15]. The recent multi-access MEC, which can be enabled by the advanced
Non-orthogonal multiple access (NOMA) [16–18], further allows the MTs to acquire computational
resources from several ESs simultaneously, and thus yields a flexible exploitation of the computational
resources from multiple ESs [19–21]. Therefore, by integrating MEC into the framework of Blockchain,
the computational capability of the MTs can be effectively enhanced, which thus facilitates solving the
proof-of-work puzzle and increases the successful probability in winning the mining game [22,23].

Thanks to its advantage, MEC has been exploited in many different paradigms, e.g., green
IoT and vehicular networks [24–26]. In the following, we mainly review the studies about the
resource management for MEC. Focusing on the single user’s binary task-offloading, Melendez et al.
proposed the offloading decisions for reducing the completion time [27]. Further taking into account
the radio resource utilization in MEC, many studies have been devoted for the joint optimization
of task offloading and radio resource allocation [28–30]. Optimal offloading strategies for partial
computation offloading (in which the MTs are allowed to offload partial of their computational
workloads) have been investigated in [31,32]. The scenario of multi-user MEC is close to our study
here. Focusing on minimizing the delay in completing the computation tasks, there have been
many studies investigating the proper multi-user computational resource allocation [33,34]. In [35],
a multi-user computational resource allocation (i.e., the CPU cycle) scheme has been proposed to save
the users’ energy consumption. In [36], Jin et al. proposed an auction-based scheme for sharing the
computational resource at the mobile edge. In [37], a revenue-maximization oriented computational
resource allocation scheme has been proposed. In particular, some recent work investigated the
exploitation of MEC for Blockchain. In [22], Xiong et al. exploited the MEC for Blockchain and
investigated the resource management and pricing strategy. In particular, the paper formulated a
two-stage Stackelberg game to maximize the profit of the edge service provider and the utilities of
the miners. In [23], Liu et al. studied the computation offloading and content caching in wireless
Blockchain networks with MEC. In particular, the economics based mechanisms have been envisioned
as the promising approaches for enabling efficient yet distributed resource allocations in wired or
wireless networks [38–40], in which the pricing mechanism and game theoretic modelling have been
widely exploited. For instance, in [41], Ha et al. proposed time dependent pricing scheme for mobile
data management. In [42], Tsiropoulou et al. proposed a novel joint customized price and power
control for optimizing the energy-efficiency in multi-service wireless networks. In recent work [43],
by taking into account the competitive wireless Internet service market, Vamvakas et al. proposed an
efficient pricing strategy for the joint dynamic provider selection and the associated power allocation.
In this work, we exploit the mechanism of the dual price (which is also referred as the shadow price)
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to achieve an efficient allocation of the edge servers’ computational resources to different mobile
users/miners.

In this work, we investigate the optimal allocation of the computational resource/power in
multi-access MEC enabled Blockchain. As described before, the multi-access MEC enables each MT to
obtain the computational power from multiple ESs simultaneously (in the following, we use the term
of computational power and the term of computational resource interchangeably). As a result, the MT
can increase its successful probability when participating in the mining game and gain the consequent
reward (i.e., winning the bitcoin). However, as a compensation to the ESs, the MT needs to pay for
the consequent cost for acquiring the computational resources. Our contributions in this work can be
summarized as follows:

• To investigate the trade-off between obtaining the computational resources from the ESs (for
solving the proof-of-work) and paying for the consequent cost, we focus on a scenario in which
a group of the MTs acquire the computational powers from a set of nearby ESs and pay for
the consequent costs for acquiring the computational powers. Mathematically, we formulate an
optimization problem in the MTs to determine their acquired computational powers from different
ESs, with the objective of maximizing the MTs’ total net-reward while keeping the fairness among
the MTs.

• Despite the non-convexity of the formulated optimization problem, we exploit its layered structure
and design two algorithms (one for the one-ES scenario and the other for the multi-ES scenario) to
find the optimal solution efficiently. We also provide extensive numerical results to validate the
effectiveness of our proposed algorithms and show the performance of our proposed multi-access
MEC for Blockchain.

The reminder of this paper is organized as follows. We present the system model and problem
formulation in Section 2. We first focus on the one-ES scenario and propose a distributed algorithm
to compute the optimal solution in Section 3. We then consider the multi-ES scenario and propose a
corresponding distributed algorithm to achieve the optimal solution in Section 4. We conclude this
work in Section 5 and discuss the future directions.

2. System Model and Problem Formulation

System Model

We consider a system model as shown in Figure 1. Specifically, a group of the ESs denoted
by K = {1, 2, ..., K} provide the computing services to a group of the MTs which are denoted by
I = {1, 2, ..., I}. Enabled by the multi-access MEC, each MT i ∈ I can acquire the computational
power from the ESs simultaneously. Specifically, we use xk

i to denote MT i’s computational power from
ES k and use xloc

i to denote MT i’s local computational power. Thus, each MT i’s total computational
power θi can be expressed as:

θi = xloc
i + ∑

k∈K
xk

i , ∀i ∈ I . (1)

In this work, θi, xloc
i , and xk

i are all measured in the unit of GHash/sec. Furthermore, we introduce
αi to denote MT i’s total computational power with respect to the overall computational power of all
MTs, i.e.,

αi =
θi

∑i∈I θi
=

xloc
i + ∑k∈K xk

i

∑i∈I xloc
i + ∑i∈I ∑k∈K xk

i
. (2)
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Figure 1. System model: a group of mobile terminals offload computational workloads to the
edge servers.

