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Performance of mouse lines divergently selected for heat loss when exposed
to different environmental temperatures. I. Reproductive performance,
pup survival, and metabolic hormones'

P. M. Kgwatalala?, J. L. DeRoin? and M. K. Nielsen*

Department of Animal Science, University of Nebraska, Lincoln 68583-0908

ABSTRACT: Mouse populations differing in meta-
bolic rate have been developed through selection for
high (MH) and low (ML) heat loss, along with the unse-
lected controls (MC). Objectives of the study were to
compare the MH, ML, and MC lines for reproductive
performance, pup survival, and metabolic hormones
when reared at 12, 22, and 31°C, and to search for line
x environment interactions. Conception and litter size
were recorded on the parent generation mice introduced
to the environments at 11 wk of age and bred after a
3-wk acclimatization period. Survival of pups (prewean-
ing to 3 wk; postweaning from 3 to 9 wk of age) was
measured with continuous exposure in the designated
environment from birth to the time of measurement.
Corticosterone, triiodothyronine (T3), and thyroxine
(T4) serum concentrations were measured on the par-
ent generation after producing litters and on the pup
generation at 9 wk. No line x environment interaction
was detected for conception rate, preweaning mortality,

postweaning survival, pup weaning weight, or body
temperature. There were no differences in conception
rate among lines and environments. Environments af-
fected survival of pups, but there were no line differ-
ences. Rectal body temperatures were greater for MH
than ML mice, and MC mice were intermediate; body
temperature of mice did not differ among the environ-
ments. Lines differed significantly in litter size only in
the 22°C environment. No significant line differences
were found for serum corticosterone or serum T3 or T4.
Line x environment interaction was detected only for
litter size and for serum corticosterone concentration
in dams. Contrary to the other two lines, ML, dam per-
formance relative to MH and MC was not affected nega-
tively by either of the thermal environments. Results
from this study do not raise concern that selection to
decrease maintenance requirements will produce live-
stock with any greater liability to cope and perform
under an array of environmental temperatures.

Key Words: Ambient Temperature, Genotype x Environment Interaction,
Metabolic Hormones, Mice, Mortality, Reproduction
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Introduction

One component of profitability of livestock enter-
prises is feed costs. Considerable variation in mainte-
nance feed energy requirements exists among animals,
and part of this variation is attributable to genetic
causes (Bishop and Hill, 1985; Nielsen et al., 1997a).
Selection for lower maintenance requirements is possi-
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ble and is becoming a goal for some breeders to reduce
production costs of livestock enterprises. With rearing
under extensive conditions, animals are often subjected
to seasonal variations in temperature and their associ-
ated possible stresses; thus, new selection goals must
be evaluated in light of these ramifications.

Mouse populations differing in maintenance energy
requirements have been developed through selection
for high (MH) and low (ML) heat loss, along with unse-
lected controls (MC), at the University of Nebraska-
Lincoln (Nielsen et al., 1997b). Subjecting mice from the
MH, MC, and ML lines to hot and cold environmental
temperatures might therefore reveal the possible conse-
quences on economically important traits of selecting
for low maintenance requirements under different envi-
ronmental temperatures.

The a priori hypothesis for the study was that ML
mice have lower thermal conductance and greater fat
insulation than MH mice and should therefore perform
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better than MH mice in traits of economic importance
in the cold environment. The MH mice have greater
thermal conductance and less fat insulation than ML
mice and should therefore have a comparative advan-
tage in the hot environment, resulting in significant
line x environment interactions.

The purpose of this study was to evaluate whether
there are interactions among lines selected for heat loss
or metabolic rate and environmental temperatures (12,
22, and 31°C) for reproductive performance, pup sur-
vival, and some metabolic hormones.

