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Abstract

Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic
pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l−1 and iron as high as 27 600 mg
l−1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn,
Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence
of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans
as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were
found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in
water having pH values<1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form
these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having
a pH of 1.5. Holdfasts of the iron bacteriumLeptothrix discophoraattach to biofilms covering pools of standing
water having a pH of 2.5 in the mine. The mine is not a closed environment – people, forced air flow and massive
flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats,
so the mine ecosystem probably is not a restricted one.

Introduction

Extreme environments can be anthropogenic as well
as natural. At Iron Mountain in northern California,
mining has enhanced the oxidation of pyrite to create
subsurface waters having the most acidic pH values
ever reported in nature (Alpers & Nordstrom, 1991).
Acidic habitats are only now becoming objects of sys-
tematic ecological study around the world. Previous
studies on acidic environments include Lackey (1938)
and Joseph (1953) on coal mine drainage streams
and soils in Indiana, Pennsylvania and West Virginia,
and Ehrlich (1963) on acidic copper mine waters.
Nordstrom & Southam (1997) published an extens-
ive review of the geomicrobiology of sulfide mineral
oxidation with more than 300 references.

The host rock of the Richmond Mine (Figure 1)
near Redding, California, is the Balaklala Rhyolite, a

felsic volcanic rock with little buffer capacity to offset
acidity generated from fine grained sulfide minerals in
the deposit (Alpers et al., 1994). During mining from
the 1880s to the 1960s, approximately 12 million tons
of ore were extracted yielding metallic Cu, Pb, Zn,
Ag and Au, and sulfuric acid (Kinkel et al., 1956;
Alpers et al., 1994; Nordstrom & Alpers, 1999a). Re-
mediation efforts began in 1983 under the Superfund
Program of the U.S. Environmental Protection Agency
(Nordstrom & Alpers, 1990, 1999b).

Geochemical and mineralogical investigations
have been the major thrust of previous field stud-
ies at Iron Mountain (Nordstrom, 1991; Alpers &
Nordstrom, 1991; Alpers et al., 1994). These studies
showed that drainage within the Richmond Mine had
pH values ranging from 0 to 1.1, whereas the pH of
drip waters may be as low as−3.6 (Nordstrom et al.,
1991; Nordstrom & Alpers, 2000). Heat from mineral
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reactions keeps the water at 40±5 ◦C in the tunnel.
The silica content of this heated water was used to
calculate the upper temperature limit that could exist
in the mine. Nordstrom & Potter (1977) calculated
50 ◦C as the upper limit; additional data now suggest
that temperatures could reach 65◦C, which puts the
environment into the range of thermophilic bacteria.

Microbial genetic and fluorescence studies have
revealed the presence of bacteria, Archaea and Euk-
arya in the mine. Rodgers (1996) and Rodgers et al.
(1996) reported a total of 63 clones of 16S rRNA en-
coding genes from two samples. Diversity was very
low. Many of the gene sequences retrieved from the
mine water and pyrite sediment had>90% similarity
to rRNA sequences of common soil bacteria (Ed-
wards et al., 1999).Acidimicrobium, Acidiphilium
andAcidobacteriumwere also present. Schrenk et al.
(1998) identifiedLeptothrix ferrooxidansas the dom-
inant iron- and sulfur oxidizer within the mine, and
Thiobacillus ferrooxidansas the dominant iron-and
sulfur-oxidizer at the mine discharge in samples from
January 1997, but considerable variation occurred as
the seasons changed (Edwards et al., 1999). Fluor-
escence in situ hybridization studies showed thatL.
ferrooxidansand T. ferrooxidanscomposed only a
small proportion of the total microbial population (Ed-
wards et al., 1999, 2000) and that Archaea dominated
B-drift sediments in the summer along with abundant
Eukarya.

The present study focuses on the ecology of mi-
crohabitats in the Richmond Mine. The objectives
of the study were to characterize the full range of
bacterial morphotypes and to identify any other vi-
able organisms. Water samples were collected to help
characterize the geochemical environment.