In the mining game, the MTs compete against each other to be the first one to solve the
proof-of-work puzzle and receive the reward accordingly. Similar to [22], we model the successful
probability that MT i wins the mining game (including that MT i successfully mines the block and its
solution reaches the consensus) as a random variable as follows:

Pi (αi, ti) = αi

(
1−Porphan (ti)

)
, (3)

where ti denotes MT i’s block-size, and function Porphan (ti) denotes the orphaning probability [22]
as follows:

Porphan (ti) = 1− e−λti . (4)

The use of the above Porphan (ti) can be explained as follows. After solving the proof-of-work
puzzle, MT i needs to broadcast its result to other MTs for reaching the consensus. Since the
broadcasting of the computation-result among the MTs suffers from a certain delay, it is possible
that MT i fails to be the first one whose computation-result reaches the consensus among all MTs (even
though that MT i is the first one who solves the proof-of-work puzzle). The orphaning probability
Porphan (ti) in (4) quantifies such a probability. In particular, the same as [22,44], we express P(ti)

as
the Poisson distribution with parameter λ, in which parameter λ denotes the inter-arrival rate of the
Poisson distribution. Based on (3), we can express MT i’s net-reward function in winning the mining
game as follows:

mi = (R + rti) Pi (αi, ti)− ∑
k∈K

pkxk
i , (5)

where R denotes the fixed reward, and rti denotes the variable reward which linearly grows with MT
i’s block-size ti (parameter r is a fixed constant). Parameter pk denotes the marginal price of ES k for
providing the computational power to MT i.
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In this work, we consider that the MTs acquire the computational power from the group of the
ESs with the objective of maximizing the total net-reward, while keeping the fairness among them.
To this end, we formulate the following total net-reward optimization (TRO) problem:

(TRO): max ∑
i∈I

ln(mi),

subject to: constraints (1), (2), (3), and (5),

0 ≤ ∑
i∈I

xk
i ≤ Ck,tot, ∀k ∈ K, (6)

variables: xk
i ≥ 0, ∀i ∈ I , k ∈ K.

Constraint (6) ensures that all MTs’ total computational power acquired from ES k cannot exceed
ES k’s maximum computational power Ck,tot. Notice that since both θi and αi depend on {xk

i }k∈K,
we just treat {xk

i }i∈I ,k∈K as the decision variables in Problem (TRO). However, Problem (TRO) is a
complicated non-convex optimization problem, and there exists no general algorithm that can solve it
efficiently [45]. We will propose a distributed algorithm to compute the optimal solution in the next
two sections. Specifically, in our proposed algorithm, each MT individually determines the acquired
computational powers from different ESs. Then, viewing the aggregate demands from all MTs, the ESs
further update their respective computational powers allocated to all MTs for maximizing the total
net-reward. Thus, our algorithm does not require a central entity to collect the global information
in the considered network. Nevertheless, the downside of our proposed algorithm is that it requires
the message exchange between the MTs and the ESs, meaning that the MTs and ESs need to take the
additional burdens on sending and receiving the required messages for reaching the optimal solution.

3. One-ES Scenario and Proposed Distributed Algorithm

3.1. Problem Formulation and Its Decomposition

We first consider one-ES scenario and aim at finding the optimal allocation of the computational
resource for the MTs. For the sake of easy presentation, we use ES k = 1 as an example in the following.
In particular, with one ES, Problem (TRO) turns into :

(TRO-ES): max ∑
i∈I

ln
(
(R + rti)

xloc
i + x1

i

∑
i∈I

xloc
i + ∑

i∈I
x1

i
e−λti − p1x1

i

)
,

subject to: 0 ≤ ∑
i∈I

x1
i ≤ C1,tot,

variables: x1
i ≥ 0, ∀i ∈ I .

However, Problem (TRO-ES) is still a non-convex optimization problem, which is difficult to
solve in general. To efficiently solve Problem (TRO-ES), we adopt a vertical decomposition as follows.
We firstly introduce an auxiliary variable µ to denote all MTs’ total computational power obtained
from ES 1, i.e.,

∑
i∈I

x1
i = µ, (7)

with 0 ≤ µ ≤ C1,tot.
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Suppose that the value of µ is given in advance. We thus aim at solving the following subproblem:

(TRO-ES-Sub): Vsub
µ = max ∑

i∈I
ln(Aix1

i + Bi),

subject to: ∑
i∈I

x1
i = µ, (8)

Aix1
i + Bi ≥ 0, ∀i ∈ I , (9)

variables: x1
i ≥ 0, ∀i ∈ I ,

with parameters Ai and Bi given by:

Ai =
(R + rti)e−λti

∑i∈Ixloc
i + µ

− p1, (10)

Bi =
(R + rti)e−λti

∑i∈Ixloc
i + µ

xloc
i . (11)

Notice that, in Subproblem (TRO-ES-Sub), we use Vsub
µ to denote the optimal value of Subproblem

(TRO-ES-Sub), which depends on the given value of µ (i.e., the total computational power obtained
from ES 1).

