
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Biochemistry -- Faculty Publications Biochemistry, Department of

2020

SBML Level 3: an extensible format for the exchange and reuse of SBML Level 3: an extensible format for the exchange and reuse of

biological models biological models

Sarah M. Keating

Dagmar Waltemath

Tomáš Helikar

Michael Hucka

50 additional co-authors

Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub

 Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics,

and Structural Biology Commons

This Article is brought to you for free and open access by the Biochemistry, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty
Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

gained attention in the 1950s thanks to the work of biologists such

as von Bertalanffy and Kacser (Von Bertalanffy, 1950; Kacser,

1957). The era of numerical simulation in biology truly began with

the landmark works of Chance on enzyme kinetics (Chance et al,

1940), Hodgkin and Huxley on the molecular basis of neuronal

transmission (Hodgkin & Huxley, 1952), and Turing on the chemical

basis of morphogenesis (Turing, 1952). Since then, the number and

variety of models have grown in all of the life sciences. As precise

descriptions of phenomena that can be simulated, analyzed, and

compared with experimental data, models provide unique insights

that can confirm or refute hypotheses, suggest new experiments,

and identify refinements to the models.

The availability of more data, more powerful modeling methods,

and dramatically increased computing power led to the rise of

systems biology as a compelling research theme around the turn of

the millennium (Kitano, 2000; Ideker et al, 2001). Though computa-

tional models were at first published as printed equations in journal

articles, the desire to reuse an ever-increasing number of models

called for digital formats that were interoperable between software

systems and could be easily exchanged between scientists (topics of

interest as early as the 1960s; c.f. Garfinkel, 1969). This drove

efforts to create tool-independent ways of representing models that

could avoid the potential for human translation errors, be stored in

databases, and provide a common starting point for simulations and

analyses regardless of the software used (Goddard et al, 2001;

Hucka et al, 2001; Lloyd et al, 2004). One such effort was SBML,

the Systems Biology Markup Language. Its initial design was moti-

vated by discussions to create a “metabolic model file format”

following a 1999 workshop (recounted by Kell & Mendes, 2008). A

distributed community thereafter discussed ideas that informed

work at Caltech in late 1999/early 2000 and led (after a series of

public drafts) to the specification of the official version of SBML

Level 1 version 1 being released in March 2001 (Hucka et al, 2003).