Materials and Methods

Experimental Animals

High heat loss, ML, and MC selection lines of mice,
produced in the Animal Science Department at the Uni-
versity of Nebraska-Lincoln, were used for the investi-
gation. The three lines were previously described by
Nielsen et al. (1997a,b). Selection was practiced for high
and low daily heat loss per unit of metabolic size (kcal--
kg *7.d™1), with heat loss measured in direct calorime-
ters; the other line was unselected and served as the
control. The above selection criteria (MH, ML, and MC)
were practiced in three independent replicates, giving a
total of nine unique breeding lines, and the independent
replicates were separated by a 5-wk interval between
the same stages in the life cycle. After selection for
16 generations, all of the lines were maintained with
matings to minimize inbreeding within the lines. Mice
sampled to initiate this study came from Generation
37, Replicate 3, and Generation 38, Replicates 1 and 2.

Facilities

Three environmentally controlled rooms were used
in the investigation. The three rooms that served as
the cold (C), normal (N), and hot (H) environmental
treatments were maintained at 12, 22, and 31°C, re-
spectively. We were limited to these extremes in our
ability to control the temperature of the “cold” and “hot”
rooms. The range of thermoneutrality for a mouse is
recognized to be between 28 and 32°C (Gordon, 1993);
thus, our “hot” room was not above thermoneutrality,
although substantially above the usual temperature (22
to 23°C) for mouse rearing. Humidity was monitored
in the cold environmental chamber and averaged 42%
for the entire study period. Humidity was not monitored
in the other two environments, but it was expected to
be lower than 40%. All three rooms were equipped with
overhead fluorescent lights and a timer to provide a
controlled 12 h light:12 h darkness cycle for the entire
study period.

Management

Throughout the study, mice were housed in plastic
cages with stainless-steel wire-bar lids. Thirty females
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and 20 males of each line and replicate were introduced
to each of the environmental treatments at 11 wk of
age. Females were housed in groups of six and males
in groups of four per cage, each of the same selection
criteria. All of the animals in one environment had
littermate counterparts in the other two environments
and were given ad libitum access to water and a regular
maintenance diet (Teklad 8604: 24% CP, 4% crude fat,
and 4.5% crude fiber, as-fed basis; Harlan Teklad, Madi-
son, WI). After a 3-wk acclimatization period, females
were housed in groups of three, and one male of the
same selection criterion was introduced to the females
for breeding purposes. Eighteen days after the introduc-
tion of the males to the females, females were housed
singly, given some nesting material (Nestlets, Ancare
Corp., Waupaca, WI) and fed a lactation diet (Teklad
8626: 20% CP, 10% crude fat, and 3.0% crude fiber, as-
fed basis; Harlan Teklad, Madison, WI).

Upon giving birth, the number of pups born per dam,
if greater than eight, was decreased to eight (ideally
four males and four females) within 1 d. No litters of
less than eight at birth were retained. Pups were indi-
vidually identified and weaned at 3 wk of age. Pups
were housed six per cage for females and four per cage
for males, for an intended total of 42 females and 40
males of each selection line and replicate across all
environmental treatments. Due to breeding failure and
poor survival of some pups, a few of the line-replicate-
environment classes had fewer animals. But all classes
had at least 30 animals, except for MH females of Repli-
cate 3 in the cold environment, which has 18. Pups had
ad libitum access to water and a regular maintenance
diet (Teklad 8604) up to 9 wk of age, at which time the
experiment was terminated. Cages were changed twice
weekly in the cold environment and once weekly in the
other environments for the entire study period. The
temperature-humidity combination in the cold environ-
ment limited evaporation from the bedding, thus cages/
bedding required more frequent changes. In addition,
animals in the cold environment had greater feed in-
take, and hence, greater feces production. All research
activity was conducted under IACUC Protocol No. 01-
09-062.

Measurement of Traits

The number of pups born per dam was recorded for
each dam within 24 h after birth before standardizing
litter size to eight pups. The number of live and fully
formed pups was considered to be the litter size born.
Preweaning mortality was recorded for each female on
a weekly basis until weaning, when the pups were 3
wk of age. Preweaning mortality rate was determined
by recording the total number of dead pups per litter
compared with the standardized litter size (eight pups
per litter). Conception rate was determined by re-
cording the number of females that produced litters
compared with the number in breeding cages. Post-
weaning survival rate was determined by recording the
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number of mice that survived up to 9 wk of age com-
pared with the number retained at weaning (3 wk of
age).