After solving Problem (TRO-ES-Sub) and obtaining Vsub
µ (for each given µ), we continue to find

the optimal value of µ (denoted by µ∗) for maximizing Vsub
µ , i.e., solving the following top-problem:

(TRO-ES-Top): max Vsub
µ ,

variable: 0 ≤ µ ≤ C1,tot.

The reason for us to adopt the above proposed vertical decomposition is as follows. Given the
value of µ, Subproblem (TRO-ES-Sub) is a strictly convex optimization (i.e., Proposition 1 provided
below), which enables us to solve it efficiently. In the next subsection, we propose a distributed
algorithm to solve Subproblem (TRO-ES-Sub) and Top-problem (TRO-ES-Top).

3.2. Proposed Algorithm to Solve Subproblem (TRO-ES-Sub)

To efficiently solve Subproblem (TRO-ES-Sub), we firstly identify the following property.

Proposition 1. Given µ, Subproblem (TRO-ES-Sub) is a strictly convex optimization.

Proof. Given the value of µ, the values of {Ai, Bi}i∈I are all fixed. Thus, according to the convex
optimization theory [45], Problem (TRO-ES-Sub) is a strictly convex optimization problem.

The convexity of Subproblem (TRO-ES-Sub) enables us to use the Karush–Kuhn–Tucker (KKT)
conditions [45] to compute the optimal solution. In particular, to solve Subproblem (TRO-ES-Sub),
we identify the following three possible cases.

Case I in which we have Ai < 0, ∀i ∈ I , and ∑
i∈I

(
− Bi

Ai

)
≥ µ.

In Case I, we define Ci = −Ai, ∀i ∈ I . With {Bi, Ci}i∈I , Problem (TRO-ES-Sub) can be
equivalently changed into Problem (TRO-ES-Sub-I):

(TRO-ES-Sub-I): Vsub
µ = max ∑

i∈I
ln(Bi − Cix1

i ),

subject to: ∑
i∈I

x1
i ≥ µ, (12)

variables: 0 ≤ x1
i ≤

Bi
Ci

, ∀i ∈ I .
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Problem (TRO-ES-Sub-I) is again a strictly convex optimization problem. Moreover, it can be
observed that constraint (12) is strictly binding at the optimum. Thus, we introduce the dual variable
λ to relax (12) and obtain the Lagrangian function as (where the subscript “I” stands for Case I):

LI({x1
i }i∈I , λ) = ∑

i∈I
ln(Bi − Cix1

i ) + λ(∑
i∈I

x1
i − µ). (13)

With the KKT condition and (13), we can derive the optimal solution for Problem (TRO-ES-Sub-I) as follows:

x1∗
i = max

{
Bi
Ci
− 1

λ∗
, 0
}

, ∀i ∈ I , (14)

where λ∗ is determined according to the following condition:

∑
i∈I

x1∗
i = µ. (15)

Based on (14) and (15), we can propose the following distributed algorithm (i.e., Algorithm 1) to
solve Problem (TRO-ES-Sub-I). Notice that, in Algorithm 1, exploiting the monotonic property of (14),
we use the bisection-search (i.e., from Step 3 to Step 11) to find λ∗ until condition (15) is satisfied.

Algorithm 1: To solve Problem (TRO-ES-Sub-I) and determine {x1
i }∗ and Vsub

µ

Input: Each MT i’s Ai and Bi.
Initialization: ES 1 sets λ as a sufficiently large number and λ = 0. Set the tolerance for the

computational error ε as a small number.
while |λ− λ| > ε do

ES 1 sets λcur = λ+λ
2 and broadcasts λcur to all MTs.

Each MT i ∈ I sets x1
i = max

{
Bi
Ci
− 1

λcur , 0
}

and reports x1
i to ES 1.

if ∑
i∈I

x1
i > µ then

ES 1 updates λ = λcur.
else

ES 1 updates λ = λcur.
end if

end while
ES 1 sets λ∗ = λcur and broadcasts λ∗ to all MTs in I .
Each MT i ∈ I sets x1∗

i = max
{

Bi
Ci
− 1

λ∗ , 0
}

and reports the value of ln(Aix1∗
i + Bi) to ES 1.

Output: ES 1 outputs Vsub
µ = ∑i∈I ln(Bi − Cix1∗

i ) based on all MTs’ reports.

Case II in which there exists a subset of MT i ∈ I with Ai > 0. In particular, we denote this subset as
Isub = {i ∈ I|Ai > 0}.

