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Abstract 

Heat Flux measurements represent an important step in obtaining an accurate heat transfer 

profile in many engineering problems. Sensors capable of measuring this quantity have been 

around for decades, however, the increasing focus in nano and microscale applications in the 

industry and academia demands more accurate and smaller devices. This paper reviews some of 

the methods used to develop heat flux meters targeted to nano and microscale, as well as some 

calibration processes for the same. A combination of Luminescence and non-luminescence 

methods for direct and indirect measurement of heat flux will be discussed. A glimpse of what the 

future of this technology could look like will also be explored in the form of biomolecular-based 

thermometry.  

 

Key concepts: Heat flux sensor, temperature gradient, direct measurement, thermoelectricity, 

microfabrication, luminescence, nanoscale, temperature measurements.  

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Heat transfer can be defined as the transit of thermal energy due to a temperature gradient 

and it is an important physical process to consider in many engineering applications [1]. Most of 

the time, measuring the rate of heat transfer per unit area, or heat flux, through the desired body is 

the preferred way to describe heat transfer. In the industry and academia, heat flux measurement 

is usually performed by measuring the temperature at two given points along the temperature 

gradient. Since heat flux and temperature are complementary thermal measurements [2], heat flux 

can then be calculated using the measurements and concepts like the thermoelectric effect. This is 

known as an indirect measurement of heat flux. 

However, a more accurate and reliable method is to directly measure the point temperatures 

and the heat flux with one single device called a heat flux meter (HFM). The Seebeck 

thermoelectric effect (refer to section 2.1. for further information), for example, is one of the 

concepts used to directly measurement of heat flux [3]. Overall, many methods have been 

developed to measure this vector and the selection depends on specifications like the application, 

spatial scale, and materials. Azar, K.,[2] in his book “Thermal Measurement in Electronic 

Cooling” summarizes the most popular methods to measure heat flux as well as some possible 

applications. In general, these sensors can be categorized based on their targeted measurement. 

These can be the rate of change of temperature of a thermal capacitance, temperature gradient, 

differential temperature, and power dissipation in relationship with heat transfer [2]. 

Independent of the method used, a calibration for the HFM must be performed. There are 

two calibrations widely used in the industry and academia. The first one involves the application 

of uniform heat flux between two plates of known thickness and thermal conductivity at different 

temperatures, with the HFM located in the middle. Based on the temperature drop and the 



parameters of the plates, the heat flux can be calculated [4]. The second one requires the use of a 

two-sided guarded hot plate and the null detection technique to calculate the applied heat flux. The 

plate’s temperature is adjusted to achieve zero heat flow through the HFM. The heat flux can then 

be calculated based on the change in power of the heating plate and the active area [4]. The 

development of better calibration techniques has been in high demand in the last decades. An 

increase in applications in the nano and microscale yield more complex and increasingly smaller 

HFM, contributing to this need. 

This paper focuses on some of the methods that can be used to measure heat flux in the 

nano and microscale. When the measuring scale is comparable or even smaller than the mean free 

path of the energy carriers (like phonons and electrons), the assumptions of continuum and 

thermodynamic equilibrium are no longer reliable [5]. Sensors relying on these assumptions would 

be no longer useful, creating the need for adapting classical methods or developing new ones. 

Hence, state-of-the-art devices designed for nano and microscale thermometry and some new 

calibration methods will be reviewed.  

2. Luminescence Methods 

Heat flux measurement methods for nano and microscale can generally be divided into two 

distinctive categories: luminescent and non-luminescent [5]. Luminescence is essentially the 

refraction and reflection of light caused by the movement of electrons from one energy level to 

another [6]. Excess energy is irradiated in the form of electromagnetic radiation in the ultraviolet, 

visible, and near-infrared spectral range. When the temperature of a material increases, the 

intensity of luminescence can decrease in a process called quenching. Devices specially fabricated 

to measure this change in luminescence can then correlate it to the change in temperature 

experienced by the material. In this section, two luminescent methods will be reviewed. The 



selection of these specific methods exposed here depended on their popularity and/or novelty. 

