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The Ovine Functional Annotation of Animal Genomes (FAANG) project, part of the
broader livestock species FAANG initiative, aims to identify and characterize gene
regulatory elements in domestic sheep. Regulatory element annotation is essential for
identifying genetic variants that affect health and production traits in this important
agricultural species, as greater than 90% of variants underlying genetic effects are
estimated to lie outside of transcribed regions. Histone modifications that distinguish
active or repressed chromatin states, CTCF binding, and DNA methylation were
used to characterize regulatory elements in liver, spleen, and cerebellum tissues from
four yearling sheep. Chromatin immunoprecipitation with sequencing (ChIP-seq) was
performed for H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF. Nine chromatin
states including active promoters, active enhancers, poised enhancers, repressed
enhancers, and insulators were characterized in each tissue using ChromHMM. Whole-
genome bisulfite sequencing (WGBS) was performed to determine the complement
of whole-genome DNA methylation with the ChIP-seq data. Hypermethylated and
hypomethylated regions were identified across tissues, and these locations were
compared with chromatin states to better distinguish and validate regulatory elements in
these tissues. Interestingly, chromatin states with the poised enhancer mark H3K4me1
in the spleen and cerebellum and CTCF in the liver displayed the greatest number of
hypermethylated sites. Not surprisingly, active enhancers in the liver and spleen, and
promoters in the cerebellum, displayed the greatest number of hypomethylated sites.
Overall, chromatin states defined by histone marks and CTCF occupied approximately
22% of the genome in all three tissues. Furthermore, the liver and spleen displayed
in common the greatest percent of active promoter (65%) and active enhancer (81%)
states, and the liver and cerebellum displayed in common the greatest percent of
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poised enhancer (53%), repressed enhancer (68%), hypermethylated sites (75%), and
hypomethylated sites (73%). In addition, both known and de novo CTCF-binding motifs
were identified in all three tissues, with the highest number of unique motifs identified in
the cerebellum. In summary, this study has identified the regulatory regions of genes in
three tissues that play key roles in defining health and economically important traits and
has set the precedent for the characterization of regulatory elements in ovine tissues
using the Rambouillet reference genome.

Keywords: FAANG, epigenetics, ChIP-seq, WGBS, methylation, sheep, functional genomics, histone
modifications

INTRODUCTION

Regulatory element characterization and chromatin state
determination in relevant tissues was identified as a critical
need for implementing precision breeding within the livestock
industry by the Agricultural Animal Genomics Community
(Rexroad et al., 2019). To this end, the Functional Annotation of
Animal Genomes (FAANG) consortium and the Ovine FAANG
project members seek to molecularly define the epigenome in
food animals, including sheep (Andersson et al., 2015; Tuggle
et al., 2016; Giuffra et al., 2019). Modeled upon the ENCODE
project (The ENCODE Project Consortium, 2012), FAANG
aims to characterize the epigenome including chromatin histone
modifications and DNA methylation (Andersson et al., 2015).
The core objective of the Ovine FAANG Project Consortium is
to develop a deep and robust public database of transcriptional
regulatory features in the sheep genome.

Sheep production for meat, milk, and wool is an important
agricultural industry across the globe with more than one billion
sheep suited to a diverse range of climates (Hegde, 2019). This
diversity is reflected in genetic differences between sheep breeds
utilized for varied purposes (Meadows et al., 2008; Al-Mamun
et al., 2015). Populations bred for different environments and for
contrasting production traits provide the opportunity to study
a range of phenotypes within the species. Analysis of elements
that control gene expression in sheep tissues is needed as many
complex traits such as rumen fatty acid metabolism, lanolin and
wool production, growth, and carcass traits cannot be explained
solely by variation in transcribed regions (Jiang et al., 2014; Villar
et al., 2015; Clark et al., 2017; Kingsley et al., 2019). In vivo
analysis of regulatory elements will allow researchers to test
hypotheses of biological function of putative causal mutations
in relevant production tissues. Understanding the phenotypic
influences of genetic variance that lie in promoter and enhancer
regions is important for trait prediction and the improvement of
sheep production.

Functional variants that are causally implicated in phenotypic
variation are increasingly found to lie outside of transcribed
regions within DNA regulatory elements (Albert and Kruglyak,
2015; Xiang et al., 2019). These regulatory elements can be
defined by epigenetic analyses that have not been systematically
conducted in sheep. A library of putative regulatory elements in
the sheep genome was recently predicted using inference from
chromatin states defined in humans (Naval-Sanchez et al., 2018).

However, direct experimental characterization of regulatory
elements in individual ovine tissues is needed.

The work presented here represents the foundation in the
preparation for a deep survey using the same methodology
across tissues of the index animal from which the new sheep
reference genome was developed. Since the larger FAANG effort
has N = 2 for each tissue by design (i.e., a large array of
tissues from the individual from which the genome was derived),
the data collected here also provide a resource for evaluating
the larger effort by permitting estimation of interindividual
variation in the appearance and tissue distribution of regulatory
elements. Three tissues were selected for this study based on their
prominence in defining production traits and to span tissues of
endodermal, mesodermal, and ectodermal origin and because
each presents unique procedural challenges for performing
chromatin immunoprecipitation with sequencing (ChIP-seq)
assays. The liver is an endodermal-derived tissue that is a key
metabolic component of the alimentary system (Villar et al.,
2015) and contains a variety of complex carbohydrates that can
inhibit various enzymatic reactions required in the ChIP-seq
protocol. The spleen is a mesodermal-derived parenchymatous
organ important for immune cell production and maturation
and contains many natural deoxyribonucleases (DNase) which
can present challenges to obtaining sufficient yield of high-
quality DNA (Young and Sinsheimer, 1965). The cerebellum
is an ectodermal-derived tissue representative of brain tissue
and contains a high lipid content which can affect the
efficiency of DNA extraction. With these three varied tissues, we
developed workflows for assessing chromatin-associated histone
modifications, CTCF-binding sites, and DNA methylation to
define regulatory elements.

The histone modifications characterized in this study include
the trimethylation of histone 3 lysine 4 (H3K4me3) which
denotes promoters and acetylation of histone 3 lysine 27
(H3K27ac) which denotes active enhancers (Barski et al., 2007;
Wang et al., 2008). The monomethylation of histone 3 lysine
4 (H3K4me1) was characterized to explore poised enhancers,
and the trimethylation of histone 3 lysine 27 (H3K27me3)
was utilized to define repressed enhancers which silences gene
expression in broad regions (Barski et al., 2007; Wang et al.,
2008; Pauler et al., 2009). The CCTC-binding factor protein
(CTCF) is a key component of the anchors at topologically
associated domain boundaries (Lee and Iyer, 2012; Ghirlando and
Felsenfeld, 2016). Determination of CTCF and multiple histone
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modifications, referred to as marks, allowed us to take advantage
of the combinatorial nature of chromatin structure and gene
expression regulation (Jenuwein and Allis, 2001; Wang et al.,
2008) to categorize the sheep genome into chromatin states.