In Case II, we can derive the optimal solution of Problem (TRO-ES-Sub) as follows. For each MT i
with Ai < 0, we set x∗i = 0 directly. For the MTs in Isub, we can express Problem (TRO-ES-Sub) as:

(TRO-ES-Sub-II): Vsub
µ = max ∑

i∈Isub

ln(Aix1
i + Bi),

subject to: ∑
i∈Isub

x1
i ≤ µ, (16)

variables: x1
i ≥ 0, ∀i ∈ Isub.
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It can be observed that Subproblem (TRO-ES-Sub-II) is a strictly convex optimization problem,
and the optimal solution occurs when constraint (16) is binding. We thus introduce the dual variable λ

to relax (16) and obtain the following Lagrangian function:

LII({x1
i }i∈I , λ) = ∑

i∈Isub

ln(Aix1
i + Bi) + λ(µ− ∑

i∈Isub

x1
i ). (17)

With the KKT condition and (17), we can derive the optimal solution for Subproblem
(TRO-ES-Sub-II) as follows:

x1∗
i = max

{
1

λ∗
− Bi

Ai
, 0
}

, ∀i ∈ Isub, (18)

with λ∗ determined according to the following condition

∑
i∈Isub

x1∗
i = µ. (19)

Based on (18) and (19), we can propose the following distributed algorithm (i.e., Algorithm 2) to
solve Problem (TRO-ES-SubII). Notice that, in Algorithm 2, exploiting the monotonic property of (18),
we use the bisection-search (i.e., from Step 4 to Step 12) to find λ∗ until condition (19) is satisfied.

Algorithm 2: To solve Problem (TRO-ES-Sub-II) and determine {x1∗
i } and Vsub

µ

Input: Each MT i’s Ai and Bi.
Initialization: ES 1 sets λ as a sufficiently large number and λ = 0. Set the tolerance for the

computational error ε as a small number.
MT i ∈ I sets x1∗

i = 0 if its Ai ≤ 0 and reports to ES 1.
while |λ− λ| > ε do

ES 1 sets λcur = λ+λ
2 and broadcasts λcur to the MTs in Isub.

Each MT i ∈ Isub sets x1
i = max

{
1

λcur − Bi
Ai

, 0
}

and reports x1
i to ES 1.

if ∑
i∈I

x1
i > µ then

ES 1 updates λ = λcur.
else

ES 1 updates λ = λcur.
end if

end while
ES i sets λ∗ = λcur and sends λ∗ to all MTs in Isub.
Each MT i ∈ Isub sets x1∗

i = max
{

1
λcur − Bi

Ai
, 0
}

and reports the value of ln(Aix1∗
i + Bi) to ES 1.

Output: ES 1 outputs Vsub
µ = ∑i∈Isub

ln(Aix1∗
i + Bi) + ∑i∈I ,i/∈Isub

ln(Bi) based on all MTs’ reports.

Case III in which we have Ai < 0, ∀i ∈ I and moreover, ∑
i∈I

(
− Bi

Ai

)
< µ. Case III is a trivial case in

which Problem (TRO-ES-Sub) is infeasible.

As a summary of the above Case I, Case II, and Case III, we propose the following Algorithm 3 to
solve Problem (TRO-ES-Sub) and determine {x1∗

i }i∈I and Vsub
µ . In Algorithm 3, we use Algorithm 1

(in Step 7) and Algorithm 2 (in Step 10) as the subroutines. Until now, we have completed solving
Problem (TRO-ES-Sub) for the given value of µ.
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Algorithm 3: To solve Problem (TRO-ES-Sub) and determine {x1
i }∗ and Vsub

µ

Input: The value of µ.
Each MT i ∈ I reports its xloc

i to ES 1.
ES 1 computes Xloc = ∑i∈I xloc

i and sends Xloc to all MTs.
Each MT i uses (10) to compute Ai =

(R+rti)e−λti

Xloc+µ
− p1, and uses (11) to compute Bi =

(R+rti)e−λti

Xloc+µ
xloc

i .
Each MT reports its (Ai, Bi) to ES 1.
if Case I holds then

Use Algorithm 1 to output {x1∗
i }i∈I and Vsub

µ .
else

if Case II holds then

Use Algorithm 2 to output {x1∗
i }i∈I and Vsub

µ .
else

Output that Problem (TRO-ES-Sub) is infeasible under the current µ.
end if

end if

3.3. Proposed Algorithm to Solve Top-Problem (TRO-ES-Top)

We continue to solve Top-problem (TRO-ES-Top) in this subsection. Notice that, for each given µ,
we can use Algorithm 3 to obtain the value of Vsub

µ . However, the difficulty in solving Top-problem
(TRO-ES-Top) lies in that we cannot derive Vsub

µ analytically. As a result, Top-problem (TRO-ES-Top)
is an optimization problem in which the objective function cannot be analytically given, which thus
prevents us from using the conventional gradient based approach to solve it. Fortunately, the viable
interval of the µ is fixed, namely, µ ∈ [0, C1,tot]. Exploiting this property, we can use a linear-search
(LS) with a very small step-size to numerically find the best value of µ (which is denoted by µ∗) that
can maximize Vsub

µ . The details are shown in the following Algorithm 4. Notice that, in Step 3, we use
Algorithm 3 as the subroutine to determine the value of Vsub

µ (and the corresponding optimal {x1∗
i }i∈I )

under the currently enumerated µ.