Section 3 reviews three non-luminescence methods that were chosen based on the same 

parameters. 

2.1. Quantum Dots 

 Semiconductor particles such as quantum dots (QDs) have been an object of interest for 

thermal measurements in the nanoscale due to their temperature-dependent luminescence in form 

of photon emission (photoluminescence) [6]. Depending on parameters like composition, these 

QD-based thermometers can be tuned for a specific range of light emissions and applications. For 

example, Khan et al. [7] proposed a nano-thermometer based on fluorescent carbon quantum dots 

(CDs) to monitor the temperature of living systems comprised of cells. The CDs are developed 

using a hydrothermal synthesis process on a solution made out of L-cysteine, trisodium citrate, 

and water. Figure 1 shows a visual representation of the fabrication process as well as an image of 

the CDs from transmission electron microscopy (TEM) used for surface characterization. 

 
Figure 1. Fabrication process of CDs via hydrothermal synthesis (left) and TEM image of CDs (right) 

[7]. 

 

The two important factors that determine whether a CD-based solution, like the one being 

described, are photoluminescence (PL) intensity and lifetime. To investigate how the PL intensity 

changes with temperature, the solution was subjected to an increase in temperature from 25 to 

70˚C. It was found that the PL intensity decreases linearly with temperature while keeping the 

same wavelength for emission. In a similar fashion, PL lifetime was found to linearly decrease 



with increasing temperature as well. This linearity is desired for the calibration, stability, and 

repeatability of the system. To test the thermometer capabilities of this method, incubated T-ca. 

cancer cells were merged with the solution. Cell behavior remained healthy discarding possible 

toxicity from the CDs. Upon excitation from a light source with a 420-480 nm wavelength, the 

cells display blue coloration which, as the temperature decreases, becomes lighter and lighter. 

Thus, the temperature can be recorded based on the PL intensity and half-life of the light emitted 

by the cell-CDs solution. 

 Liu et al. [8] also reported the use of a QD-based nano-thermometer, this time using dual-

emission colloidal QDs, which exhibit two emission peaks in the near-infrared range. The 

fabrication of the PbS/CdS/CdSe core/barrier/shell QDs used started with the synthesis of bare 

PbS QDs using the organic compound oleylamine (OLA) as a ligand on PbCl2 and purged with an 

influx of N2. The cation exchange process was then used to synthesize CdS with the PbS QDs. The 

resulting QDs were scattered in toluene. Lastly, CdSe was synthesized with the PbS/CdS QDs and, 

again, dispersed in toluene to later be mixed with poly (methyl methacrylate) (PMMA) to form a 

film with a concentration of 1 µM. Because of its composition and shell-core structure, the film 

with QDs emits at two distinctive peaks which are around 670 and 910 nm. Upon thermal 

excitation, the peaks remain constant in the range of 100 to 300 K, while the PL intensity linearly 

increases with decreasing temperature. Having two emission peaks that behave linearly with 

temperature decreases the chances of errors in the system that could come from the refractive index 

of the surroundings, for example. Thus, dual-emission colloidal QDs offer improvements 

compared to single-emission methods, and make this technology more reliable and repeatable for 

heat flux measurements.  

 



2.2. Organic Dyes 

The main characteristic of an organic dye is that in response to a temperature change, their 

fluorescence intensity, fluorescence lifetime, and emission wavelength change as well. 

Specifically, temperature and fluorescence intensity are inversely proportional [9]. Many different 

organic dyes have been developed and it is currently a widely used method for nanoscale 

thermometry mainly because of its tunability capabilities and ease of fabrication compared to other 

luminescence techniques. One of the most recurrent applications is temperature measurement on 

living systems or microorganisms such as cells. An example of this is the thermometer developed 

by Arai et al. [10] to measure a temperature gradient in mitochondria, the well-known heat-

producing organelle in a cell. Figure 2 shows the schematic of the thermometer system developed. 