DNA methylation data derived from whole-genome bisulfite
sequencing (WGBS) were incorporated to validate regulatory
regions and chromatin states. In mammals, several groups have
identified CpG islands that lack methylation are located at
gene promoters (Deaton and Bird, 2011). Repressed promoters
are marked by higher degrees of methylation associated with
transcriptionally silenced gene expression (Weber et al., 2007).
Histone methylation and DNA methylation are co-dependent
epigenetic marks as enzymatic formation of one will guide the
formation of the other and H3K4me3 may physically inhibit
methylation of DNA during development (Meissner et al., 2008).
Histone methylations and DNA methylation serve as templates
for rebuilding one another during mitosis and meiosis and
further reinforce segmentation of the genome into functional
regions of active or repressed chromatin in adult somatic cells
(Cedar and Bergman, 2009) justifying the utility of combined
analysis in sheep.

Our objective for this study was to identify the locations
of gene regulatory elements in sheep by characterizing histone
modifications, CTCF binding, and DNA methylation for the
cerebellum, liver, and spleen. Defining regulatory elements in the
sheep genome will provide the basis for a greater understanding
of the mechanisms that underpin phenotypic variation in
important health and production traits in sheep.

MATERIALS AND METHODS

Sample Collection
Tissue was collected postmortem from two pairs of healthy
half siblings (one ewe and one wether per pair) totaling
four yearling crossbred sheep (Columbia, Polypay, Rambouillet,
Suffolk, Targhee) as approved by the Washington State University
Institutional Animal Care and Use Committee. Small pieces of
liver, spleen, and cerebellum tissues were collected within 30 min
postmortem, briefly rinsed with ice cold 1 × PBS, and promptly
snap frozen in liquid nitrogen. Samples were transferred from
liquid nitrogen directly into a−80◦C freezer for storage.

Chromatin Immunoprecipitation
Chromatin immunoprecipitation (ChIP) was performed
using commercial antibodies for the histone modifications
H3K4me3 (Abcam, cat. # ab8580), H3K4me1 (Abcam, cat. #
ab8895), H3K27ac (Abcam, cat. # ab4729), H3K27me3 (Abcam,
cat. # ab6002), and CTCF (Millipore, cat. # 07-729) with
SimpleChIP Plus Enzymatic Chromatin IP Kit according to
the manufacturer’s instructions (Cell Signaling Technologies
cat. # 9005, Danvers, MA, United States) (Barski et al., 2007;
Johnson et al., 2007; Mikkelsen et al., 2007; Robertson et al.,
2007; Park, 2009). Briefly, tissue was cross-linked with 37%
formaldehyde and disaggregated with a Dounce homogenizer.
After cell membrane lysis, micrococcal nuclease (MNase) was
added and incubated at 37◦C and 200 rpm for 20 min to shear

the chromatin. Next, the nuclear membrane was lysed, and the
sheared chromatin isolated by centrifuging at 15,000×g for
1 min at 4◦C. Chromatin was incubated with 1 µg of antibody
overnight at 4◦C in a Hula mixer for 16 h. The following
morning, protein G-coated magnetic beads were added and
incubated 2 h at 4◦C in the Hula mixer. The sample was washed
twice with a low salt and once with a high salt buffer. Cross-links
were reversed by incubating the sample at 65◦C for 30 min at
400 rpm in a thermomixer. Purification was performed with the
DNA Purification Buffers and Spin Columns Kit following the
manufacturer’s instructions (Cell Signaling Technologies, cat. #
14209, Danvers, MA, United States).

Chromatin Immunoprecipitation With
Sequencing Library Preparation and
Sequencing
Purified DNA samples were quantified using the Qubit dsDNA
HS Assay Kit (Thermo Fisher Scientific, catalog number Q32854,
Waltham, MA, United States). The DNA size and integrity were
verified using a Fragment Analyzer (Agilent, Santa Clara, CA,
United States). Libraries were prepared with the TruSeq ChIP
Library Preparation Kit (Illumina, Inc., catalog number IP-202-
1012, San Diego, CA, United States) for 75 base pair paired-end
reads following the manufacturer’s instructions and sequenced
to at least 20 million mapped reads for “narrow” histone marks
H3K4me3, H3K27ac, and CTCF libraries and at least 40 million
mappable reads each for “broad” histone marks H3K4me1 and
H3K27me3 libraries.

Whole-Genome Bisulfite Sequencing
Library Preparation and Sequencing
Whole-genome bisulfite sequencing was performed as a service
by Novogene (Beijing, China) on the liver, spleen, and cerebellum
in all four animals. Briefly, DNA extracted from these tissues
was subjected to agarose gel electrophoresis to test for DNA
degradation and potential RNA contamination. The DNA
was then quantified using a Nanodrop spectrophotometer
(NanoDrop Technologies, Rockland, DE, United States) and
a Qubit2.0 fluorometer (Life Technologies, Carlsbad, CA,
United States). Lambda phage DNA was spiked in as a negative
control for DNA methylation. Since lambda phage DNA lacks
DNA methylation, all the cytosines in its DNA should be
converted to uracil during bisulfite conversion. Any unchanged
cytosine in the lambda phage DNA can thus be used to determine
the efficiency of bisulfite conversion. For library construction,
DNA samples were fragmented into 200–400 bp using sonication
(Covaris S220, Woburn, MA, United States). Next, end repair,
A-ligation, and methylation sequencing adapter ligation
was performed. The adapter sequences were 5′ adapter (5′-
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA
CACGACGCTCTTCCGATCT-3′) and 3′ adapter (5′-GATC
GGAAGAGCACACGTCTGAACTCCAGTCACATCACGATC
TCGTATGCCGTCTTCTGCTTG-3′). Following this, the DNA
library was subjected to bisulfite treatment (EZ DNA Methylation
Gold Kit, Zymo Research, Irvine, CA, United States). Library
concentration was first quantified by Qubit2.0, diluted to 1
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ng/µl before checking insert size on Agilent 2100 (Agilent
Technologies, Santa Clara, CA, United States), and quantified
with more accuracy by quantitative PCR (effective concentration
of library > 2 nM). Libraries were then pooled per sample and
sequenced paired-end.