Body temperature was recorded on the parent gener-
ation mice subjected to different environmental temper-
atures. Rectal temperatures were recorded with a ther-
mometer (model MC-01, OMRON, Healthcare, Inc.,
Vernon Hills, IL) at 17 wk of age for males (end of
breeding) and 20 wk of age for females (after their pups
were weaned). Collection of temperature data was be-
gun after the initial replicate was completed. Thus,
there were data for only two replicates.

Blood samples were taken by heart puncture immedi-
ately after the pups were killed at 9 wk and from par-
ents at either 17 wk for sires or 20 wk for dams. All
replicates of pups were represented, but only two repli-
cates were represented in the parents sampled. Follow-
ing coagulation, serum was drawn from each sample
and frozen until hormone assays were performed. A
total of 162 pups (three replicates x three lines x three
environments X two sexes X three mice per replicate-
line-environment-sex) was sampled. The number of
dams sampled was 54 (two replicates x three lines X
three environments x three mice per replicate-line-en-
vironment), and the number of sires sampled was 36
(two replicates x three lines x two environments [hot
and cold] x three mice per replicate-line-environment).

Serum samples were assayed for corticosterone, thy-
roxine (T4), and triiodothyronine (T3) using RIA kits
purchased from Diagnostic Products Corp. (Los
Angeles, CA). Concentration standards for each assay
were done in triplicate to obtain the standard curve for
each set of assays, and each sample was then run in
duplicate and averaged.

Statistical Analyses

Three levels of temperature environments (12, 22,
and 31°C), three lines of mice (MH, ML, and MC), three
(two for body temperature) replicates, and the two sexes
(males and females) were used in a 3 x 3 x 3 x 2 factorial
arrangement in a completely randomized design. Most
data analyses were by SAS (SAS Inst., Inc., Cary NC)
using the mixed-model procedures of Littell et al.
(1996). The Satterthwaite method for determining de-
grees of freedom was used in all analyses. The experi-
mental model used in body temperature data included
environment, line, sex, and the various interactions be-
tween the three factors as fixed effects. Random effects
were replicates and the interactions between replicates
and environment, line, environment x line, and environ-
ment X line x sex.

Subclass means for conception and preweaning mor-
tality data were transformed to the logit and log scales,
respectively, before the mixed-model analysis. After the
transformation, all reproductive performance data
(conception, preweaning mortality, and litter size data)
were analyzed with temperature, line, and the interac-
tion between the two factors as fixed effects, and the
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replicates and the various interactions between the rep-
licates and the fixed factors as random effects. Sex was
not included in the model because of the sex-limited
nature (expressed only in females) of the aforemen-
tioned reproductive traits. After the analysis, concep-
tion and preweaning mortality data were retrans-
formed to their original scale of measurement for pre-
sentation of means. Because data were transformed to
the logit and log scales, standard errors could not be
calculated for the retransformed means. Instead, 95%
confidence intervals were calculated and then retrans-
formed to the original scales of measurement. Logit
least squares means for survival and conception rate
were retransformed to their original scale of measure-
ment as described by Azzam et al. (1989). Approximate
95% confidence limits for the retransformed least
squares means were obtained similarly by transforming
the lower and upper 95% interval extremes from the
logit analysis.

Postweaning survival data were transformed to the
logit scale, and analysis was by the GLM procedures
of SAS. Means for various fixed factors were estimated
using the weighted least squares procedures (Gianola,
1982; Rutledge and Gunsett, 1982). The logit scale en-
sures that estimated survival rates are between 0 and
100% and that the weighted least squares corrected for
the differences in number of mice retained at weaning
caused by high preweaning mortality in the cold envi-
ronment. The weighting factor has been described by
Gart and Zweifel (1967). The model used in the analysis
of postweaning survival data was similar to the one
described above.

Mean separations for the various fixed factors and
the interactions between the fixed factors were done
using sets of orthogonal contrasts. Selection criteria
means were compared using orthogonal contrasts of 1)
[(MH + ML)/2 — MC] to test for asymmetry of selection;
and 2) MH vs. ML to test for selection response. Ther-
mal environment effects were compared using orthogo-
nal contrasts of 3) [(H + C)/2 — N)] to test for nonlinear
effects of temperature; and 4) H vs. C to test for the
extreme effects of temperature. The remaining con-
trasts were tests for males vs. females and the various
two-way and three-way interactions of line, environ-
ment, and sex.