 

Figure 2. Schematic of a rosamines-based nanothermometer system [10]. 

Rosamines, a class of fluorophore, was used for this device due to a higher likelihood of 

localizing to the mitochondria and a higher temperature sensitivity compared to other dyes of 

similar classes [10]. To create the temperature gradient, a near-infrared laser was directed toward 

the system comprising the mitochondria and the dye, which can be comprehended as a nanodevice. 

The device was cycled through the heating and cooling process to test the sensitivity, reversibility, 

and repeatability of the dye. When the temperature increased, the intensity of the dye decreased 

linearly. When the laser was turned off and the temperature decreased, the intensity returned to 

normal in the same fashion, proving that the dye has the necessary characteristics of a thermometer. 



Similarly, Huang et al. [11] used the fluorophore DyLight549 coupled with the protein 

streptavidin to measure the temperature distribution in the proximity of superparamagnetic 

nanoparticles integrated inside cells. As expected, when the temperature and magnetic field in the 

area closest to the nanoparticles increased, the intensity of the DyLigth549 decreased. From 

previous calibrations, this behavior signified an increase of around 15˚C during a time span within 

15s [11]. Although these two implementations of dye-based fluorescent thermometers are very 

specific to the field of research involving microorganisms and cells, they shed a light to the 

usability of this technology. 

3 Non-Luminescence Methods 

3.1. Scanning Thermal Microscopy 

 Scanning Thermal Microscopy (SThM) is a non-luminescence method that was first 

developed by Williams and Wickramasinghe in 1986. It consists of probes that act as nanoscale 

thermometers that map the temperature distribution profile of an area creating a nanoscale thermal 

image of the same. Moreover, SThM is usually coupled with Atomic Force Microscopy (AFM) to 

cover a wider variety of samples that do not have to be conductors [6]. 

 The probes can be tailored depending on the scale, material being studied, and resolution 

desired. There are two types of probes that are commonly used: a thermocouple junction and a 

resistive wire bent [6]. The calibration of these probes involves measuring a reference sample and 

comparing the measured with the expected value [5]. In the case of a thermocouple junction, the 

thermovoltage measured is linked to the sample temperature. For the resistive wire, the resistance 

measured is linked to the thermal conductivity of the sample. For the latter, the resolution is 

strongly dependent on the material the probe is made of. 



In spite of the great development of this technology in recent decades, concerns regarding 

the reliability of this technology with a decreasing spatial scale are still present. For instance, for 

noncontact measurements, the probe is separated from the sample by a thermal resistance that 

prevents the probe from thermally equilibrating with the sample [12]. Moreover, the probes are 

also subjected to wear and tear for both contact and non-contact measurements, leading to 

undesired results [13].  

Menges et al. [12] addressed some of these issues by developing a High-Vacuum scanning 

thermal microscope with a non-equilibrium scanning method. Figure 1 shows the microscope setup 

as well as the scanning probe. The heat flux through the surface of the tip was obtained by 

measuring the temperature variation of the probe. This heat flux depends on both the temperature 

difference and the resistance between the probe and the sample, and by measuring both in a quasi-

simultaneous manner, systematic errors were avoided [12]. To achieve this, the temperature of the 

sensor was set above ambient temperature by applying a DC current to it. From here, both the 

resistance and the temperature of the sample can be calculated. An accurate temperature map of 

the sample can then be created by repeating this procedure at multiple points along the surface of 

the sample.  



  

Figure 1. Scanning thermal microscope set-up (left) and silicon scanning probe (right) [12]. 

The ability to get the measurement of the resistance between the sample and the probe and 

the temperature of the sample in one single scan as opposed to two consecutive scans has major 

advantages. One of them is avoiding the undesired wear in the probe that can happen even after 

one single measurement, and it sets this technique apart compared to others like regular SThM or 

SThM with the null-point approach. However, some limitations with this technology that were not 

addressed by the authors and are likely to be persistent to this day are the contemplation of near-

field radiation in vacuum settings (just as was the case for this study) and the use of this technology 

to model heat transfer in microscopic organisms [13]. 