Materials and methods

Water samples were collected in acid-washed plastic
ware and filtered on site using a disposable Nalgene
hand-pumped filter assembly with a 0.2µm pore size
membrane using the methods in Wood (1976). Split
samples for cations and trace metals were preserved
by acidification with nitric acid. Major cations and
trace metals were determined by inductively-coupled
plasma optical emission spectroscopy (ICP-OES).
Separate samples for anions were stored without acid-
ification and analyzed by ion chromatography. The
pH electrodes were conditioned in 0.1 N sulfuric acid
for about 24 h prior to use in the field. A series of

10 sulfuric acid solutions were prepared over a range
of concentrations for use as standard buffers. Where
water was not sufficient for electrode immersion, pH
estimates were made using indicator strips.

Microhabitats were chosen to provide samples of
slimes, oil-like films, flexible and inflexible stalactites,
sediments, water and precipitates. Identifications are
based on descriptions in Pennak (1978) with help from
S. Woelfl and G. Packroff (UFZ Centre for Environ-
mental Research, Leipzig-Halle, pers. comm., 1998).
Samples were collected in vials by sterile pipette or in
jars using a variety of sterile scrapers.

Mine habitat

Mining and mineral processing have combined with
climatic factors to intensify acid production at the
Richmond Mine site. Annual rainfall averages 84 cm
yr−1 and mean surface temperature averages 17◦C.
The dry season lasts about 6 months (May–October),
allowing build up of efflorescent salts within mine tun-
nels, drifts and stopes. The 6-month-long rainy season
(November–April) begins with 2 months of intermit-
tent rains, followed by intense rainfall events in the
cool, winter months. Under this regime, the efflores-
cent salts are to a large extent flushed at the beginning
of the rainy season, adding to the metal loading from
this site. Ore extraction involved heavy blasting and
drilling, which fractured the rock and opened conduits
for air and water to infiltrate into easily weathered
sulfide minerals. Under the seasonal climatic regime
around the mine at about 800 m elevation, the surface
vegetation is a fire adapted chapperal dominated by
manzanita and live oaks. Willows line water courses;
pines and spruce dominate the hillslope vegetation and
shed pollen that enters the mine.

During the winter, large discharges often flow
through the Richmond Mine tunnel (portal). Typical
flow during the dry season is 75 l min−1 (Alpers
et al., 1994); discharge reached a high of 8000 l
min−1 following an intense rainfall in February 1998
(J.S. Cogliati, Stauffer Management Co., pers. comm.,
1998). The mine workings are open to air circulation
both at the bottom and at the top; the lower levels of
the mine are drained by a horizontal tunnel and sev-
eral of the collapsed stopes reach the surface, creating
vents that discharge gases and heat. When people are
conducting underground studies, air is introduced via
a large fan, thereby providing more oxygen inflow.
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Figure 1. Location of study site and samples, Richmond Mine at
Iron Mountain, California.

The field site lies 177 m below the mountain sur-
face, within the 450 m-long and about 3 m high
Richmond Mine tunnel. The tunnel leads to an open
area called the 5-Way, where four drifts, named A,
B, C and D, meet the main tunnel (Figure 1). In Au-
gust,1996, when most of this research was performed,
the tunnel floor was wet; pools of water stood at
scattered localities. Weir dams held back pools at the
B and C drifts. At the time of this study, stalactites
of slime and yellow jarosite hung down from walls
of the D drift, and stalactites and stalagmites of blue
(cuprian) melanterite were forming in back areas of
the tunnel with active ceiling drip.

Results

Sample locations, pH and types of bacteria, fungi, pro-
tozoans and microscopic animals are given in Table
1.

pH 0

Melanterite stalactites. Rod filaments (Figure 2-4)
colonized a blue melanterite stalactite hanging from
the D drift roof.

pH 0.5–0.8

White slime matspreads out across water surfaces that
have a visible current. The slime is as much as 1 mm
thick. Inside the slime are cocci (Figure 2-3), elongate
coccus filaments (filaments formed of spherical cocci)
(Figure 2-1), and long (>5 µm) rod filaments (fila-
ments formed of elongate rods). Video photography
showed that a few singular cocci were motile. Most
bacteria were fully enmeshed in the mat.