Metabolic hormone data were analyzed in three sets:
pups, dams, and sires. In preliminary analyses, log
transformations were compared with raw data to see
if variation within subclasses would be more similar.
However, no gain from this transformation was found,
thus, the data were analyzed and are reported in the
original measure. Because the dams and sires were
analyzed separately, the effect of sex in adult animals
was not tested. In addition, only the effects of the two
extreme environments could be tested in the sires.

Data are summarized in tables by line-environment
classes (least squares means + SE or 95% confidence
interval) if the line x environmental interaction was
significant. Otherwise, only line means are presented
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Table 1. Least squares means (+SE) for litter size by line-environment classes®?
Environment MH MC ML
Cold (C, 12°C) 10.84 + 0.55 10.59 + 0.55 10.56 + 0.54
Normal (N, 22°C) 11.73 £ 0.54 12.23 + 0.53 10.22 + 0.53
Hot (H, 31°C) 10.40 + 0.54 10.37 + 0.54 9.35 + 0.54

2MH = selected for high heat loss; MC = control; ML = selected for low heat loss.
bSignificant contrasts: (H + C)/2 - N, P < 0.01; H - C, P < 0.10; [(MH + ML)/2 — MC] x [(H + C)/2 - NI,

P <0.01; [MH - ML] x [(H + C)/2 — N], P < 0.10.

for the remaining characteristics, and environment
means are also presented where significance was de-
tected. Significance of contrasts is presented with the
tables. No three-way interactions were significant and
therefore are not discussed.

Results and Discussion

Line x Environment Interaction

Means for number born (litter size) in the three lines
at different environmental temperatures are given in
Table 1. There was a line x environment interaction (P
< 0.05) for litter size born. The contrast that explained
most of this interaction was [(MH + ML)/2 - MC] x [(H
— C)/2 — N]. Differences in litter size between the aver-
age of the selected lines (MH and ML) and the MC were
smaller in the hot and cold environments than in the
normal environment. In the normal environment, litter
size of the MC was greater than that of both MH and
ML. In the cold and hot environments, there were no
differences in litter size between the three lines. There
was, however, evidence of some divergence in litter size
(P < 0.08) between the MH and ML lines in the normal
environment. There was also a difference (P < 0.05) in
litter size between the MC and ML (12.23 vs. 10.22
pups/litter) in the normal environment, but the differ-
ence was small and nonsignificant between the MC and
MH lines (12.23 vs.11.73 pups per litter).

Nielsen et al. (1997a) observed a difference (P < 0.01)
in litter size between the MH and ML lines with MH
> ML at normal (22°C) temperature, and the litter size
in the MC line was intermediate to those in the ML
and MH lines at Generation 15 of selection for heat
loss. Fewer litters were measured in our study, and
this might explain the failure of the results reported
here to coincide with those reported at Generation 15
of selection. The MH and MC lines had greater average
litter size in the normal environment, whereas the ML
performed slightly better in the cold environment.

Barnett and Manly (1956) reported slight reductions
in litter size in the C57BL and GFF strains as a result
of cold exposure (-3°C) and no effect on litter size in
the A strain. Wilson et al. (1972) reported litter sizes
of 7.94, 7.74, and 8.12 in one four-way composite strain
of mice, and litter sizes of 8.55, 8.34, and 8.04 in another
four-way composite strain in cold (12°C), normal (21°C),
and hot (30°C) environments, respectively.

The results obtained in this study for the MH and
MC are therefore consistent with most of the above
studies, which indicates a decrease in litter size as a
result of either heat or cold exposure. The ML was
unique, with no decrease in litter size in the cold envi-
ronment. Heat and cold stress may adversely affect
spermatogenesis and/or sperm characteristics in males
and may also affect oogenesis in females or lead to
resorption of fetuses in utero, which ultimately results
in smaller litter sizes. The actual response will however,
be dependent on the temperature of exposure, its con-
stancy and its duration (Barnett, 1965).