3.2. Thermoelectric Devices 

Thermoelectricity studies the relationship between electricity and heat within a material. 

The two phenomena in which this relationship can be experienced are the Seebeck and the Peltier 

effect. The first one is the production of electrical potential or voltage when a specimen 

experiences a temperature difference. The latter one is the movement of heat through a specimen 

when subjected to an electrical current [14]. Many temperature reading devices and heat pumps 



like thermocouples (Seebeck effect), resistance temperature detectors (RTD-Peltier effect), Peltier 

device, and thermoelectric coolers (TEC) work under this principle. 

The Seebeck effect, in particular, is a concept commonly used in the industry and academia 

for heat flux thermometry. Companies like FluxTeq and greenTEG are just an example of 

companies that specialize in the development and commercialization of HFMs. Even though every 

company uses different materials, production methods, and/or sensor designs, the foundational 

concept is the same. The HFM with a known thermal conductivity and thickness is positioned in 

the “path” of the heat flux being measured. Inside this device, multiple thermocouples are 

connected in series creating a thermopile, with a cold junction on one side of the device and a hot 

junction on the opposite side. This thermopile in this specific arrangement is capable of measuring 

the temperature gradient between the HFM, which is proportional to the heat flux [15]. Since the 

conductivity is known, so is the device’s resistance that creates a voltage difference, given as the 

sensor's output. The more thermocouples the device has, the greater the voltage that can be 

measured, the more accurate the results. Increasing the thickness can increase the sensitivity of the 

device, representing how susceptible to the heat flux the sensor is. However, this increase in the 

thickness also leads to an increase in response time, which might not be desired depending on the 

application.  

 
Figure 2. Schematic of a common state-of-the-art sensor (left) [15]. FluxTeq (middle) and 

greenTEG (right) heat flux sensors (from fluxteq.com and greenteg.com, respectively). 

 

Despite recent advances in this technology in the recent decades and the vast number of 

applications for these devices, nanoscale thermal measurements usually require more specialized 



equipment. For instance, whereas companies like greenTEG claim µW resolution in their 

commercially available lineup gSKIN®, nanoscale research almost always requires at least 

resolution in the nW scale. HFMs using the Seebeck effect have been reported for this type of 

application, but they are generally custom-made for research and development. One such example 

is the microfluidic heat flux sensor (HFS) developed by Nam et al. [16] as shown in Figure 3. 

 
Figure 3. Schematic cross-section of the microfluidic sensor with a thermopile (left) and 

micrograph from the top of the sensor (right) [16]. 

 

The objective of this sensor was to measure the heat generated from living cells. A 

complementary metal-oxide-semiconductor fabrication process was used to create the thermopile-

based device. The thermopile is a 0.2 µm thick layer of Au and Ni that was patterned and etched 

using an E-beam evaporation lift-off process, followed by deposition, and etching of a 0.4 µm 

thick layer of SiO2 that act as electrical insulation and the junction of the thermopile. The silicon 

substrate is supposed to act as a heat sink and the air gap for thermal isolation. To measure the heat 

flux, a culture fluid is first introduced through the first inlet (Inlet 1 as shown in Fig. 3) followed 

by the living cells through the second inlet (Inlet 2 as shown in Fig. 3). The first flow without the 

cells acts as a reference value, while the flow with the cells is the objective value or value being 

measured.  

The final sensor achieved a resolution of 20 nW and serves as a good example of adapting 

existing methods for nanoscale applications. Moreover, it shows how an HFM device can be used 

to thermally characterize flow and not only stationary specimens.  