Chromatin Immunoprecipitation With
Sequencing Data Quality Control,
Mapping, and Peak Calling
Quality control assessment of ChIP-seq reads was performed with
FastQC, and Trim Galore was used to trim adapter sequences
and low-quality bases. PCR duplicates were removed with Picard
and the remaining read pair sequences were then mapped to
the sheep reference genome Oar_rambouillet_v1.0 with Bowtie2
(Langmead and Salzberg, 2012; Broad Institute, 2019). Cross-
correlations were calculated using MACS2 predicted in Galaxy
Version 2.1.1.20160309.1 (Supplementary Figure 1) (Afgan
et al., 2018). Peaks for narrow histone marks H3K4me3 and
H3K27ac as well as transcription factor CTCF were called using
MACS2 with an input control and a false discovery rate of 0.05
(Zhang et al., 2008; Feng et al., 2012; Thomas et al., 2017). For
broad peak histone modifications H3K4me1 and H3K27me3,
SICER was implemented with the same input control and a false
discovery rate of 0.05 to better account for broader sequence
pileup distributions (Zang et al., 2009; Micsinai et al., 2012; Siska
and Kechris, 2017). The number of uniquely mapped sequences,
non-redundant fraction (NRF), and fraction of reads in peaks
(FRiP) for each ChIP-seq sample were calculated using Picard
(Heinz et al., 2010; Friedman and Alm, 2012; Landt et al., 2012;
Siska and Kechris, 2017; Afgan et al., 2018) (Supplementary
Table 1). Peak numbers were averaged across samples. Peaks
common to multiple samples were determined with BEDTools
intersect. The peaks common to three samples with the greatest
NRF were determined for H3K4me3 (F1, M1, and M2 for liver;
F2, M1, and M2 for spleen; and F1, M1, and M2 for cerebellum),
H3K27ac (F1, M1, and M2 for liver; F2, M1, and M2 for spleen;
and F1, M1, and M2 for cerebellum), H3K4me1 (F1, M1, and
M2 for liver; F2, M1, and M2 for spleen; and F1, M1, and M2
for cerebellum), H3K27me3 (F1, M1, and M2 for liver; F2, M1,
and M2 for spleen; and F2, M1, and M2 for cerebellum), and
CTCF (F2, M1, and M2 for liver; F2, M1, and M2 for spleen;
and F2, M1, and M2 for cerebellum). These consensus peaks were
compared with transcription start site locations identified with
CAGE assays from the ewe used to generate the reference genome
using the deepTools computeMatrix function, and heatmaps were
plotted with the plotHeatmap function (Ramírez et al., 2014;
Salavati et al., 2020). Furthermore, peaks were annotated with
the GTF file from the reference genome Oar_rambouillet_v1.0,
and peaks were categorized as near a transcription start site (TSS)
(+2 to−2 kb), exonic, intronic, near a transcription termination
site (TTS) (+1 to −1 kb), and intergenic using the Homer
annotatePeaks.pl function (Heinz et al., 2010). Furthermore,
normalized bigwig files depicting the sequence enrichment for
each library were directly visualized with integrative genomics
viewer (IGV) for some gene regions which are known to be active
and repressed in each tissue (Robinson et al., 2011). Spearman

correlations were calculated between sample BAM signal files
using deepTools in Galaxy Version 2.1.1.20160309.1 (Friedman
and Alm, 2012; Ramírez et al., 2014; Siska and Kechris, 2017;
Afgan et al., 2018).

DNA Methylation Data Quality Control,
Mapping, and Methylation Level
Characterization
The quality of raw sequences from WGBS was assessed
using FastQC v0.11.5. Adapters and low-quality bases (phred
score < 20) were trimmed using Trimgalore v0.4.5 with
default parameters. Cleaned data for each sample was aligned
to the sheep reference genome Oar_rambouillet_v1.0 using
Bowtie2 aligner within BSseeker2 v2.1.8 with default parameters
(Langmead and Salzberg, 2012; Guo et al., 2013). The
X-chromosome was removed from the analysis to make male
and female samples comparable. After mapping, BAM files
for the same individual sequenced on multiple lanes were
merged, fixmated, and sorted and PCR duplicates were removed
using Samtools v1.6 (Li et al., 2009). The methylation level
in each cytosine was determined using BSseeker2 with default
parameters. Basic statistics on methylation were determined
using the mstat function in CGmaptools v0.0.6 (Guo et al., 2018).
Regions of the genome hypomethylated and hypermethylated for
each sample were determined with methPipe v3.4.3 following the
manual with default parameters (Song et al., 2013).

Chromatin State and CTCF Motif
Analysis
Chromatin states were characterized by employing a hidden
Markov model in ChromHMM, which assessed signal overlap
between histone marks within a tissue and binned the genome
into a given number of chromatin states (Ernst and Kellis,
2010, 2012, 2017; Gorkin et al., 2017, 2020). The two male
samples (M1 and M2) exhibited the greatest NRF and Spearman
correlations and were therefore used in chromatin state analysis.
The LearnModel function in ChromHMM was implemented with
given chromatin states of two through 20 for each animal, and
the model with the optimal number of chromatin states was
examined using the CompareModels function in ChromHMM
(Gorkin et al., 2017, 2020). The optimal number of chromatin
states was determined as the model where the median Pearson
correlation for all states plotted against each chromatin state
model plateaued and were tightly correlated with the model with
the greatest number of states (Supplementary Figure 2) (Gorkin
et al., 2017, 2020). The consensus of chromatin states between
two animals (M1 and M2) was used to generate the heatmap
and for further comparative analyses. Location similarities and
differences between chromatin states, hypermethylated regions,
and hypomethylated regions were assessed with BEDTools
intersect within each tissue, and the consensus within each tissue
was used to examine chromatin state and DNA methylation
similarities and differences between liver, spleen, and cerebellum
tissues (Quinlan, 2014). An Upset R plot was generated to display
chromatin state similarities and differences between tissues
(Lex et al., 2014; Conway et al., 2017). Significantly enriched
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known and de novo CTCF motifs were identified and compared
with other species by implementing the findMotifs.pl script
in HOMER (Heinz et al., 2010). The proximity of annotated
TSS generated from CAGE data to promoter chromatin states
was examined with deepTools computeMatrix and plotHeatmap
functions (Supplementary Figure 7) (Ramírez et al., 2014;
Salavati et al., 2020).

RESULTS

Genetic regulatory elements were characterized across the sheep
genome in the liver, spleen, and cerebellum using CTCF
binding and ChIP-seq of four histone marks, as well as DNA
methylation status. Locating regulatory elements within and
between tissues will provide the basis for identifying variation
in these elements that may influence various phenotypic traits
in sheep. Furthermore, these results represent a resource for
estimating interindividual variation in the regulatory states of
tissues to provide context for the FAANG project that aims to
characterize these states in a broad array of tissues in a single
individual from which the reference genome was produced.

Mapping Summary and Statistics
Mapping statistics were calculated to assess the assay quality,
library preparation, and sequence coverage for each sample.
Across animals, ChIP-seq reads had a consistent average mapping
rate of 78.23, 78.39, and 76.82% to the Oar_rambouillet_v1.0
genome for the liver, spleen, and cerebellum, respectively.
The number of uniquely mapped paired-end reads averaged
40,757,252 for H3K4me3, 42,306,275 for H3K27ac, 53,171,657
for H3K4me1, 55,901,184 for H3K27me3, and 45,491,017 for
CTCF across all three tissues. The number of uniquely mapped
reads, NRF, and FRiP for each sample are displayed in
Supplementary Table 1.

Whole-genome bisulfite sequencing of cerebellum, liver, and
spleen samples from the four sheep generated a total of 986,
1,070, and 904 million paired end reads, respectively, with a read
length of 2 × 150 bp. The number of reads uniquely mapped
to the reference genome was 84.24, 78.86, and 82.48% for the
cerebellum, liver and spleen, respectively. The uniquely mapped
bases covered the reference genome (Oar_rambouillet_v1.0;
genome size ∼2.87 Gb) at an average depth of 21 × (range 18×
to 26×). Bisulfite conversion rate was∼99.9% for all the samples.
Mapping statistics for each tissue sample per sheep are displayed
in Supplementary Table 2.