The significant line x environment interaction for lit-
ter size is consistent with the a priori hypothesis for
the study and indicates that litter size varied between
the lines under different environmental temperatures.
Differences in litter size between the MH and ML lines
were much smaller in the cold environment than in the
normal and hot environments. The largest litter size
in the cold environment for the ML line is also consis-
tent with the a priori hypothesis and suggests an ad-
vantage for the ML line in the cold environment, possi-
bly through lower thermal conductance and better body
insulation (body fat and pelage). Maskrey et al. (2001)
reported significantly lower body temperatures (37.1 vs.
37.3°C) and preference for cooler ambient temperatures
(20.9 vs. 22.7°C) in obese Zucker rats compared with
their age-matched lean counterparts. The ML line had
a significantly lower body temperature (see Table 2)
than the MH line, and the preferred ambient tempera-
ture for the ML line may be lower than the normal
laboratory temperature (22°C), hence the increase in
litter size in the cold environment. The result of slightly
larger litters in the MH line than the ML line in the
hot environment is also consistent with the a priori
hypothesis and suggests a slight advantage in the MH
line over the ML, possibly through higher thermal con-
ductance from the animals’ bodies conferred by less fat
and pelage insulation.

No line x environment interaction was detected for
conception rate, preweaning mortality, postweaning
survival, pup weaning weight or body temperature, and
means for these characteristics, by line and by environ-
ment, are listed in Tables 2 and 3, respectively.

Means for blood serum corticosterone level for line-
environment classes of dams and for lines of pups and
sires are provided in Table 4. There was a line x environ-
ment interaction (P < 0.05) in data collected on dams,
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Table 2. Least squares means (+SE or 95% CI) by selection line for reproductive and
maternal performance traits, postweaning survival, and body temperature

Traits MH? MC ML
Conception rate, %" 89.1 93.4 94.5
(95% CI) (78.6 to 94.8) (85.8 to 97.1) (87.8 to 97.6)
Preweaning mortality, pups®? 1.59 1.60 1.55
(95% CI) (1.21 to 2.09) (1.22 to 2.09) (1.17 to 2.06)
Postweaning survival rate, %" 97.2 97.7 97.0
(95% CI) (96.6 to 97.7) (97.2 to 98.2) (96.3 to 97.5)
Average weaning wt, gd 12.92 £ 0.51 13.70 £ 0.51 12.84 + 0.51
Body temperature, °C® 37.77 + 0.14 37.38 + 0.14 37.00 + 0.14

MH = selected for high heat loss; MC = control; ML = selected for low heat loss.

"No significant effects or interactions.

‘Number dead per litter at 3 wk after standardization to eight pups at birth.

4No significant contrast.
¢Significant contrast: MH — ML, P < 0.001.

and this arose from both single degree of freedom con-
trasts: 1) [(MH + ML)/2 — MC] x [H — C]; and 2) [MH
— ML] x [H — C]. The greater values of MH in the cold
environment and MC in the hot environment contribute
to the cause of these interactions. Observation and pre-
liminary data with mice of these lines on reaction to
restraint stress indicate that line MH is more stress
susceptible, and ML is less stress susceptible. Concen-
tration of corticosterone is associated with level of stress
response, at least on an acute basis.

Besides corticosterone, the other characteristic that
exhibited a line X environment interaction was litter
size. The MH dams had greater litter size born than
ML dams in the normal and hot environments, but not
in the cold environment where litter size was quite
similar for the two lines. Corticosterone level of dams
was greatest in the MH line in the cold environment.
A scenario could exist where MH dams were under more
stress in the cold environment, and that might explain
their smaller litter sizes relative to ML dams. But per-
haps most importantly, from the standpoint of selection
to reduce maintenance energy intake, litter size in ML
was not decreased any further in the hot environment

than in the normal, and ML had its best litter size
performance in the cold environment.

Given that corticosterone is involved in carbohydrate,
lipid, and fat metabolism, and that the young animals
in this experiment consumed more feed in the cold envi-
ronment and less in the hot environment (Kgwatalala
and Nielsen, 2004), it is surprising that differences due
to environment were not detected in the pups and sires.
Although the MH dams had greater corticosterone con-
centrations in the cold environment, the greatest corti-
costerone concentrations in the MC and ML dams were
in the hot environment. Evidently, physiological factors
related to corticosterone and stress are more important
than those related to corticosterone and metabolism of
nutrients. Of course another explanation is the limited
number of animals sampled across the environment
and line classes.