3.3. MEMS Devices 

Microelectromechanical systems or MEMS have been around since the early 90s. Their 

applications have rapidly diversified covering a large span of industries. One of such applications 

is sensing physical or chemical variables [17]. Measuring heat flux and/or temperature is just one 

of many applications that MEMS have nowadays, and of the best examples is microfabricated 

thermocouples. For instance, Kim et al. [18] developed a device using thin-film thermocouples 

with simplified fabrication and calibration processes. The device consists of nine thin-film 

thermocouples (made out of alumel and chromel) and a heater (made out of nichrome) deposited 

on a quartz wafer with a thickness of 200 µm using the sputtering process [18]. However, instead 

of using photoresists masks for this process, stainless-steel reusable masks were used. Figure 4 

shows the completed temperature sensor.  

 
Figure 4. Completed micro-thermal sensor [18]. 

 

The thermocouple arrangement was proven to correctly measure the temperature when 

compared to commercial K-type thermocouples since these are essentially the same type. A 

microchannel made out of polydimethylsiloxane (PDMS) was also bonded to the silicon wafer 

using air plasma. The main purpose of this research was to fabricate an optimal microchannel 



device for various mass flow rates and input powers, but the simplified fabrication process 

described could be extended to MEMS focused solely on heat flux measurements. 

On a different note, Feng et al. [19] developed a MEMS device to measure near-field 

thermal radiation (NFTR) between two parallel membranes. The two freestanding membranes 

have each a triple-layer design with two external SiO2 layers and a middle SiN layer. The distance 

between them is 1 µm. Each membrane also contains a Pt line heater in a zigzag shape and with 

four ends that act as both a resistor and a thermometer. The fabrication was accomplished using a 

MEMS and a port-MEMS process on a silicon wafer, which included sputtering, plasma-enhanced 

chemical vapor deposition (PECVD), reactive-ion etching (RIE), lift-off technique, and the use of 

sacrificial Al layers. Figure 5 shows a schematic design of the device. 

 
Figure 5. Schematic of the dual membrane MEMS device [19]. 

 

For the measurement process, the lower membrane heated up and acted as the emitter, 

while the upper membrane acted as the receiver. To measure NFTR, the setup had to necessarily 

be in a vacuum at ambient temperature. The emitter membrane was heated with various constant 

currents, then the receiver membrane was extracted, and the emitter was heated again in a similar 

fashion. The NFTR calculations required measuring the resistance of the Pt element for every 

current. Based on the difference in results obtained from using one membrane compared to using 



both, it was concluded that NFTR was measured successfully, although future improvements could 

include an actual measurement of the upper membrane (cold membrane) temperature. 

 

4. Future Work: Biomolecular-Based Thermometry 

Nowadays, many industries are looking at nature for inspiration in design, fabrication, 

and/or problem-solving. In the heat flux thermometry field, this philosophy is particularly 

expressed in biomolecular-based thermometry. It is based on the premise that living cells sense 

temperature changes through proteins, nucleic acids, and mRNAs. These chemical compounds and 

molecules either respond to temperature by changing their structure or undergoing reactions [6]. 

For many types of bacteria, there is one mRNA in particular that contributes to the heat sensitivity 

of the microorganism, an RNA thermometer called the ROSE element [20]. ROSE elements 

control the expression of genes when a sudden increase in extracellular temperature, or heat shock, 

occurs, unblocking a ribosome binding site that would be blocked at normal temperatures [21]. 

This means that synthetic RNA thermometers with simpler structures can be developed and used 

to measure and record the temperature of a nanoscale process. 

Höfinger et al. [22] propose a nanodevice using short strands of the ROSE element from a 

bacteria belonging to the group rhizobia. DINAMelt software was used to analyze random RNA 

sequences from the ROSE element and test their sensitivity to temperature changes. From here, 

critical temperatures for every sequence can be calculated and used as a categorizer for their 

stability in that given temperature. Based on the stability and sensitivity to the thermal behavior, 

some RNA sequences are selected for use in the nanodevice. Table 1 shows some of the selected 

RNA sequences and their respective critical temperatures.  

Table 1. Some selected RNA sequences and their respective critical temperatures [22]. 