Chromatin Immunoprecipitation With
Sequencing Peak Calling
The locations of sequence signal enrichment were identified
for all four histone marks and CTCF for each liver, spleen,
and cerebellum sample by mapping the reads to the reference
genome Oar_rambouillet_v1.0. The number of peaks normalized
by chromosome length (in Mb; Figure 1) and the width of
the peaks along the assembly were calculated from the mapped
read depth. For each mark, the percent of the total number of
peaks observed in the genome that lie on each chromosome is

plotted in Figure 1 which shows an overall even distribution
across chromosomes with some exceptions. The lowest number
of peaks was called in narrow mark H3K4me3 (means of 10,458
in the liver, 13,389 in the spleen, and 16,911 in the cerebellum),
with the lowest number of peaks per Mb on chromosomes 23
(2.77 peaks/Mb), 26 (2.64 peaks/Mb), and 16 (2.47 peaks/Mb)
in the liver, spleen, and cerebellum, respectively. The greatest
number of H3K4me3 peaks per Mb for the liver, spleen, and
cerebellum was on chromosomes 14 (6.16 peaks/Mb), 20 (5.17
peaks/Mb), and 11 (4.61 peaks/Mb), respectively. The average
widths of H3K4me3 peaks were 168, 178, and 313 bp for the liver,
spleen, and cerebellum. The mean number of peaks called for
the H3K27ac mark was 30,553 in the liver, 35,327 in the spleen,
and 35,877 in the cerebellum with the lowest number of peaks
called on chromosomes 10 (2.54 peaks/Mb), 26 (2.25 peaks/Mb),
and 6 (2.72 peaks/Mb) for the respective tissues. The greatest
number of H3K27ac peaks was called on chromosome 11 for all
three tissues, and peak widths averaged 239, 240, and 238 bp in
the liver, spleen, and cerebellum for this narrow mark. The final
narrow mark, CTCF, averaged 26,517 peaks in the liver, 28,362
in the spleen, and 26,244 in the cerebellum. The lowest number
of CTCF peaks were called on chromosome 24 (1.56 peaks/Mb
for the liver, 1.49 peaks/Mb for the spleen, and 2.05 peaks/Mb in
the cerebellum), and the greatest number of peaks were called on
chromosome 6 (5.50 peaks/Mb in the liver, 5.73 peaks/Mb in the
spleen, and 5.07 peaks/Mb in the cerebellum) for all three tissues.
The width of CTCF peaks was similar to other narrow marks,
with averages of 114 bp in the liver, 265 bp in the spleen, and
144 bp in the cerebellum.

The greatest number of peaks was called in broad mark
H3K4me1 (means of 47,828 in the liver, 33,931 in the spleen,
and 51,766 in the cerebellum), which is consistent with several
tissues in cattle (Fang et al., 2019). Chromosomes with the
lowest number of H3K4me1 peaks per Mb included 21 (2.34
peaks/Mb) for the liver, 26 (2.90 peaks/Mb) for the spleen, and
20 (3.12 peaks/Mb) for the cerebellum, and the greatest number
of peaks per Mb was on chromosome 7 (4.99 peaks/Mb for the
liver, 7.79 peaks/Mb for the spleen, and 4.98 peaks/Mb in the
cerebellum) for all three tissues. The average width of broad peak
H3K4me1 was greater than for the narrow peaks described above,
as expected, at 948 bp for the liver, 2,963 bp for the spleen, and
1,909 bp for the cerebellum. Lastly, the broad mark H3K27me3
had a lower average number of peaks called compared with
H3K4me1 (mean of 39,162 in the liver, 29,939 in the spleen,
and 26,244 in the cerebellum). The lowest number of H3K27me3
peaks per Mb of chromosome length were on chromosomes 26
(3.04 peaks/Mb), 24 (2.58 peaks/Mb), and 11 (1.84 peaks/Mb)
for the liver, spleen, and cerebellum, respectively. The greatest
number of peaks was on chromosome 13 (4.86 peaks/Mb) for
the liver and chromosome 6 for both the spleen (4.39 peaks/Mb)
and cerebellum (4.94 peaks/Mb). The average width of broad
H3K27me3 peaks was 440 bp in the liver, 2,143 bp in the spleen,
and 653 bp in the cerebellum. Peaks in common across the
animals were calculated for all five ChIP-seq experiments and
displayed for the liver, spleen, and cerebellum (Supplementary
Figure 2). Interestingly, half siblings (F1 and M1, F2 and M2)
displayed a greater number of peaks in common with each other.
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FIGURE 1 | The percent of the total number of peaks normalized per Mb on each chromosome for (A) H3K4me3, (B) H3K27ac, (C) H3K4me1, (D) H3K27me3, and
(E) CTCF averaged from all four animals (F1, F2, M1, and M2).

The proximity of H3K4me3 peaks to TSS was investigated by
comparing consensus H3K4me3 peaks and CAGE data generated
by Salavati et al. (2020). Not surprisingly, H3K4me3 peaks
were detected on both sides of the TSS in the liver, spleen,

and cerebellum tissues. The signal distributions and heatmaps
from 2 kb upstream and downstream of the TSS locations are
displayed in Figure 2. In addition, the consensus peaks for
H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF were
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FIGURE 2 | Signal of H3K4me3 ChIP-seq peaks 2 kb upstream and downstream of transcription start sites (TSS) identified by CAGE assays. (A) Liver H3K4me3
signal (from F1, M1, and M2 consensus peaks) near TSS annotated in the reference genome, (B) spleen H3K4me3 signal (from F2, M1, and M2 consensus peaks)
near annotated transcription start sites (TSS), and (C) cerebellum H3K4me3 signal (from F1, M1, and M2 consensus peaks) near annotated TSS.

annotated with the Oar_rambouillet_v1.0 genome annotation
file and these classifications are displayed in Supplementary
Figures 3–5. The histone modification H3K4me3 had the greatest
proportion of peaks annotated as near a TSS when compared
with other histone modifications in all three tissues. H3K27ac and
H3K4me1 histone modifications displayed intronic annotation
most commonly, and H3K27me3 and CTCF displayed mostly
intergenic peak annotation.

Visual Assessment of Sequence Pileup
The peak predictions were directly examined in the IGV
(Robinson et al., 2011) for regions known to be active or repressed
in the three tissues, to provide an evaluation of the success
of the process in properly classifying chromatin states. One
example of an expected active region for each liver, spleen, and
cerebellum tissue as well as one region expected to be repressed
in all tissues is displayed in Figure 3. Albumin (ALB), a gene

that encodes a plasma protein synthesized in hepatocytes and
expected to be active in the liver, has one promoter and two
enhancers annotated in humans that are within 2 kb upstream
from the start of the gene (Frain et al., 1990; Hayashi et al.,
1992; Bernardi et al., 2012; Fagerberg et al., 2014). Sequence
pileup for active histone marks in the liver was observed in all
four sheep that overlap with approximate locations of regulatory
elements of ALB in humans, and there were low levels of DNA
methylation in these regions (Figure 3A). The region upstream
of Solute carrier family 11 member 1 (SLC11A1), a gene expected
to be active in the spleen and encodes a membrane protein
involved with macrophage development, displayed sequence
pileup for active marks H3K4me3 and H3K27ac and low levels
of DNA methylation directly upstream (Figure 3B) (Hedges
et al., 2013). Paired box 6 (PAX6) is known to be involved in
the development of neural tissues and maturation of granule
neurons in the cerebellum and is known to have a promoter
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FIGURE 3 | Integrative genomics viewer (IGV) screenshot of sequence pileup normalized with the input control for active and repressive histone marks and DNA
methylation in two representative samples (M1 and M2) for (A) positive control Albumin (ALB) gene in the liver, (B) positive control Solute carrier family 11 member 1
(SLC11A1) in the spleen, (C) positive control Paired box 6 (PAX6) in the cerebellum, and (D) negative control REC8 gene (REC8) in all three tissues.
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and multiple enhancers both upstream and downstream of the
gene (Ha et al., 2015; Divya et al., 2016). Furthermore, PAX6
has greater expression in the cerebellum than other tissues in
sheep which is supported by the sequence pileup of active histone
marks H3K4me3 and H3K27ac, with some activity of H3K4me1
and little DNA methylation (Figure 3C) (Jiang et al., 2014).
In contrast, the REC8 meiotic recombination protein (REC8)
is a gene that encodes a meiosis-specific protein involved in
the synapsis of sister chromatids that is not expected to be
active in the liver, spleen, or cerebellum (Xu et al., 2005).
This gene location shows no sequence pileup in all four sheep
in the liver, spleen, or cerebellum and several methylated
regions (Figure 3D).