Green slime streamer filamentsspread out and
moved with the flowing water at a discharge of about
75 l/min. Streamers were made of coccus and rod fila-
ments, many of which were entwined. Black poorly
crystalline mineral phases (FeS2) were distributed
within the filaments (Figure 2-2).

pH 1

Pyritic sedimentscollect at the base of the C drift weir
pool. The sediment contained filaments (Figure 2-5),
many of which had adherent black (FeS2) and brown
(goethite?) poorly crystalline mineral phases of un-
known composition (Figure 2-6). Cocci and rods were
also noted and reported by Schrenck et al. (1998), who
foundL. ferrooxidansin abundances of 106 cells/mL.

Flexible stalactites, hanging from the D drift ceil-
ing, contained a mass of fungal hyphae and thick-
walled sporangia (Figure 3-10 and 11). Stalactites of
undetermined pH had fungal spores (Figure 3-12) and
hyphae (Figure 3-13).

pH 1.5

Pyrite gelwas extracted from massive pyrite that was
weathering in place on a wall at the D drift. A yellow
jarositic layer coated the pyrite gel. Fungal hyphae and
spores were present in the gel. Bdelloid rotifers were
also observed moving through it.
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Table 1. Richmond Mine bacteria, fungi and animals (–, not present; nd, not determined) (∗10 Sep. 1996; †1 July 1998)

Sample pH Sample type Bacteria Bacteria Fungi Protozoa Rotifers Other
no. & location motile non-motile

5∗ D drift 0 blue-green cocci rod & coccus – – – –
melanterite filaments
stalactite

2∗ C drift 0.63 green streamers rods, cocci rod filaments, – – – –
bifurcating filaments

1∗ C drift 0.79 white slime – coccobacilli, vibrios, – – – –
cocci, diplobacilli

3∗ C drift 0.79 white & pink slime membrane- rod filaments – – – –
bound cocci

4∗ C drift ∼1 pyrite sediment rods bifurcating rod – – – –
filaments

7∗ D drift ∼1 flexible yellow cocci bifurcating rod ascospores, – – –
stalactite filaments brown sporangia,

colorless hyphae

6∗ D drift nd jarosite stalactite – rod & cocci spores, colorless – – –
filaments, cocci, hyphae
rods

20† 1.5 pyrite gel cocci, rods rods, rod filaments, spores, colorless hypotrichous bdelloids –
(107) filaments, vibrios, hyphae ciliates

diplorods

10∗ D drift nd flexible slime rods rod filaments brown sporangia, – bdelloids –
stalactite colorless hyphae

17† 2 flexible slime – cocci colorless hyphae, hypotrichous bdelloids pollen
(CR1) stalactite spores ciliates

18† 2 thick jarosite cocci – spores, hyphae – bdelloids pollen,
(105B) stalactite (some dead

bifurcating), diatom?
brown sporangia

21†D drift ∼2 white/orange slime cocci, rods cocci & rods in film, spores, hyphae hypotrichous bdelloids dead
L. discophora and monad diatoms

ciliates,
rhizopod?

19† 2 narrow jarosite diplorods, cocci, rods, rod spores (2), hypotrichous bdelloids dead
(105A-5) stalactite spirochetes chains, rod and colorless hyphae, ciliates, numerous diatom,

empty filaments brown sporangia heliozoan orange
tube

8∗ D drift 2–2.5 red film on wall rods, cocci rods, rod filaments, hyphae monad bdelloids red
and cocci in film,L. ciliates, tubes,
discophora rhizopod dead

diatom

11B∗ tunnel ∼2.5 red film on pool – rods in film,L. brown hyphae – – dead
discophoraholdfasts diatom

12∗ tunnel ∼2.5 yellow-white rods, vibrios rare rod filaments triplospores, hypotrichous bdelloids –
flocculate in pool brown sporangia ciliates,