 
 

A sensor incorporating these RNA has to be fabricated to contain multiple strands that 

transition from fully formed hairpin structures to single coils at different critical temperatures. The 

design of such a device consists of a binary assembly of solid and liquid phases. The solid phase 

is a matrix, and the liquid phase would flow through the matrix. Figure 6 shows a schematic of 

this design. Strands of RNA are crosslinked to the matrix to remain stationary, while the liquid is 

embedded in the selected RNA sequences. The crosslinked strands are complementary to the ones 

in liquid form. When the temperature of the assembly reaches a given critical temperature, the 

selected RNA will unveil into coils and hybridized with its crosslinked partner. Since both the 

crosslinked and liquid strands are color-coded, and the assembly is transparent, the temperature at 

a given time can be read just by looking at the color of the hybridized pair.  



 
Figure 6. Schematic of the nanodevice using selected RNA sequences [22]. 

 

However, to use this method for heat flux measurements, more experimental studies 

demonstrating the use of this device in different circumstances and measuring a temperature 

gradient are necessary.  

5. Conclusion 

Temperature and heat flux measurements are indispensable variables to characterize many 

processes in different fields in the industry and academia. Although many methods to achieve this 

have been developed throughout the years, an increment in micro and nanoscale applications has 

led to a rethink of existing methods and the proposal of new ones. From the current state of the 

literature, it is safe to state that most of the newly developed methods rely on the complementary 

nature of temperature and heat flux. This means that most of the methods, luminescent and non-

luminescent, measure heat flux indirectly. QDs and organic dyes, for example, measure 

temperature at a given area, with the possibility of measuring a temperature gradient from where 

the heat flux can be calculated. In a similar but more straightforward manner, temperature changes 

recorded using STM, and most of the MEMS can also be used to calculate the heat flux. Devices 



based on the Seebeck effect but for nanoscale processes, like the one proposed by Nam et al., are 

arguably the closest to an HFM due to its direct measurement of heat flux. It is also safe to imply 

that despite all the innovation in this field, it is in its early stages. A reliable method that can be 

commercialized and widely used in the industry is still some years down the road. Nevertheless, 

new methods such as biomolecular-based thermometry show exciting ways in which innovative 

design philosophies like biomimicry can reshape this field and bring about possibly bridge the gap 

between single-use methods and industry-wide solutions. 

6. References 

1. Bergman, T. L., & Lavine, A. S. (2017). Chapter 1. In Fundamentals of Heat and Mass Transfer 

(8th ed.). essay, Wiley.  

2. Azar, K. (1997). Chapter 8. In Thermal measurements in electronic cooling. essay, CRC Press. 

3. Heat Flux Measurement – Requirements, Characterization, and Technologies. EPRI, Palo Alto, 

CA and SCS, Inc., Birmingham, AL. (2009). 1019307. 

4. Arpino, F., Dell’Isola, M., Ficco, G., Iacomini, L., &amp; Fernicola, V. (2011). Design of a 

Calibration System for Heat Flux Meters. International Journal of Thermophysics, 32(11-12), 

2727–2734. https://doi.org/10.1007/s10765-011-1054-3 

5. Carlos, L. D., &amp; Parada, P. F. (2016). Thermometry at the Nanoscale: Techniques and 

Selected Applications. Royal Society of Chemistry. 

6. Brites, C. D., Lima, P. P., Silva, N. J., Millán, A., Amaral, V. S., Palacio, F., &amp; Carlos, L. 

D. (2012). Thermometry at the Nanoscale. Nanoscale, 4(16), 4799. 

https://doi.org/10.1039/c2nr30663h 



7. Khan, W. U., Qin, L., Alam, A., Zhou, P., Peng, Y., &amp; Wang, Y. (2021). Fluorescent 

Carbon Cots an Effective Nano-Thermometer in Vitro Applications. ACS Applied Bio Materials, 

4(7), 5786–5796. https://doi.org/10.1021/acsabm.1c00528 

8. Liu, J., Zhang, H., Selopal, G. S., Sun, S., Zhao, H., &amp; Rosei, F. (2019). Visible and Near-

Infrared, Multiparametric, Ultrasensitive Nanothermometer Based on Dual-Emission Colloidal 