While SBML was initially developed to exchange compartmental

models of biochemical reaction networks primarily formulated in

terms of chemical kinetics (Hucka et al, 2001), it was always under-

stood that there existed more types of models than the initial

version of SBML could represent explicitly. However, seeking

community consensus on a limited set of simpler features, which

could be readily implemented in software at the time, was deemed a

more pragmatic strategy. A deliberate decision was taken to delay

the addition of more advanced capabilities to a later time. As a

result, SBML has evolved in stages in a community-driven fashion

that has benefited from the efforts of many researchers worldwide

over two decades. As time passed, the need to support a broader

range of model types, modeling frameworks, and research areas

became apparent. SBML’s success in serving as an interchange

format for basic types of models led communities of modelers to ask

whether it could be adapted or expanded to support more types. In

addition to reaction-diffusion models, alternative modeling frame-

works have risen in popularity in the past decade (Machado et al,

2011), and researchers have faced interoperability problems

11 Instituto Gulbenkian de Ciência, Oeiras, Portugal
12 ANSYS UK Ltd, Milton Park, Oxfordshire,UK
13 School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
14 Department of Biochemistry, University of Nebraska–Lincoln,Lincoln, NE, USA
15 Biocomplexity Institute & Initiative, University of Virginia, Charlottesville, VA, USA
16 Eight Pillars Ltd, Edinburgh, UK
17 Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, USA
18 Department of Electrical and Computer Engineering, University of Utah, Salt Lake City,UT, USA
19 Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
20 SysBioLab, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
21 Applied BioMath, LLC, Concord, MA, USA
22 Department of Bioengineering, University of Washington, Seattle, WA, USA
23 Simcyp (a Certara company), Sheffield, South Yorkshire, UK
24 The Alan Turing Institute, British Library, London, UK
25 California Institute of Technology, Pasadena, CA, USA
26 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
27 Department of Biosystems Science and Engineering, ETH Zürich, Basel,Switzerland
28 Management & IT Consulting Division, Mizuho Information & Research Institute, Inc.,Tokyo, Japan
29 Université Paris-Saclay, INRAE, MaIAGE,Jouy-en-Josas, France
30 Oxford e-Research Centre (OeRC), Department of Engineering Science, University of Oxford, Oxford, UK
31 College of Sciences, NC State University, Raleigh,NC, USA
32 Department of Computer Science, University of California, Irvine, CA, USA
33 Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
34 Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
35 Initiative for Biological Systems Engineering (IBSE), IIT Madras, Chennai, India
36 Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), IIT Madras, Chennai, India
37 The Babraham Institute, Cambridge, UK
38 Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
39 Department of Mathematics, California State University, Northridge, CA, USA
40 Department of Biosystems Science and Engineering, SIB Swiss Institute of Bioinformatics, ETH Zürich, Basel, Switzerland
41 Institute of Integrative Biology, University of Liverpool, Liverpool, UK
42 Science Solutions Division, Mizuho Information & Research Institute, Inc., Tokyo, Japan
43 IBM Research Australia, Melbourne, Vic., Australia
44 Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
45 Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
46 The Systems Biology Institute, Tokyo, Japan
47 Okinawa Institute of Science and Technology, Okinawa, Japan
48 Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan

*Corresponding author. Tel: +1 626 395 3418; E-mail: mhucka@caltech.edu
†These authors contributed equally to this work
‡A complete list of members and affiliations appears in the Appendix 1

2 of 21 Molecular Systems Biology 16: e9110 | 2020 ª 2020 California Institute of Technology Published under the terms of the CC BY 4.0 license

Molecular Systems Biology Sarah M Keating et al

between software tools developed for their use. These needs drove a

profound change in SBML’s structure: A facility to permit layering

the core of SBML with new features suited to more types of models,

together with a way for individual models to identify which sets of

extensions they need for proper interpretation. The release of SBML

Level 3 (Hucka et al, 2010) has provided a new foundation to

enable the exchange of a greater variety of models in various

domains of biology (Fig 1).

In the rest of this article, we begin by summarizing SBML’s

general structure and then describe the modularity introduced in

Level 3 and the wide range of modeling formalisms supported by

Level 3 packages. We follow that by describing the community

aspects of SBML development. We continue with a discussion of

SBML’s impact on both computational modeling and the modeling

community, and finally, we close with a discussion of forthcoming

challenges.

The structure of SBML

The core of SBML is focused on encoding models in which entities

are located in containers and are acted upon by processes that

modify, create, or destroy entities. The containers do not need to

correspond to physical structures; they can be conceptual or

abstract. Additional constructs allow parameters, initial conditions,

other variables, and other mathematical relationships to be defined

(Fig 2A). In the most common type of model, the “entities” are

biochemical substances, the “containers” are well-mixed and

spatially homogeneous, and the “processes” are biochemical reac-

tions happening within or between the containers. This originally

led to the SBML constructs being named species, compartments, and

reactions, respectively (Fig 2B), but these names are historical arti-

facts and belie the generality of the underlying scheme. Software

applications can map the names to other concepts to better suit their

purposes. For instance, “species” could be mapped to populations

of molecules, cells, or even organisms.

Modelers and software developers are encouraged to use

SBML’s reaction construct to define a model’s behavior in prefer-

ence to formulating the model explicitly as a system of equations.

This gives users freedom to convert the model into the final format

they prefer—a simpler operation than (for example) inferring a

reaction network from a system of differential equations. More

importantly, the approach also naturally handles models where

reaction kinetics are unknown or unneeded, such as interaction

maps, and supports the elaboration of the reaction construct using

SBML packages (discussed below). That said, the use of reactions

is optional, and SBML provides features sufficient for encoding a

large diversity of purely mathematical models, too. Whether using

reactions or not, values of model variables and their changes over

time may be fixed or determined by mathematical expressions,

either before or during simulation, continuously or in response to

discrete events, with or without time delays. Units of measurement

can be specified for all entities and values; in addition to adding a

layer of essential physical knowledge (after all, how else could one

interpret whether a time course is in milliseconds or years?), infor-

mation about units can be used to verify the relationships

expressed in a model. Units also facilitate reuse of models and

components, interconnection of models, conversion of models

between different frameworks, and integration of data with

models.