No line x environment interactions (P > 0.35) were
detected for either serum T3 or T4 concentrations.

Line Effects

Performance means of the three lines of mice for con-
ception rate, preweaning mortality, postweaning sur-

Table 3. Least squares means (+SE or 95% CI) by environmental temperature for reproduc-
tive and maternal performance traits, post-weaning survival rate, and body temperature

Traits Cold (12°C) Normal (22°C) Hot (31°C)
Conception rate, %* 88.3 96.0 91.8
(95%CI) (75.6 to 94.8) (89.9 to 98.5) (81.9 to 96.5)
Preweaning mortality, pups® 4.19 0.68 1.39
(95% CI) (3.31 to 5.29) (0.48 to 0.96) (1.04 to 1.86)
Postweaning survival rate, %° 91.9 98.4 98.6
(95% CI) (90.5 to 93.2) (98.1 to 98.7) (98.2 to 98.8)
Average weaning wt, g4 11.54 + 0.49 14.12 + 0.49 13.80 + 0.49
Body temperature, °C*® 37.39 + 0.22 37.61 + 0.22 37.14 = 0.22

2No significant effects or interactions.

"Number dead per litter at 3 wk after standardization to eight pups at birth.

Significant contrasts: (H + C)/2 - N, P < 0.001; H- C, P < 0.01.

“Significant contrast: H — C, P < 0.05.

dSignificant contrasts: (H + C)/2 - N, P < 0.02; H - C, P < 0.005.

°No significant contrast.
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Table 4. Least squares means (+SE) for serum corticoste-
rone (ng/mL) by line-environment classes for dams and
by line for 9-wk-old pups and sires

Environment MH? MC ML
Dams®

Cold (C, 12°C) 446 + 120 143 + 120 108 + 124

Normal (N, 22°C) 345 + 120 199 + 120 213 + 120

Hot (H, 31°C) 392 + 120 556 + 120 369 + 120

Mean for pups 149 £ 26 159 = 25 167 = 25

Mean for sires 116 + 23 127 + 24 80 + 24

AMH = selected for high heat loss; MC = control; ML = selected for
low heat loss.

PSignificant contrasts: [(MH + ML)/2 - MC] x [H - C], P < 0.02;
[MH - ML] x [H - Cl, P < 0.03.

vival, and maternal traits, and body temperature are
presented in Table 2. No significant differences between
lines were detected in conception rate, preweaning mor-
tality rate of the pups and postweaning survival. Differ-
ences between the three lines in average weaning
weights of pups at 3 wk of age were also small and
nonsignificant. Similar performance of all lines indi-
cates that selection for high or low maintenance re-
quirement had no correlated response in conception
rate, mortality rate, or maternal traits of the females.

Rectal temperatures were different (P < 0.001) be-
tween the MH and ML, and the MC was intermediate;
hence, there was no asymmetry of selection response.
The body temperature was also similar between males
and females and averaged 37.37 and 37.39°C for fe-
males and males, respectively. The divergence in body
temperature between the MH and ML noted above is
consistent with the findings of Mousel et al. (2001), who
reported significantly greater core body temperature in
the MH than in the ML line (37.19 vs. 36.68°C, respec-
tively). Selman et al. (2001) also reported marginally
greater body temperatures in the high voluntary feed
intake line of mice than in the low intake line.