heliozoan
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Figure 2. Photomicrographs of bacteria in the Richmond Mine, Iron Mt., California. (Scale bar 10µm; sample identification number in
parenthesis). 1. Mass of rod filaments with black (sulfide?) blebs (#3). 2. Mass of rod filaments (#2). 3. Cocci (co) within coherent membrane
(#1). 4. Short rod filament (#5). 5. Entwined filaments (#4). 6. Rod filament with black (bk) (iron sulfide?) and brown (bn) (iron oxide?) blebs
(#4). 7. Red tubes on iron oxide biofilm (#8). 8. Short rods (sr) on iron oxide biofilm (#11B). 9.Leptothrix discophoraholdfasts (Ld) (#11B)
(note opening where bacterium once attached-arrow).
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Figure 3. Photomicrographs of Richmond Mine fungi, exogenous carbon, and animals (Scale bar 10µm; sample numbers in parentheses are
keyed to Table 1). Fungi 10. Thick-walled sporangium (cf. ascomycete perithecium) (#7) (focus on ostiolar pore) 11. Thick-walled sporangium
and hypha (#7) (left focus on striate morphology; right focus on neck of sporangium). 12. Spores (sp) (#10). 13. Hypha (#6). Exogenous carbon
14. Conifer wood cell (note bordered pits). 15. Diatom (Gyrosigma) (#21). Protozoans 16. Monad (cf.Pithothorax) (#21). 17. Rhizopod (cf.
Protomonas) (#8). 18. Heliozoan (cf.Sphaerophrya) (#12). 19. Heterotrichous? ciliate (cf.Blepharisma) (#12). 20. Hypotrichous ciliate (cf.
Pleurotricha) (#12). Rotifers 21. Three bdelloids (cf.Rotaria) (#8). 22. Bdelloid (#12). 23. Bdelloid (cf.Mniobia) (#21).
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pH 2

Flexible jarosite stalactitesand hard jarosite-silica
stalactiteshanging from the wall of the drifts had
abundant fungal hyphae and spores. Furthermore,
motile bdelloid rotifers and egg/cysts were present.

Whitish-orange slimeon the D-drift wall had pro-
tozoan monads (Figure 3-16) and bdelloid rotifers
(Figure 3-23).

pH 2-2.5

Hard red iron oxide filmwas scraped from the mine
wall in the Richmond Mine tunnel. The film had red
microbial-size tubes (Figure 2-7), hypotrichous cili-
ates, a rhizopod (Figure 3-17), and bdelloid rotifers
(Figure 3-21).

Oil-like red film on poolof Richmond Mine tunnel
contained numerous rods (Figure 2-8) and holdfasts of
L. discophora(Figure 2-9). The presence of this taxon
was confirmed by molecular analysis (Edwards et al.,
1999). Fungal hyphae were also present.

Yellow flocculate under red oil-like filmcontained
ciliates (Figure 3-19 and 20), a heterotrophic he-
liozoan (Figure 3-18), and bdelloid rotifers (Figure
3-22).

Carbon sources

Endogenous and exogenous sources of carbon are
present in the mine. Endogenous sources are abundant
rotting mine timbers, atmospheric CO2 and remains of
autotrophic and heterotrophic bacterial cells, sheaths
and slimes. Exogenous sources are soluble humic
substances dissolved in infiltrating soil water and par-
ticulate organic carbon such as diatoms (Figure 3-15)
blown in by the fan and carried in on shoes. N and P
have not been measured.

Geochemistry

Pyrite dominates the massive sulfide minerals (90–
95%); lesser amounts of chalcopyrite along with ga-
lena, sphalerite, tennantite-tetrahedrite and pyrrhotite
are present. Mining activities exposed large quantities
of these minerals and created a hydrobiogeochem-
ical ‘reactor’ that weathers about 4260 t pyrite every
year and releases about 725 kg Cu, Zn and Cd every
day. Fortunately, most (80–90%) of the metal load-
ing to the streams is being remediated. The primary
means of treatment is lime neutralization followed by
high-density sludge separation.

Table 2. Chemical composition (mg l−1) of Richmond Mine
tunnel water

Sample No. 90WA103 Richmond Mine, Samples at
Sep. Drift B at 5-way Richmond Mine
(1990)a Sep. (1996)b portal dischargea

pH 0.48 0.4 0–1
water T◦C 34.8 37.6 –
Total Corg 4.4 –
SO4 118 000 105 000 20 000–120 000
Fe(total) 20 300 27 600 10 000–20 000
Al 2210 1980 1000–2200
Zn 2010 2460 1000–2400
Mg 821 1030 –
Cu 290 377 100–500
K 261 266 –
Na 251 233 –
Ca 183 248 –
SiO2 165 127 –
As(total) 56.4 52.9 20–60
Cd 15.9 19.7 10–20
Mn 17.1 22.1 –
Ti 5.9 8.2 –
Sb 4.0 – –
Pb 3.6 <5.1 2–5
V 2.9 2.2 –

≥1<2 B, Co, Sn
<1 Ag, Ba, Be, Cr, Mo, Ni, Se, Sr, Tl

aAlpers et al., 1992.
b19 Sep. 1996.