SBML does not dictate which framework must be used to analyze

or simulate a model; in fact, it purposefully lacks any explicit way

to specify what is done with a model—whether to run simulations

or other types of analyses, how to run them, or how to present the

results—because externalizing this information enhances model

reusability and permits independent innovation in separate but

complementary formats. Two of the most popular methods for time-

course simulation are commonly used: one is numerical integration

of differential equations created from the reactions and other rela-

tionships affecting model variables, and the other is simulating the

time evolution of the model as a stochastic system via algorithms

such as the one developed by Gillespie (1977). Alternative

approaches are also in use, particularly when a model is enhanced

with SBML packages.

Any element of an SBML model can be elaborated using

machine-readable metadata as well as human-readable notes. For

metadata, two schemes are supported. The first is direct labeling of

SBML elements with terms from the Systems Biology Ontology

(SBO; Courtot et al, 2011), which allows the mathematical seman-

tics of every element of a model to be precisely specified. The

second scheme uses semantic web technologies and provides

greater flexibility to capture additional metadata. For instance, a

molecular species in a model can be linked to a UniProt entry (The

UniProt Consortium, 2017) if it represents a protein, or to ChEBI

entry (Hastings et al, 2013) if it represents a simple chemical. Gene

Ontology terms (GO; Ashburner et al, 2000) can be attached to

species, compartments, and mathematical elements representing

biological processes and functions. Simple provenance data such as

identities of creators can be added to facilitate attribution and

versioning. To help standardize how annotations are stored, SBML

encourages the use of guidelines and resources established for this

purpose (Le Novère et al, 2005). Finally, software tools can also use

annotations to encode tool-specific data in their own formats, thus

providing a way to capture data that might otherwise be lost. Anno-

tations thereby help enrich the meaning of model components, facil-

itate the understanding and reuse of models, and help software

work with SBML more flexibly (Neal et al, 2019).

The core features described above have been a backbone of

SBML ever since Level 2, even as SBML continued to evolve. The

development of the modular Level 3, discussed in the next section,

provided an opportunity to rethink and redesign a few other rarely

used features. For example, the species charge attribute, designed to

represent molecular charge, was removed in Level 3 in favor of

letting an SBML package introduce more complete support for the

relevant concepts.

SBML Level 3’s modularity and breadth

Constant evolution in scientific methods presents challenges for the

creation of software tools and standards. One challenge arises

because the creation of new standards requires labor, testing, and

time. This often causes standardization efforts to lag behind the

latest technical developments in a constantly moving field. A second

challenge is that users want support for new methods and standards

in software tools, which pressures developers to implement support

ª 2020 California Institute of Technology Published under the terms of the CC BY 4 Molecular Systems Biology 16: e9110 | 2020 3 of 21

Sarah M Keating et al Molecular Systems Biology

quickly. Combined with the first challenge, it means that sometimes

problems with a standard’s definition are not discovered until more

developers attempt to use it in different situations, which in turn

often means that revisions to a standard are needed after it is

published. Finally, another challenge is that software development

often takes place under resource constraints (funding and time),

limiting the scope of work that software developers can undertake—

including, sometimes, limiting how many features of a standard

they can support in their software.

The SBML community sought to address these challenges by

putting in place certain structural features in SBML’s develop-

ment process. The first is the notion of Levels. A Level in SBML

is an attempt to provide a given set of features for describing

models, with higher Levels providing more powerful features.

For example, the ability to express discrete events was added to

SBML Level 2 but does not exist in Level 1. SBML Levels are

mostly upwardly compatible, in the sense that the vast majority

of models encoded in Level n can be translated to Level n + 1.

Versions are used to introduce refinements to a given Level to

account for realizations that come from real-life use of SBML.