Algorithm 4: To solve Top-problem (TRO-ES-top) and determine µ∗

Initialize: CBV = 0 and CBS = ∅. Set ∆ as a very small step-size.
for µ = ∆ : ∆ : C1,tot do

Use Algorithm 3 to determine Vsub
µ and {x1∗

i }i∈I .
if Vsub

µ > CBV then

Set CBS = {x1∗
i }i∈I and CBV = Vsub

µ .
end if

end for
Output: Set the optimal solution according to CBS.

The computational complexity of our Algorithm 4 can be analyzed as follows. First, as the internal
subroutines of Algorithm 4, both Algorithms 1 and 2 require executing a bisection search with the

complexity of log2
( λ−λ

ε

)
. In addition, the linear search in Algorithm 4 requires consuming Ctot

1
∆ rounds

of the iterations (notice that only one of the two subroutines, i.e., Algorithms 1 and 2, will be invoked
in each round of the iterations). As a result, the total complexity of our proposed Algorithm 4 is given

by Ctot
1
∆ log2

( λ−λ
ε

)
.
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3.4. Numerical Results for One-ES Scenario

We present the numerical results to validate the effectiveness of our proposed algorithms to
solve Problem (TRO-ES). We set the parameter-settings according to the data provided in [46] (Table 1
lists the detailed settings). Specifically, we set λ = 1

600 (i.e., the average generating-time for each
block is 10 min) and each block-size ti = 1 Mbit. Meanwhile, according to [46], we set R = 7000$
for each block and set r = 1000 $/Mbit. In addition, for MT i, the local computational power xk

i
is randomly generated according to a uniform distribution within [1,2] GHash/sec. Finally, we set
p1 = 10 $/GHash according to the ES’s unit cost for providing the computational power.

To illustrate the rationale of our proposed decomposition, we provide Figure 2 to show how Vsub
µ

varies with different µ. We test a 5-MT case (in the left subplot) and a 10-MT case (in the right subplot).
Figure 2 shows that Vsub

µ firstly increases when µ increases, and then gradually decreases when µ

is beyond a certain threshold. Such a phenomenon of Vsub
µ matches the intuition very well, namely,

neither a too small µ nor too small µ will be beneficial to the computation offloading. On the one
hand, when µ is too small, the MTs can only obtain a small amount of computational power from
the ES, which results in a small total net-reward. On the other hand, when µ is too large, a large
cost is incurred for obtaining the computational power, which again degrades the total net-reward.
This phenomenon is the motivation of our work, i.e., to find the optimal trade-off between exploiting
the computational power provided by the ES and the consequent cost.

Table 1. Important parameter settings.

Definition and Symbol Value

MT i’s local computational power xloc
i uniform distribution between 1 and 2 GHash/s

MT i’s block-size ti 1 Mbit
Fixed reward for each block R 7000$

Coefficient of variable reward r 1000 $/Mbit
Average generating-rate of the block λ 1

600
Marginal price for computational power p1 10 $/GHash
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Figure 2. Vsub
µ versus different µ. (a): a 5-MT case; (b): a 10-MT case.

Table 2 validates the effectiveness of our Algorithm 4 for solving Top-problem (TRO-ES-Top).
For the purpose of comparison, we use a benchmark scheme that exploits the convexity of Problem
(TRO-ES-Sub). Specifically, we use CVX [45] (which is a commercial solver for convex optimization) to
solve Problem (TRO-ES-Sub) directly for each given µ and then execute a linear search of µ ∈ [0, C1,tot]

to solve Top-problem (TRO-ES-Top). Table 2 shows the optimal value achieved by different schemes
and the corresponding computation-time. Notice that all the results are obtained on a PC with
Intel Core i5-4590 CPU@3.3GHz. As shown in Table 2, our Algorithm 4 can achieve the global
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optimum solution as the benchmark scheme, and, moreover, our Algorithm 4 consumes a significantly
less computation-time than the benchmark scheme, which thus validates the effectiveness of our
proposed algorithm.

Table 2. Performance of our proposed algorithm.