Variability in Histone Marks Between
Animals
Correlations were calculated for histone marks and for DNA
methylation between samples to evaluate interanimal variation
in sequence pileup signal for the liver, spleen, and cerebellum
(Friedman and Alm, 2012; Siska and Kechris, 2017). Correlations
of ChIP-seq data (Spearman) and DNA methylation data
(Pearson) averages for all four animals and males only (in
parentheses) are provided in Table 1. The narrow mark
H3K4me3 was moderately correlated between all four animals
in the liver (0.66) and spleen (0.54) and highly correlated in the
cerebellum (0.85). In males, H3K4me3 was highly correlated in
the liver (0.86), spleen (0.71), and cerebellum (0.88). The narrow
mark H3K27ac was highly correlated between samples across all
three tissues in the liver (0.89 overall and 0.95 in males), spleen
(0.78 overall and 0.84 in males), and cerebellum (0.70 overall
and 0.91 in males).

The broad mark H3K4me1 also showed high correlation in
two tissues, namely the liver (0.71 overall and 0.93 in males) and
cerebellum (0.82 overall and 0.91 in males), but the correlation
in the spleen was markedly lower (0.47 overall and 0.56 in
males), and overall, the correlations between the spleen samples
were lower than the liver and cerebellum for all four histone
marks. This is evident in H3K27me3 in the spleen (0.37 overall
and 0.44 in males) than in the liver (0.58 overall and 0.74 in
males) and cerebellum (0.72 overall and 0.83 in males). The
correlations of DNA methylation signal between samples ranged
from 0.70 to 0.76, with the liver and cerebellum displaying the
greatest correlation between the two males (0.76). However, sex
differences in correlations were not observed, as each female
has a moderate to high correlation with both the other female
(0.54–0.84) and both males (0.44–0.92) for each mark within
all three tissues.

Principal Component Analysis of DNA
Methylation
A principal component analysis was performed with the DNA
methylation data to investigate similarity and differences between
samples and tissues. Eigenvalues were calculated based on the
position of CG methylation signal in all animals for all three
tissues, and the first two eigenvalues (PC1 and PC2) were plotted
(Figure 4). Samples cluster distinctly by tissue type rather than
by sex or individual animal. The greatest spread of points within
a tissue was observed in the liver. The first eigenvalue (PC1,
27.56%) shows separation of the liver, spleen, and cerebellum.
The second eigenvalue (PC2, 12.16%) shows another dimension
of separation of the cerebellum and liver from the spleen.

Methylation Level at CG and Non-CG
Sites
Average methylation levels were calculated and compared in
each of the three tissues in both the CG and non-CG sites
(Figure 5A). Non-CG sites are defined as CHG and CHH where
H is either A/T/C. CG sites have an average methylation level
ranging between 70 and 81% across different tissues. Specifically,
cerebellum samples have an average methylation level of 81.4%,
whereas liver and spleen samples have an average methylation
level of 70.3 and 76.9%, respectively. The average methylation
level of cytosines at non-CG contexts (CHG and CHH) is nine-
fold higher in the cerebellum (1.7–2.1%) than in spleen and liver
samples (0.2%) (Figure 5B).

Chromatin State Assignment and
Correlation With Methylation Status
The relative positions of the combination of specific histone
marks provide a more complete definition of the overall
regulatory chromatin state than individual peak calling.
Regulatory elements were defined for two animals (M1 and M2)
using a hidden Markov model employed by ChromHMM which
assigns 200 bp bins across the genome to a given number of
chromatin states based on the combined histone modification
signal profiles (Ernst and Kellis, 2010, 2017). The genome
was categorized into two through 20 chromatin states using
ChromHMM. The optimal number of states was determined to
be nine, as it was the lowest number of states that had greater
than 0.95 correlation of all samples to 20 states, which captures
the complexity of the data with fewer states (see Supplementary
Figure 2) (Gorkin et al., 2017, 2020). These nine chromatin states
are categorized as follows: promoter, active enhancer, poised
enhancer, repressed enhancer, CTCF, and three or four states of

TABLE 1 | Average correlations of sequencing signal between all four animals.

Tissue H3K4me3 H3K27ac H3K4me1 H3K27me3 DNA methylation

Liver 0.66 (0.86) 0.89 (0.95) 0.71 (0.93) 0.58 (0.74) 0.72 (0.76)

Spleen 0.54 (0.71) 0.78 (0.84) 0.47 (0.56) 0.37 (0.44) 0.70 (0.74)

Cerebellum 0.85 (0.88) 0.70 (0.91) 0.82 (0.91) 0.72 (0.83) 0.73 (0.76)

Spearman correlations were used for ChIP-seq data and Pearson correlations were used for DNA methylation data. Parentheses indicate correlations between the
replicates used in the ChromHMM chromatin state analysis.

Frontiers in Genetics | www.frontiersin.org 9 May 2021 | Volume 12 | Article 628849

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-628849 May 18, 2021 Time: 13:59 # 10

Davenport et al. Epigenetic Annotation of Sheep Tissues

FIGURE 4 | Principal component analysis plot based on CG methylation. Four animals are labeled as F1, F2, M1, and M2. The cerebellum, liver, and spleen samples
are labeled as C, L, and S, respectively.

FIGURE 5 | (A) Methylation level at CG compared with non-CG sites in the liver, spleen, and cerebellum and (B) methylation level at non-CG (CHG and CHH) sites in
each tissue enlarged.

quiescent/low signal. The consensus of chromatin states assigned
to both M1 and M2 was used for further analyses.

The signal of all the histone marks and the nine chromatin
states for each tissue is displayed as heatmaps in Figure 6.
Regions with primarily H3K4me3 signal often overlapping
with H3K27ac are considered promoters, regions with strong
H3K27ac signal are considered active enhancers, regions with
H3K4me1 often paired with weak H3K27me3 signal are
considered poised enhancers, and regions with strong H3K27me3

signal are considered repressed enhancers (Wang et al., 2008;
Creyghton et al., 2010; Core et al., 2014; Carelli et al.,
2018). All four of these categories of regulatory elements were
observed and displayed in the heatmaps, with the addition
of a weak poised enhancer state in the spleen and weak
repressed enhancer state in the cerebellum which both displayed
lower but still distinguishable signal. In addition, regions
with CTCF signal which overlap with other marks including
H3K4me1 and H3K27me3 were observed in the liver and
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FIGURE 6 | Chromatin state description and ChromHMM heatmap with histone mark signal overlap consensus from M1 and M2 compared with the number of
hypermethylated regions and hypomethylated region consensus per Mb for M1 and M2 for the (A) liver, (B) spleen, and (C) cerebellum.
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cerebellum. Lastly, quiescent/low states had very little signal in
any of the five marks.