The overall means for corticosterone concentration
in dams of 394 ng/mL for MH and 230 ng/mL for ML
(Table 4) are consistent with our observations that MH
is less able to handle stressors and ML is less affected
by stress and, concomitantly, more able to adapt to
stress. Although not significant, mean corticosterone
concentration for lines in the sires also ranked in the
same order. But there was no indication of any differ-

Table 5. Least squares means (+SE) for serum thyroxine
(T4; ng/mL) by line for 9-wk-old pups, dams, and sires
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Table 6. Least squares means (+SE) for serum triiodothyr-
onine (T3; pg/mL) by line-sex classes for 9-wk-old pups

Sex MH?* MC ML
Males (M)P 1.98 + 0.26 2.14 £ 0.25 2.35 £ 0.25
Females (F) 2.58 = 0.25 1.77 £ 0.25 1.82 + 0.25

MH = selected for high heat loss; MC = control; ML = selected for
low heat loss.
bSignificant contrast: [MH — ML] x [M — F], P < 0.01.

ence between lines (P > 0.50) in serum corticosterone
concentration in 9-wk-old pups.

Means for blood serum T4 concentration for lines of
pups, dams, and sires are in Table 5. In pups, selection
lines were significantly different in T4 concentration,
and this was explained by the contrast of MH — ML (P
<0.07); T4 concentration in MC animals was intermedi-
ate to the two selection lines. For dams and sires, no
line differences were detected (P > 0.30) for T4 serum
concentration. Sex of pups was a significant source of
variation (P < 0.01), with males having a greater T4
level than females (34.4 + 1.7 vs. 27.9 + 1.7).

Serum T3 concentration means for line X sex classes
of pups are given in Table 6, and for the three age
groups in the three environments in Table 7. A line x
sex interaction (P < 0.05) was detected in the pups and
was due to the [MH — ML] x [males — females] contrast.
In line MH, females had greater T3 concentration than
males; in line ML, males had the greater T3 level in
their serum than females.

Environment Effects

Differences in litter size (Table 1) between different
environmental temperatures clearly exist, and all of
the lines consistently produced the smallest litters in
the hot environment. Biggers et al. (1958) observed
litter sizes of 7.04, 7.25, and 8.06 for mice bred in hot
(28°C), cold (5°C), and temperate (21°C) environ-
ments, respectively.

Performance means observed in the three environ-
ments for conception rate, preweaning mortality, post-
weaning survival, and maternal traits, and body tem-
perature are presented in Table 3. Body temperature of
mice did not differ (P > 0.50) among the environments.
There were no differences (P > 0.10) in conception rate

Table 7. Least squares means (+SE) for serum triiodothy-
ronine (T3; pg/mmlL) by environments for pups, dams,
and sires

Age MH? MC ML Age Cold (C, 12°C) Normal (N, 22°C) Hot (H, 31°C)
Pups® 30.3 + 2.1 33.1 + 2.0 38.5 = 2.0 Pups® 2.60 + 0.19 2.35 + 0.20 1.62 + 0.20
Dams 31.3 + 2.1 31.7 + 2.1 324 + 2.1 Dams? 2.50 + 0.21 1.95 + 0.21 1.48 + 0.20
Sires 24.8 + 3.3 224 + 3.3 27.7 + 3.3 Sires® 2.22 + 0.17 — 1.37 + 0.15

2MH = selected for high heat loss; MC = control; ML = selected for
low heat loss.
bSignificant contrast: MH — ML, P < 0.07.

aSignificant contrast: H — C, P < 0.09.
bSignificant contrast: H — C, P < 0.04.
‘Significant contrast: H — C, P < 0.001.
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among the three environmental temperatures. The
greatest conception rate (96.0%) was however recorded
in the normal (22°C) environment and the lowest
(88.3%) in the cold environment. Barnett and Manly
(1956), working with two inbred mouse lines, reported
that at —3°C, 64% of all the C57BL matings and 38%
of all the GFF matings were barren. Wettemann et al.
(1976) reported that use of semen from heat-stressed
boars (34.5°C for 8 h and 31°C for 16 h for 90 d) resulted
in 28% conception compared with the 41.2% conception
rate in gilts bred with semen from the control boars
maintained at 23°C. Similar conception rates between
different environmental temperatures are therefore
contradictory to the findings of Barnett and Manly
(1956) and Wettemann et al. (1976), who obtained sig-
nificantly lower conception rates as a result of either
cold or heat exposure. The results are, however, consis-
tent with the findings of Wilson et al. (1972), who re-
ported no significant differences in conception rate
among the cold (12°C), normal (21°C), and hot (30°C)
environments (84, 88, and 83% conception rates, respec-
tively) in a four-way composite strain of mice. Similar
conception rates between the three environmental tem-
peratures may also be indicative of the high fertility
and adaptive capabilities of this particular strain of
mice to cold and heat stress.