5-MT Case ti = 0.2 Mbit ti = 0.4 Mbit ti = 0.6 Mbit ti = 0.8 Mbit ti = 1 Mbit

LS Proposed 52.4482 52.6437 52.8338 53.0190 53.1994
Computing Time 0.314 s 0.278 s 0.249 s 0.212 s 0.261 s

Benchmark 52.4482 52.6437 52.8338 53.0190 53.1994
Computing Time 148.5 s 154.4 s 140.39 s 143.2 s 146.2 s

10-MT Case ti = 0.2 Mbit ti = 0.4 Mbit ti = 0.6 Mbit ti = 0.8 Mbit ti = 1 Mbit

LS Proposed 94.8489 95.2408 95.6220 95.9932 96.3549
Computing Time 0.346 s 0.352 s 0.344 s 0.331 s 0.322 s

Benchmark 94.8489 95.2408 95.6220 95.9932 96.3549
Computing Time 197.4 s 197.6 s 198.4 s 199.5 s 210.2 s

Figure 3 evaluates the impact of the ES’s price for providing the computational power to the MTs.
When the price increases, the MTs become conservative in using the computational power from the ES,
and thus the total computational power acquired from ES 1 decreases (as shown in the right subplot).
Accordingly, all MTs’ total net-reward gradually decreases when the price increases (as shown in the
left subplot).
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Figure 3. Impact of different ES prices. (a): total net-reward; (b): total computational power.

4. Multi-ES Scenario and Proposed Distributed Algorithm

4.1. Problem Decomposition

We next consider the multi-ES scenario and focus on solving Subproblem (TRO-Sub) and
Top-problem (TRO-Top). As we have described before, Problem (TRO-ES) is a non-convex optimization
problem which is difficult to solve in general. To this end, we again adopt a vertical decomposition,
by introducing an auxiliary variable νi which denotes MT i’s totally acquired computational power
from all ESs, namely,

νi = ∑
k∈K

xk
i , ∀i ∈ I . (20)
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Firstly, we assume that the values of {νi}i∈I are given in advance, and we aim at solving the
subproblem as follows:

(TRO-Sub): Hsub
{νi}i∈I

= max ∑
i∈I

ln

(
(R + rti)

xloc
i + νi

∑i∈I
(
xloc

i + νi
) e−λti − ∑

k∈K
pkxk

i

)
, (21)

subject to: 0 ≤ ∑
i∈I

xk
i ≤ Ck,tot, ∀k ∈ K, (22)

∑
k∈K

xk
i = νi, ∀i ∈ I , (23)

variables: xk
i ≥ 0, ∀i ∈ I , k ∈ K.

After solving Subproblem (TRO-Sub) and obtaining Hsub
{νi}i∈I

(for the given {νi}i∈I ), we continue
to solve the top-problem as:

(TRO-Top): max Hsub
{νi}i∈I

,

variables: 0 ≤ νi ≤ Qmax, ∀i ∈ I , (24)

where we set Qmax = ∑k∈K Ck,tot.

4.2. Distributed Algorithm to Solve Subproblem (TRO-Sub)

The reason for us to adopt the above decomposition is that we can propose a distributed algorithm
to solve Subproblem (TRO-Sub). Specifically, given {νi}i∈I , Subproblem (TRO-Sub) is a convex
optimization problem. Thus, we again introduce the dual variable λk to relax constraint (22) with
respect to ES k, and obtain the corresponding Lagrangian function as:

L
(
{xk

i }, {λk}
)
= ∑

i∈I
ln

(
(R + rti) M− ∑

k∈K
pkxk

i

)
+ ∑

k∈K
λk

(
Ck,tot −∑

i∈I
xk

i

)
, (25)

where the fixed parameter M (under the given {νi}i∈〉∈I ) is:

M =
xloc

i + νi

∑i∈I
(
xloc

i + νi
) e−λti . (26)

An observation on (25) shows that it can be separated as follows:

L
(
{xk

i }, {λk}
)
= ∑

i∈I
Li({xk

i }∀k∈K, {λk}∀k∈K) + ∑
k∈K

λkCk,tot, (27)

where, for each MT i, its associated Lagrangian function is:

Li({xk
i }∀k∈K, {λk}∀k∈K) = ln

(
(R + rti) M− ∑

k∈K
pkxk

i

)
− ∑

k∈K
xk

i λk, ∀i ∈ I . (28)

Based on (28), we formulate each MT i’s local optimization problem as follows:

(TRO-Sub-MTi): {x̃k
i } = arg max ln

(
(R + rti) M− ∑

k∈K
pkxk

i

)
− ∑

k∈K
xk

i λk, (29)

subject to: ∑
k∈K

xk
i = νi, ∀i ∈ I , (30)

variables: xk
i ≥ 0, ∀i ∈ I , k ∈ K.
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To further determine the optimal values of {λk}k∈K (i.e., the optimal solution of the dual problem),
we use the following subgradient method:

λk = max

{
λk − ε

(
Ck,tot −∑

i∈I
x̃k

i

)
, 0

}
, ∀k ∈ K, (31)

where ε is the step-size for the dual-updating. Notice that (31) means that each ES k can individually
update its λk based on all MTs’ reported {x̃k

i }i∈I . Based on the above, each MT i’s local optimization
problem (TRO-Sub-MTi) and each MT k’s dual-updating in (31), we propose the following distributed
algorithm to solve Problem (TRO-Top) and Problem (TRO-Sub).