Two water samples analyzed from the Richmond
Mine (Table 2) were shown to be acid iron sulfate
solutions with high concentrations of most metals. The
typical range of concentration and pH for Richmond
Mine portal effluent samples are similar to values
within the mine.

Oxidized and reduced iron

The form of iron provides information about energy
sources for autotrophs in the mine. The mine con-
tains a very large reservoir of dissolved ferrous iron
as well as solid pyrite; it also contains structures made
of ferric iron. One pool in the tunnel was completely
coated with a red oil-like biofilm that contained rods
and distinct holdfasts of the iron bacterium,L. disco-
phora (Figure 2-9). The microbial process that forms
the biofilm and precipitates iron oxide is thought to be
the result of metabolic reactions that do not involve
energy transfer (Ghiorse & Ehrlich, 1992). Slime fil-
aments floating on moving water had adherent black
sulfide blebs suggesting that iron and sulfate reduction
may occur in the mat. Slime filaments within the pyr-
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itic sediment had brown (goethite?) blebs, suggesting
that iron oxidation was also an active process.

Discussion

The food web in the Richmond Mine shares aspects
with communities reported from other highly acidic
environments. However, this underground food web is
based on microbial production rather than the primary
photosynthesis that supports the ecosystems of highly
acidified mining lakes such as in Germany (Klapper &
Schultze, 1995; Nixdorf et al., 1998). Although pred-
ation was not observed, heliozoans probably form the
top of the underground food web.

Bacteria were very diverse and were present in all
microhabitats. Cocci, rods and filaments were collec-
ted in waters of all pH values and microhabitats. Fungi
made their appearance at pH 1, holotrichous ciliates
and bdelloid rotifers at pH≥1.5, and rhizopods and
heliozoans at pH≥2–2.5. Rotifers have been observed
before in pH 2.5 mine water (Green & Kramadibrata,
1988).

The slime mat bacteria are probably not restricted
to the mine. The mat is flushed out during the wet
season, but it reforms in April at the end of the rainy
season and spreads out over ponded water surfaces in
the dry season. The mat is also present at the discharge
of the mine water, where sunlight is present, but no
photosynthetic pigments were observed.

The presence of fungi in the slime stalactites is
quite significant. It is possible that hyphae begin the
process of stalactite formation by hanging down and
focusing the dripping water. Eventually, the stalactite
structure must harden as crystalline mineral phases are
formed. Fungi, however, do not have known enzymes
that function below pH 2 (W. Gross, written commun.,
1998); therefore, the abundant sporangia of an uniden-
tified ascomycete may be serving as resting phases
during the dry season when pH values would be low-
est. Perhaps the hyphae grow during the rainy season
when infiltrating water may have higher pH values.

The holotrichous ciliates, rhizopods, bdelloid ro-
tifers and heliozoans will probably prove to be cos-
mopolitan in their distribution. Although the mine is
an underground habitat, it is open to surficial water,
forced air and human activity.

The results from this study show a simple but unex-
pected underground food web that is based on iron-and
sulfur-oxidizing bacteria and Archaea living at pH 0–
2.5 in waters that contain numerous metals having

concentrations as much as 120 000 mg l−1 sulfate
and 27 600 mg l−1 iron. These organisms, coupled
with additional exogenous carbon sources, support
heterotrophic bacteria, as well as Eukarya. The unex-
pected presence of acidophilic or acid-tolerant fungi
and motile protozoans, rotifers and heliozoans sug-
gests that the biology, ecology and genetics of other
underground mining environments can be expected to
yield useful new insights into ecogeochemical inter-
actions where bacterial biomass forms the base of the
food web.
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