Quantum Dots. ACS Photonics, 6(10), 2479–2486. https://doi.org/10.1021/acsphotonics.9b00763 

9. Bai, T., &amp; Gu, N. (2016). Micro/Nanoscale Thermometry for Cellular Thermal Sensing. 

Small, 12(34), 4590–4610. https://doi.org/10.1002/smll.201600665 

10. Arai, S., Suzuki, M., Park, S.-J., Yoo, J. S., Wang, L., Kang, N.-Y., Ha, H.-H., &amp; Chang, 

Y.-T. (2015). Mitochondria-Targeted Fluorescent Thermometer Monitors Intracellular 

Temperature Gradient. Chemical Communications, 51(38), 8044–8047. 

https://doi.org/10.1039/c5cc01088h 

11. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M., &amp; Pralle, A. (2010). Remote control of 

ion channels and neurons through magnetic-field heating of nanoparticles. Nature 

Nanotechnology, 5(8), 602–606. https://doi.org/10.1038/nnano.2010.125 

12. Menges, F., Riel, H., Stemmer, A., &amp; Gotsmann, B. (2016). Nanoscale thermometry by 

Scanning Thermal Microscopy. Review of Scientific Instruments, 87(7), 074902. 

https://doi.org/10.1063/1.4955449 

13. Zhang, Y., Zhu, W., Hui, F., Lanza, M., Borca‐Tasciuc, T., &amp; Muñoz Rojo, M. (2020). A 

Review on Principles and Applications of Scanning Thermal Microscopy (SThM). Advanced 

Functional Materials, 30(18), 1900892. https://doi.org/10.1002/adfm.201900892 

14. Muto, A. (2008). Device Testing and Characterization of Thermoelectric Nanocomposites 

(thesis). Retrieved March 10, 2022. 



15. Pineda, D. D., &amp; Rezania, A. (2017). Chapter 11. In Thermoelectric Energy Conversion: 

Basic Concepts and Device Applications. essay, Wiley-VCH. 

16. Nam, S.-K., Kim, J.-K., Cho, S.-C., &amp; Lee, S.-K. (2010). Design and Characterization of 

a High-Resolution Microfluidic Heat Flux Sensor with Thermal Modulation. Sensors, 10(7), 

6594–6611. https://doi.org/10.3390/s100706594 

17. Liu, C. (2012). Chapter 5. In Foundations of MEMS. essay, Pearson Prentice Hall. 

18. Kim, T. H., &amp; Kim, S. J. (2006). Development of a micro-thermal flow sensor with thin-

film thermocouples. Journal of Micromechanics and Microengineering, 16(11), 2502–2508. 

https://doi.org/10.1088/0960-1317/16/11/035 

19. Feng, C., Tang, Z., Yu, J., &amp; Sun, C. (2013). A MEMS Device Capable of Measuring 

Near-Field Thermal Radiation between Membranes. Sensors, 13(2), 1998–2010. 

https://doi.org/10.3390/s130201998 

20. Shah, P., &amp; Gilchrist, M. A. (2010). Is Thermosensing Property of RNA Thermometers 

Unique? PLoS ONE, 5(7). https://doi.org/10.1371/journal.pone.0011308 

21. Meyer, S., Carlson, P. D., &amp; Lucks, J. B. (2017). Characterizing the Structure-Function 

Relationship of a Naturally Occurring RNA Thermometer. https://doi.org/10.1101/142141 

22. Höfinger, S., &amp; Zerbetto, F. (2010). A RNA-Based nanodevice recording temperature 

over time. Chemical Physics, 369(2-3), 91–95. https://doi.org/10.1016/j.chemphys.2010.03.007 

 

 

 


	A Review on Heat Flux Measurement Techniques in the Nano and Microscale
	

	tmp.1647922002.pdf.Uc58E