Finally, SBML Level 3 introduced an extensible modular architec-

ture consisting of a central set of fixed features (named SBML

Level 3 Core), and a scheme for adding packages that can

augment the Core by extending existing elements, adding new

elements, and adjusting the meaning or scope of elements. A

model declares which packages it uses in order to guide its

interpretation by software applications. If a software tool detects

the presence of packages that it does not support, it may inform

users if it cannot work with the model. Together, these three

features (Levels, Versions, packages) help address the challenges

discussed above: they ease coping with evolution in methods by

collecting significant changes into discrete stages (SBML Levels),

they help deal with the inevitable need for revisions (Versions

within Levels), and they allow developers to limit the feature set

groups layout
renderdistrib

comp arrays

dyn

qual

multi

fbc
spatial

core

• Genome-scale
• Whole-cell

Constraint-based models

• Regulatory control
• Signaling

Qualitative &
logical models

• Tissue & Whole-body
• Communities

Multi-scale &
modular models

• Systems pharmacology
• Populations

Distributions &
Uncertainty

• Model annotation
• Sub-systems

Grouping &
Organization

• Data integration

Visualization

• Grid-based models

Vectorized
model components

• Developmental biology
• Agent-based models

Dynamical
model components

Spatial models

• Reaction-diffusion
• Spatial organization

• Multistate molecules
• Multicomponent complexes

Rule-based models

Reaction &
process models

P

U

<sbml><sbml>

</sbml></sbml>

<sbml><sbml>

</sbml></sbml>

<sbml><sbml>

</sbml></sbml>

X

Y

i i+1i+1

j

......

j+1j+1

......

7

0

2

1111

x0

Figure 1. SBML Level 3 (Hucka et al, 2019) consists of a core (center) and specialized SBML Level 3 packages (in blue), which provide syntactical constructs to
support additional modeling approaches.

The packages support new types ofmodeling (in the gray boxes) needed for large and complexmodels such as those used in various domains and fields of biology (in the light

red boxes). The meanings of SBML package labels such as “fbc” are given in Table 1, with additional package information in Box 1.

4 of 21 Molecular Systems Biology 16: e9110 | 2020 ª 2020 California Institute of Technology Published under the terms of the CC BY 4.0 license

Molecular Systems Biology Sarah M Keating et al

A

B

Figure 2.

ª 2020 California Institute of Technology Published under the terms of the CC BY 4 Molecular Systems Biology 16: e9110 | 2020 5 of 21

Sarah M Keating et al Molecular Systems Biology

they implement (SBML Levels on the one hand, and SBML Level

3 packages on the other).

Packages allow SBML Level 3 (Hucka et al, 2019) to represent

many model types and characteristics in a more natural way than if

they had to be shoehorned into SBML Core constructs exclusively.

Twelve packages have been proposed to date (Table 1); eight have

been fully developed into consensus specifications and are each used

by at least two software implementations (Box 1), and another two

have draft specifications in use by software tools. New packages can

be developed independently, within dedicated communities, at a

pace that suits them. This was the case for logical modeling with the

CoLoMoTo community (Naldi et al, 2015), constraint-based model-

ing within the COBRA community (Heirendt et al, 2019), and rule-

based modeling with a community of like-minded software creators

(Faeder et al, 2009; Zhang et al, 2013; Palmisano et al, 2014; Boutil-

lier et al, 2018).

Several benefits accrue from leveraging SBML as a starting point

rather than creating a new, independent format. One is it makes clear

where common features overlap. Most computational modeling

frameworks in the domain of biology share some common concepts

—variables that represent characteristics of different kinds of entities

and processes that represent interactions between entities, contain-

ers/locations, etc.—and reusing SBML Level 3 Core constructs makes

the conceptual similarities explicit. This in turn makes interpretation

of models easier (no need to learn new terminology) and reuse

simpler (no need to translate between independent formats). Another

benefit is that the creators of the format can leverage existing features

developed for SBML, such as mechanisms for annotations, rather

than spend time developing new approaches to achieving the same

goals in a new format. This in turn leads to another benefit: the ability

to reuse at least some parts of existing software libraries developed

for SBML. It also means that a software application may be able to

interpret at least some fundamental aspects of a model even if the

application is not designed to work with a particular SBML Level 3

package, by virtue of understanding SBML Core (and perhaps other

packages used by the model). This improves the potential for model

reuse, and benefits model creators and software developers alike.