The correlation of DNA methylation status with predicted
chromatin state was examined by estimating the number
of hyper- and hypomethylated regions per Mb within the
boundaries of the regulatory elements in the nine defined
chromatin states. The greatest number of hypomethylated
regions was observed in active enhancer regions in the liver
and spleen and in active promoter regions in the cerebellum,
as expected if our process was correctly identifying regulatory
elements and classifying them as actively transcribed genes. The
greatest number of hypermethylated regions was observed in
poised enhancers and CTCF in the liver, weak poised and poised
enhancer regions in the spleen, and poised enhancer regions
in the cerebellum, also consistent with the process correctly
classifying regulatory elements.

Distribution of Chromatin States in the
Genome and Proximity to TSS
The chromosomal segments spanned by regulatory elements,
as defined by the histone mark peaks, were combined and
summarized to estimate the overall extent and percent of the
genome representing regulatory elements and their chromatin
state among the three tissues examined. Chromatin states from
the ChromHMM analyses were categorized and combined into
promoter, active enhancer, poised enhancer including weak

poised enhancers, repressed enhancer including weak repressed
enhancers, and quiescent or low signal categories and averaged
for each tissue (Figure 7). Promoters comprise 2.95% of the
genome in the liver, 3.35% in the spleen, and 1.85% in the
cerebellum, and active enhancers occupy 5.04% of the genome
in the liver, 4.30% in the spleen, and 3.74% in the cerebellum. In
addition, 4.38% of the genome in the liver, 4.63% in the spleen,
and 2.68% in the cerebellum are categorized as poised enhancers,
while 7.78% of the genome in the liver, 4.96% in the spleen, and
9.89% in the cerebellum are considered repressed enhancers. The
percent of the genome that had primarily CTCF signal was 2.92%
in the liver, 3.19% in the spleen, and 2.94% in the cerebellum.
Cumulatively, states considered as enriched with histone mark
and CTCF signal intensity by ChromHMM, which includes the
promoter, enhancer, and CTCF functional elements, comprise
approximately 23.08% of the genome in the liver, 20.44% in
the spleen, and 21.10% in the cerebellum. Not surprisingly, the
largest percent of the genome, 76.91% in the liver, 79.56% in
the spleen, and 78.90% in the cerebellum, was categorized as
quiescent or low signal.

The locations of assigned promoter chromatin states were
compared with TSS generated from CAGE data for the liver,
spleen, and cerebellum. Both the signal distribution and heatmap
plots display a strong signal before and after the TSS in all
three tissues (Supplementary Figure 7). This signal is similar
to the distribution of the H3K4me3 peak signal before and after

FIGURE 7 | Percent of the genome in the liver, spleen, and cerebellum (from M1 and M2) assigned to each category of quiescent/low (gray), CTCF (black), repressed
enhancer (blue), poised enhancer (green), active enhancer (gold), and promoter (red) depicted visually in panel (A) the bar graph and numerically in panel (B) the
table.
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TSS, which is not surprising as the ChromHMM model assigns
promoter states based on the presence of H3K4me3 signal. It
is worth noting that the CAGE data used in this study were
generated from the reference genome animal, a Rambouillet,
which is different from the crossbred animals used in this study
and may explain some of the signal noise.

Similarities and Differences of Chromatin
States Between Tissues
Similarities and differences of promoters, enhancers, and
methylated regions within and between tissues were examined
and percentages of overlap are displayed in Figure 8. Active
promoters were 64.76% similar between the liver and spleen,
25.39% between the liver and cerebellum, and 35.69% between
the spleen and cerebellum. The liver had 81.09 and 51.10% of
active enhancers in common with the spleen and cerebellum,
respectively. The spleen and cerebellum had 53.85% similarity
of active enhancers. Poised enhancers were shared 51.90%
between the liver and spleen, 52.72% between the liver and
cerebellum, and 38.27% between the spleen and cerebellum.
The percent of repressed enhancers that overlapped between the
liver and spleen was 56.05%. The liver and cerebellum repressed
enhancers overlapped 67.90%, and the spleen and cerebellum
repressed enhancers overlapped 41.66%. Hypermethylated
genomic locations overlapped 4.42% and hypomethylated
regions overlapped 56.05% between the liver and spleen. The
liver and cerebellum displayed more similar hypermethylated
and hypomethylated regions, 75.42 and 72.89%, respectively,
than the spleen and cerebellum, 19.44 and 32.51%, respectively.

CTCF-Binding Motifs
The insulator CTCF is often present at the boundaries of
topologically associated domains (TADs), compartments of
chromatin interactions, across the genome (Beagan and Phillips-
Cremins, 2020). The location of significant (P < 0.00001)
CTCF-binding motifs both known from previous research and
de novo was identified across the genome in the liver, spleen,
and cerebellum (Heinz et al., 2010). Of these, 13 were present
in at least three animals (Table 2). Three motifs, MYB3R4,
MYB3R1, and Pdx1, were significantly enriched in the liver,
spleen, and cerebellum tissues. The liver and spleen exhibited
the most significantly enriched CTCF motifs in common (TAGL,
Six2, RRTF1, Sox6, SVP, and TGA2). One motif, ZBTB19, was
enriched in the spleen and cerebellum. The cerebellum had
three enriched motifs (Elk4, Pho2, and BZR1) not present in
the liver or spleen. In addition, de novo motifs were identified
in all three tissues. The top three most significant de novo
motifs per sample in the liver, spleen, and cerebellum are
reported in Tables 3–5, respectively. Of the total number of
de novo motifs, 16, 13, and 21 were identified as unique to
the liver, spleen, and cerebellum, respectively. Sixteen de novo
motifs were identified in both the liver and spleen, while the
cerebellum had only three de novo motifs in common with
the other tissues.

DISCUSSION

The goal of this study was to characterize regulatory elements
in ovine liver, spleen, and cerebellum using ChIP-seq and
WGBS. The three selected tissues, the liver, spleen, and

FIGURE 8 | Percent of overlapping promoter (red), active enhancer (gray), poised enhancer (green), and repressed enhancer (blue) chromatin state categories and
hypermethylated (purple) and hypomethylated (orange) regions between the liver, spleen, and cerebellum tissues of the consensus categories from M1 and M2. The
total number of chromatin states for each tissue is displayed in black horizontal bars.
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TABLE 2 | Known CTCF motifs present in the top 10 most significant motifs across multiple samples.