In particular, according to [45], using the diminishing step-size (in Step 7) enables us to reach the
dual optimality. Thus, Algorithm 5 is guaranteed to converge to the optimal solution of Subproblem
(TRO-Sub) and determine Hsub

{νi}i∈I
.

Algorithm 5: To solve Subproblem (TRO-Sub) and determine Hsub
{νi}i∈I

Input: {νi}i∈I .
Initialization: Set the iteration-index l = 1. Each ES k ∈ K initializes λk(l).
while maxk∈K |λk(l)− λk(l − 1)| > ε do

Each ES k broadcasts λk(l) to all MTs.
Given {λk(l)}k∈K , each MT i solves its local Problem (TRO-Sub-MTi) and obtain its {x̃k

i }k∈K .
Each MT i reports its x̃k

i to each ES k.
After collecting {x̃k

i }i∈I from all MTs, each ES k updates

λk(l) = max

{
λk(l − 1)− ε(l)

(
Ck,tot − ∑

i∈I
x̃k

i

)
, 0

}
, ∀k ∈ K,

where ε(l) = a
b+l . Parameters a and b are the given values.

Set l = l + 1.
end while
Each MT i sets ln

(
(R + rti) M−∑k∈K pk x̃k

i

)
and reports to ES 1.

ES 1 sets Hsub
{νi}i∈I

= ∑i∈I ln
(
(R + rti) M−∑k∈K pk x̃k

i

)
.

Output: Hsub
{νi}i∈I

.

4.3. Proposed Algorithm to Solve Top-Problem (TRO-Top)

We then continue to solve Problem (TRO-Top). The difficulty in solving Problem (TRO-Top)
lies in the fact that we cannot express Hsub

{νi}i∈I
analytically for each MT i. To tackle this difficulty,

we adopt the idea of simulated annealing (SA) [47] to determine the optimal values of {νi}i∈I (which
are denoted by {ν∗i }i∈I ). The details are shown in the following Algorithm 6. Based on the idea of SA,
our Algorithm 6 executes a randomized search for finding {ν∗i }i∈I :

• If the newly generated {νi}i∈I (which is randomly generated within the range of the
previously located {νi}i∈I ) can improve the current best value (CBV), we then accept the newly
generated {νi}i∈I .

• If the newly generated {νi}i∈I fails to improve the CBV, we then accept it according to a certain
probability, such that we can avoid being trapped by a local optimum. In particular, the probability
for us to accept a non-improvement {νi}i∈I gradually decreases according to an annealing process
in which the annealing temperature decreases gradually. As a result, it is more likely that we will
refuse to accept a non-improved {νi}i∈I .
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Notice that, in Step 7, given the newly generated {ν′i}i∈I , we use Algorithm 5 to compute the
value of Hsub

{ν′i }i∈I
. However, regarding our proposed Algorithm 6, we notice that it is very challenging

to analytically derive its computational complexity. The key reason is due to the difficulty in deriving
the complexity of the subroutine, i.e., Algorithm 5 which relies on the sub-gradient method to reach
the convergence.

Algorithm 6: To solve Top-problem (TRO-top)
Initialization: Initialize the temperature T1 = 9.9, the decaying-rate d = 0.9, the lowest temperature

Tfinal = 0.001, Ncount = 0, and the time index t = 1.
Randomly generate {νi}i∈I . Set CS = {νi}i∈I .
Use Algorithm 5 to compute Hsub

{νi}i∈I
. Set CV = Hsub

{νi}i∈I
.

while Tt > Tfinal do

Set t = t + 1.
Randomly generate {ν′i}i∈I a plane whose central is {νi}i∈I .
Use CVX to compute Hsub

{ν′i }i∈I
.

if Hsub
{ν′i }i∈I

> CV then

Set CV = Hsub
{ν′i }i∈I

.

Set CS = {ν′i}i∈I .
Set Ncount = 0.

else

Generate a number $ according to the uniform distribution within [0, 1].

if $ < exp(
Hsub
{ν′i }i∈I

−CV

Tt
) then

CV = Hsub
{ν′i }i∈I

.

Set CS = {ν′i}i∈I .
Set Ncount = 0.

else

Update Ncount = Ncount + 1.
end if

end if
if Ncount ≥ 30 then

Break.
end if
Update Tt = Tt−1 ∗ d.

end while
Output: {ν∗i } = CS and CV as the maximum value of the objective function of Problem (TRO).

4.4. Numerical Results for Multi-ES Scenario

In this subsection, we show the performance of our proposed algorithms for the multi-ES scenario.
Figure 4 shows the convergence of Algorithm 5 (under the given {νi}i∈I ). We use a 5-MT

and 3-ES case, with the three ESs having {p1, p2, p3} = {10, 20, 30}$/GHash. In Figure 4a, we set
{νi} = {1, 2, 3, 4, 5} for the five MTs. The top-subplot in Figure 4a shows the convergence of the dual
variables {λ1, λ2, λ3}, and the bottom-subplot in Figure 4a shows the convergence of Hsub

{νi}i∈I
to the
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dual optimum (which is denoted by the red-dash line). In Figure 4b, we set {νi} = {1, 2, 3, 4, 5} for the
five MTs, and the results show the same convergence property as Figure 4a.