Finally, a common foundation simplifies the creation of multiframe-

work models in which some parts of the model use one formalism

and other parts use others [e.g., coupling kinetic models with flux

balance analysis; Watanabe et al, 2018).

Though this modular approach has benefits, it is not without

potential pitfalls. The main risks are fragmentation of the commu-

nity, and incompatibility of packages due to complex feature depen-

dencies. The SBML community has addressed the former by

maintaining communications between package developers; the

community processes have such interactions built in. As for the

latter, API libraries (see Box 2) can handle some combinations of

packages and hide some of the complexity. Still, there remain some

combinations of packages that are not fully understood, and it

remains for future work to define how (if ever) they can be

combined for use in a single model.

SBML as a community standard

SBML’s success can be attributed largely to its community-based

development and its consensus-oriented approach. SBML has

always been developed through engagement with its user commu-

nity to achieve goals expressed by that same community. To resolve

occasionally conflicting technical demands, a guiding principle has

been to seek consensus between different viewpoints and the needs

of different groups, to find a middle ground that would be—while

perhaps not a perfect solution—an acceptable and usable solution.

This attracted the researchers and software developers who consti-

tute SBML’s foremost stakeholders. By using SBML in everything

from software to textbooks, they helped drive further development

to face the real needs expressed by the people who have those

needs. This engagement allowed faster feedback from users to

developers and has helped produce a rich toolkit of software and

other resources that facilitate SBML’s incorporation into software

(Box 2).

Over the years, the community has designed rules to organize its

governance, develop and maintain the specifications, and facilitate

collaboration among users. The development of SBML and its Level

3 packages is shepherded by the SBML Editors, a group of commu-

nity-elected volunteers serving terms of 3 years who follow a writ-

ten and public process detailed on the web portal SBML.org.1 SBML

Editors write or review SBML specification documents, organize

discussions and vote on specific technical issues, and enact the deci-

sions of the community. Major proposed changes to the specifi-

cations and packages are discussed by the community via the SBML

mailing lists2 as well as during annual face-to-face meetings.

The community currently comes together twice a year within the

context of meetings organized by COMBINE the Computational

Modeling in Biology Network; Hucka et al, 2015). HARMONY (the

Hackathon on Resources for Modeling in Biology) is a codefest that

focuses on the development of software, in particular via the devel-

opment of libraries, tools, and specifications; by contrast, the

COMBINE Forum meetings focus on the presentation of novel tools

and the discussion of proposed features. In addition to these general

meetings, special SBML working groups are organized as needed to

drive SBML package development. COMBINE’s central activity is

coordinating and harmonizing standardization in computational

biology, and SBML is one of its core standards. FAIRsharing, a

broader community network that covers life sciences more compre-

hensively (Sansone et al, 2019), maintains interconnected and orga-

nized collections of resources in many areas, including curated links

between SBML and many associated funders, databases, and stan-

dards.3

◀ Figure 2. A closer look at SBML.

(A) Fragments of the global structure of an SBML file. In this example, the use of several SBML packages is declared in the file header. Model elements in the file include the

descriptions of model variables, as well as their relationships. Elements of the same type are collected into “ListOf” elements; model parameters are in the ListOfParameters

element. SBML package elements can refer to elements in the SBML Core as necessary. (B) Model elements are linked through unique identifiers used in the mathematical

constructs and the elements describing the reactions, themolecular species, and their localization. The full model for this example is available in BioModels Database (Malik-

Sheriff et al, 2020) as the model with identifier MODEL1904090001.

6 of 21 Molecular Systems Biology 16: e9110 | 2020 ª 2020 California Institute of Technology Published under the terms of the CC BY 4.0 license

Molecular Systems Biology Sarah M Keating et al

http://SBML.org
https://identifiers.org/biomodels.db:MODEL1904090001