Known motif name Known motif Tissue Number of
samples

Mean P value Mean percent of target
sequences with motif

Mean percent of background
sequences with motif

MYB3R4 (MYB) Liver, spleen, and
cerebellum

7 1E-2612 13.54% 1.27%

TAGL1 (MADS) Liver and spleen 6 1E-2167 44.33% 18.98%

MYB3R1 (MYB) Liver, spleen, and
cerebellum

6 1E-1632 12.85% 2.42%

Pdx1 (homeobox) Liver, spleen, and
cerebellum

6 1E-1475 37.21% 17.82%

Six2 (homeobox) Liver and spleen 5 1E-1486 30.93% 13.64%

RRTF1 (APTEREBP) Liver and spleen 4 1E-1655 7.16% 0.55%

Sox6 (HMG) Liver and spleen 4 1E-931 40.23% 23.32%

ZBTB19 (Zf) Spleen and
cerebellum

4 1E-418 8.27% 3.07%

SVP (MADS) Liver and spleen 3 1E-1897 28.39% 9.82%

TGA2 (bZIP) Liver and spleen 3 1E-1792 16.14% 3.27%

Elk4 (ETS) Cerebellum 3 1E-61 3.69% 2.07%

Pho2 (bHLH) Cerebellum 3 1E-32 1.72% 0.92%

BZR1 (BZR) Cerebellum 3 1E-29 0.68% 0.25%

TABLE 3 | Top three de novo CTCF motifs present in each sample in the liver.

Animal De novo motif P value Percent of
target

sequences
with motif

Percent of
background
sequences
with motif

F1 1E-3278 31.57% 3.37%

1E-3012 23.91% 1.74%

1E-2873 23.31% 1.76%

F2 1E-1388 7.03% 0.62%

1E-1349 6.55% 0.54%

1E-1345 6.11% 0.45%

M1 1E-8604 21.40% 0.41%

1E-7739 26.14% 1.17%

1E-7299 21.19% 0.63%

M2 1E-10234 44.68% 4.07%

1E-8614 34.87% 2.59%

1E-8422 42.53% 4.89%

cerebellum, each represent a different developmental origin and
are important to metabolism, immune response, and motor
control, respectively. We have demonstrated the successful
application of the micrococcal nuclease ChIP protocol across
these tissues and the bioinformatic pipeline for the analysis of
ChIP-seq in sheep. Furthermore, this study has incorporated the
value of coupled histone modification and DNA methylation
data toward a better understanding of regulatory regions in
the sheep genome.

TABLE 4 | Top three de novo CTCF motifs present in each sample in the spleen.

Animal De novo motif P value Percent of
target

sequences
with motif

Percent of
background
sequences
with motif

F2 1E-12441 29.41% 0.72%

1E-12221 38.23% 2.03%

1E-12174 38.03% 2.01%

M1 1E-7022 24.88% 1.16%

1E-6916 30.15% 2.24%

1E-6704 25.65% 1.42%

M2 1E-5921 24.42% 0.88%

1E-5710 24.12% 0.93%

1E-5440 20.87% 0.61%

Micrococcal nuclease was used to shear the chromatin because
it provided a consistent and reproducible shearing across samples
and tissue types. A limitation of the micrococcal nuclease may be
increased likelihood of the appearance of duplicated reads due to
similarity of cut sites in the chromatin; however, several studies
have not found substantial bias when duplicates were removed
(Allan et al., 2012; David et al., 2017; Gutiérrez et al., 2017; Chereji
et al., 2019). Furthermore, shearing with micrococcal nuclease to
approximately 1–2 nucleosome lengths may contribute to slightly
different characteristics, including width, of peaks called from
these experiments.

Sequence read pileups were examined in IGV near genes
known to be active and inactive in humans and expected
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TABLE 5 | Top three de novo CTCF motifs present in each sample
in the cerebellum.

Animal De novo motif P value Percent of
target

sequences
with motif

Percent of
background
sequences
with motif

F1 1E-910 2.92% 0.01%

1E-756 2.50% 0.01%

1E-735 2.44% 0.01%

F2 1E-1078 3.49% 0.04%

1E-875 1.85% 0.00%

1E-842 2.01% 0.01%

M1 1E-946 1.42% 0.00%

1E-800 1.24% 0.01%

1E-697 1.25% 0.01%

M2 1E-677 1.02% 0.00%

1E-565 0.88% 0.01%

1E-509 0.80% 0.01%

to be conserved across species. This provided a means of
examining genes with known promoters and expression patterns
as positive and negative controls for both ChIP-seq experiments
and WGBS and provided insight into the potential similarity
of regulatory elements across species. Several genes known
to be active across different mammalian species in the liver,
spleen, and cerebellum showed a sequence pileup of active
histone marks which likely indicated the presence of active
regulatory elements. Inversely, genes known to be active during
meiotic processes and quiescent during adult stages in several
mammalian species showed no sequence pileup of histone
marks and presence of DNA methylation, which likely indicates
inactivity of regulatory elements.

Consistency of regulatory element identification by ChIP-
seq and DNA methylation for each tissue between the four
individual animals was evaluated by calculating Spearman
and Pearson correlations, respectively. Correlations between
samples for both ChIP-seq and DNA methylation were
within the ranges previously reported with sequence data
(Peng et al., 2010; Siska and Kechris, 2017). Furthermore,
correlations between ChIP-seq biological replicates have
been reported as low as 0.3–0.4, with technical replicates
reported as high as 0.9 (Friedman and Alm, 2012; Siska
and Kechris, 2017). The results for these sheep tissues
therefore achieve equivalent or improved results compared
with previously reported pipelines for regulatory element
identification and characterization and demonstrate a tissue-
specific moderate variation across biological replicates. The
spleen displayed the highest variation between biological
replicates, with correlations between 0.44 and 0.84 among
histone marks, although DNA methylation was consistent
across replicates including the spleen. Given that splenic

tissue is an acutely responsive immunological tissue, perhaps
it is not surprising that we observed greater variation in the
biological replicates.

The CG methylation signal for all four samples clustered
distinctly by tissue in a principal component analysis, indicating
clear differences in DNA methylation between tissues (Figure 3).
This finding is supported by others that have shown that
the greatest differences in methylation occur between tissue
types rather than between individuals (Pai et al., 2011;
Zhang et al., 2013) and consistent with the requirement for a
particular set of genes to be active and therefore demethylated
depending on tissue function. Cerebellum samples demonstrated
a higher level of both CG and non-CG methylation compared to
the liver and spleen. Brain tissues are known to differ from other
tissues in methylation patterns in other species, and furthermore,
the cerebellum has been shown to be different than other brain
tissues (Gibbs et al., 2010; Cantrell et al., 2019).

The enrichment of individual histone marks was examined
by identifying peaks in each sample. The number of peaks
identified in these sheep liver, spleen, and cerebellum samples
was consistent with other studies in sheep adipose, cattle liver,
cattle muscle, cattle rumen epithelium, human liver, and mouse
liver (Supplementary Table 3) (Villar et al., 2015; Zhao et al.,
2015; Naval-Sanchez et al., 2018; Fang et al., 2019). Many
chromosomes had differences in peak numbers normalized
by chromosome length between tissues, indicating potential
tissue specificity of some peaks. Narrow marks H3K3me3,
H3K27ac, and CTCF had a shorter average width than broad
marks H3K4me1 and H3K27me3, which may be influenced
by the program and statistical model used to call peaks as
well as by the shearing method (Zhang et al., 2008, 2009).
Because micrococcal nuclease was used for shearing, the length
of the narrow peaks more closely resembles the size of a
single nucleosome.