Figure 5 shows the convergence of our Algorithm 6 for solving Top-problem (TRO-top).
The left-subplot shows the case of 5-MT and 3-ES (which is used in Figure 4 before), and the
right-subplot shows the case of 10-MT and 3-ES. The results show that our algorithm can quickly
converge to the optimal solution (i.e., {ν∗i }i∈I ) and reach the global optimum of the total net-reward of
all MTs.
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Figure 4. Convergence of our proposed Algorithm 5. (a): {νi} = {1, 2, 3, 4, 5}. (b): {νi} = {3, 3, 3, 3, 3}.
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Figure 5. Convergence of our Algorithm 6. (a): a 5-MT and 3-ES case; (b): a 10-MT and 3-ES case.

Table 3 evaluates the accuracy and efficiency of our proposed Algorithm 6 for solving Top-problem
(TRO-Top), in comparison with the exhaustive-search method. In the exhaustive-search method,
we enumerate all possible {νi}i∈I . However, the exhaustive-search method consumes a significant
computation complexity. We thus consider two cases, namely, a 5-MT and 2-ES case and a 3-MT and
2-ES case. We set {p1, p2} = {10, 20}$/GHash for the two ESs, and vary each MT’s block-size ti from
0.2 Mbit to 1 Mbit. For each tested case, we show the total net-reward (i.e., the top-value) in each cell,
and the corresponding computation time (i.e., the bottom-value) in each cell. The results in Table 3
show that our Algorithm 6 achieves the optimal solution exactly the same as the exhaustive-search
method, but consuming significantly less computation-time.

To show the advantage of our proposed algorithms, we further compare the performance of our
proposed algorithms with that of a heuristic equal-allocation scheme in which each ES equally divides
its total computational power to be shared by all MTs. Figure 6a below shows the results under the
scenario of 10 MTs and one ES, and Figure 6b shows the results under the scenario of five MTs and two
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ESs. Both figures validate that our proposed algorithms can outperform the equal-allocation scheme.
This advantage essentially comes from that we properly allocate the computational powers at different
ESs for the MTs.

Finally, in Figure 7, we evaluate the impact of the ESs’ prices for providing the computational
power to the MTs. We use the same parameter-settings as Table 3, but fix p1 = 10$/GHash and vary
p2 from 6 $/GHash to 14 $/GHash. Both subplots show that all MTs’ totally acquired computational
power from ES-2 gradually decreases due to the increasing price. As a result, the MTs are encouraged
to acquire more computational power from ES-1.

Table 3. Accuracy and efficiency of our Algorithm 6.

3-MT 2-ES Case ti = 0.2 Mbit ti = 0.4 Mbit ti = 0.6 Mbit ti = 0.8 Mbit ti = 1 Mbit

Exhaustive Meth. 33.6742 33.7930 33.9124 34.0287 34.1356
Computing Time 889.9 s 896.2 s 913.2 s 926.2 s 917.8 s

MultiTop-Algo. 33.6742 33.7930 33.9124 34.0287 34.1356
Computing Time 93.10 s 74.93 s 108.8 s 87.29s 59.83 s

5-MT 2-ES Case ti = 0.2 Mbit ti = 0.4 Mbit ti = 0.6 Mbit ti = 0.8 Mbit ti = 1 Mbit

Exhaustive Meth. 52.4315 52.6387 52.8214 53.0064 53.1970
Computing Time 1547 s 1847 s 1648 s 1788 s 1980 s

MultiTop-Algo. 52.4315 52.6387 52.8214 53.0064 53.1970
Computing Time 63.78 s 73.05 s 53.85 s 57.67 s 83.51 s
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Figure 6. Advantage of our proposed algorithms in comparison with an Equal-Allocation scheme.
(a): 10-MT and 1-ES case; (b): 5-MT and 2-ES case
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Figure 7. Impact of the ES prices. (a): 3-MT and 2-ES case; (b): 5-MT and 2-ES case.
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5. Conclusions

In this work, we have investigated the optimal computational power allocation for the multi-access
MEC enabled Blockchain. In particular, we focused on the scenario in which the group of the MTs
acquire the computational power from the ESs, with the objective of maximizing all MTs’ total
net-reward in the mining process while keeping the fairness among the MTs. By exploiting the layered
structure of the formulated optimization problem, we have proposed two distributed algorithms,
namely, one for the single-ES scenario and another for the multi-ES scenario, to efficiently compute the
MTs’ optimal computational power allocations. Extensive numerical results have been provided to
validate the effectiveness of our proposed algorithms. In this work, we mainly focused on the reward
optimization from the MTs’ perspective. For our future work, we will further consider the revenue
of the ESs in providing the multi-access MEC service and investigate how different ESs adjust their
prices for optimizing their revenues.
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