Trimethylation of histone 3 lysine 4 peaks were enriched
annotated TSS in all three tissues. The peaks and heatmap
signature signals are similar to several other ChIP-seq
experiments in human PBMCs and CD14+ cells, as well
as mouse liver (Schones et al., 2008; Quinodoz et al., 2014;
Uchiyama et al., 2018). Peaks from all histone modifications
and CTCF were also annotated with regions defined in
the Oar_rambouillet_v1.0 genome. In the liver, spleen, and
cerebellum, the most TSS were identified near (within 2 kb
of distance on either side) to H3K4me3 peaks, which is not
surprising. Many H3K27ac and H3K4me1 peaks, which indicate
the presence of active or poised enhancers, were located in
intronic regions. Repressed enhancers marked by H3K27me3
were located mostly in intergenic regions, along with CTCF,
which may be indicative of insulated TAD boundaries not in
close proximity of genes. Further work with additional animals
in combination with RNA expression and TSS analyses is needed
to examine regulatory element activity outside of previously
annotated regions of the sheep genome.

The genomic segments identified by histone mark peaks
were evaluated for overlap between marks and CTCF binding.
This broader view of the regulatory landscape lends a better
understanding of gene regulation at each location than individual
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marks (Park, 2018). Active promoters have been shown to exhibit
greater enrichment of H3K4me3 than other histone marks in
addition to the often present H3K27ac (Wang et al., 2008;
Creyghton et al., 2010; Carelli et al., 2018). However, if lysine
4 is monomethylated (H3K4me1), this indicates the presence
of a poised enhancer, in which enrichment of lysine 27 can be
acetylated or trimethylated depending on the state and activity
of the enhancer (Heintzman et al., 2007; Wang et al., 2008;
Creyghton et al., 2010; Carelli et al., 2018). Low H3K4me3
coincident with high H3K27ac signal has been reported to
be common at enhancers near genes undergoing highly active
transcription (Core et al., 2014; Carelli et al., 2018). Repressed
enhancers are generally characterized by H3K27me3 signal
(Carelli et al., 2018). However, H3K27me3 has also been shown
to be enriched near the promoter or gene body in genes being
expressed at a relatively low rate (Young et al., 2011; Flensburg
et al., 2014). The chromatin states characterized in this study
are similar to what others have previously described in cattle
(Fang et al., 2019). Furthermore, the weak poised enhancer
category detected in the spleen and the weak repressed enhancer
category detected in the cerebellum demonstrate that different
tissues may have varying chromatin states, which supports the
importance of characterizing chromatin states across tissues
within a species.

Hypermethylated and hypomethylated regions of the sheep
genome were defined across liver, spleen, and cerebellum tissues.
The number of hypermethylated and hypomethylated regions
per Mb in each of the nine chromatin states was quantified.
The data presented in this study demonstrate an enrichment
of hypermethylated regions in chromatin states with prominent
H3K4me1 (primarily poised enhancers) and hypomethylated
regions in active enhancers and promoters enriched with
H3K27ac and H3K4me3. These results agree with previous
research in humans and mice which indicate that active enhancer
activity is inversely correlated with DNA methylation (Aran
and Hellman, 2013; Barwick et al., 2016; Bell and Vertino,
2017). Interestingly, the presence of H3K4me1 was found to
be positively correlated with DNA methylation, specifically
intermediate methylation (25–75%), in mice (Zhang et al., 2009;
Teng and Tan, 2012; Sharifi-Zarchi et al., 2017). Furthermore,
enhancers enriched with H3K27ac and promoters enriched with
H3K4me3 had less DNA methylation than other regions (Sharifi-
Zarchi et al., 2017).

Approximately 20% of the sheep genome was assigned
to a chromatin state category including promoters; active,
poised, and repressed enhancers; and CTCF in the liver, spleen,
and cerebellum. In cattle, a previous study similarly assigned
approximately 30% of the genome to either a chromatin state
or areas with open chromatin in rumen epithelium (Fang et al.,
2019). The locations of many regulatory elements were similar
between the liver and spleen in this study; however, a greater
difference was observed in active enhancers and promoters
between the cerebellum compared with the liver and spleen. Since
distinct differences in gene expression and regulation have been
observed between the cerebellum and other tissues in sheep, this
difference is not surprising (Jiang et al., 2014).

The CCCTC-binding factor (CTCF) along with cohesins was
shown to be present at the boundaries of TADs in humans and
mice (Dixon et al., 2012; Phillips-Cremins et al., 2013; Rao et al.,
2014; Vietri Rudan et al., 2015; Szabo et al., 2019). Depending
on the cell type, 75–95% of TAD boundaries defined by Hi-
C chromatin capture have shown CTCF signal in mice (Bonev
et al., 2017; Szabo et al., 2019). The chromatin states in this study
that display primarily CTCF could be representative of these
domain boundaries; however, Hi-C data are required to confirm
which will be possible for the data produced in the FAANG
study of the reference ewe, where Hi-C data are also available. In
addition to helping define TAD boundaries, CTCF has also been
identified near enhancers and promoters within TADs in humans
and mice, which then form smaller loop domains with cohesins
and the protein YY1 (Phillips-Cremins et al., 2013; Weintraub
et al., 2017; Szabo et al., 2019). The chromatin state analysis
may be detecting some of these within-TAD loop interactions,
with overlap between CTCF and H3K27me3 as well as H3K4me1
signal shown in the chromatin state heatmaps in the liver and
cerebellum. Signal from CTCF, H3K27me3, and H3K4me1 marks
within one chromatin state was also observed in another study in
cattle rumen epithelial tissue and Madin–Darby bovine kidney
epithelial cells (Fang et al., 2019).

Motif analysis of CTCF resulted in both known and de
novo motifs identified in more than one tissue. A large
number of CTCF-binding motifs are similar in sequence
across mammalian species including cattle (Filippova et al.,
1996; Schmidt et al., 2012; Wang et al., 2018). Wang and
associates identified putative CTCF-binding motifs in the bovine
genome with 82 CTCF motif profiles with similar sequence
in human, mouse, dog, and macaque (Schmidt et al., 2012;
Wang et al., 2018). In this study, significant motifs identified
in ovine liver, spleen, and cerebellum were also identified
in human, mouse, fly (Drosophila melanogaster), and yeast
(Saccharomyces cerevisiae) within the HOMER motif database
(Heinz et al., 2010).

This experiment examines regulatory elements in multiple
sheep tissues and individuals with ChIP-seq and WGBS
methylation assays. These data provide putative categories of
biological functions for regulatory DNA and will facilitate the
identification of epigenetic variation that controls phenotypic
traits in sheep. Epigenetic annotation is especially important
for revealing the biology behind interesting complex traits
since genetic variation does not always reveal the entire story.
Epigenetic variation may play a larger role in traits uniquely
expressed in a specific tissue or recently evolved rare traits.
Identification of causal regulatory variants will allow more rapid
genetic improvement for health and production traits in the
meat, milk, and wool industries across sheep populations. Causal
variants have the highest utility across breeds and allow more
efficient assimilation of genetic markers into marker-assisted
selection and genomic selection algorithms. The protocols and
analysis pipeline optimized here for validation and the eventual
annotation of DNA regulatory elements are valuable resources
for the Ovine FAANG Project Consortium and the International
Sheep Genomics Consortium.
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