Differences in preweaning mortality rate were sig-
nificant among the three environmental temperatures.
The difference in mortality between the extreme tem-
peratures was large (P < 0.001). Because the lowest
mortality rate was in the normal environment, there
was asymmetry (P < 0.005) in preweaning mortality
due to temperature. The highest mortality occurred in
the cold environment and the lowest in the normal envi-
ronment. Preweaning mortality rate in the hot and cold
environments represented increases of 104 and 516%,
respectively, over the mortality rate in the normal envi-
ronment. The higher mortality rate in the cold environ-
ment was mainly due to mortality of whole litters, and
95% of all the mortalities in the cold environment oc-
curred during the first week of life. The high prewean-
ing mortality rate experienced by mice in the cold envi-
ronment is consistent with the findings of Barnett and
Manly (1956); they reported heavy preweaning mortal-
ity in the C57BL and GFF strains at —-3°C compared
with 21°C. Preweaning mortality rate (dead pups per
litter) in the C57BL and GFF strains at —-3°C was 3.1
and 2.8, respectively, compared with 2.2 and 0.9, respec-
tively, at 21°C. Wilson et al. (1972) reported a higher
preweaning mortality in the cold (12°C) than in the
normal (21°C) and hot (30°C) environments in two com-
posite strains of mice and attributed the higher mortal-
ity in the cold environment to mortality of whole litters
rather than consistently high mortality within litters.
Barnett (1965) pointed out that one of the adverse ef-
fects of cold on female reproduction might be the death
of young, hairless pups, especially in the first few days
after birth. Mortality rate in the hot environment,
though significantly different from that in the normal
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environment, was far less than in the cold environment.
This could be an indication that the composite base
of these lines of mice can withstand heat stress more
efficiently than cold stress, at least within the range of
relative cold and heat stresses achieved by these ther-
mal environments. In addition, the level of heat stress
was probably less severe than the level of cold stress.

Postweaning survival rates were different (P < 0.05)
between mice raised in the hot and cold environments.
Mice in the hot environment had a higher survival rate
than those in the cold environment and there was no
indication of asymmetry of temperature effects. The
survival rate was also similar between the males and
females and averaged 96.7 and 97.7%, respectively. All
the above findings serve to further indicate that the
composite base of these lines of mice can withstand
heat stress more efficiently than cold stress.

There was a difference (P < 0.005) in weaning weight
(8 wk of age) between pups raised in the hot and cold
(13.80 vs. 11.54 g) environments, and there was also
asymmetry of (P < 0.02) of temperature effect on pre-
weaning growth, where weights in the normal environ-
ment exceeded those in the extremes. At weaning, pups
in the normal environment were 22 and 2.3% heavier
than those in the cold and hot environmental condi-
tions, respectively. Preweaning growth was therefore
more depressed in the cold than in the hot environment.
The above findings are consistent with those reported
by Biggers et al. (1958), who observed that growth of
mice in the cold environment (5°C) was more depressed
than in the hot environment and also noted very small
and nonsignificant differences between mice in the hot
(28°C) and temperate (21°C) environments. Wilson et
al. (1972) reported 3-wk body weights of 9.49, 12.07,
and 12.14 g in a four-way composite strain of mice in
the cold (12°C), normal (21°C), and hot (30°C) environ-
ments, respectively, also confirming more depressed
growth in the cold than in the hot environment.

Environmental differences in corticosterone concen-
tration were not detected in sires or pups. In pups,
corticosterone level in females was greater (P < 0.04)
than males (232 + 26 vs. 111 + 27). Environment was
a significant source of variation for serum concentration
of T3 in all age groups, and it was mostly explained by
the contrast of (H — C), with serum levels produced
under the C environment being greater than under the
H. This is consistent with the greater metabolic rate to
stimulate heat production under cold stress (Reichlin
et al., 1973; Kopecky et al., 1986).

Summary

Failure to detect line x environment interactions for
conception rate, preweaning mortality, postweaning
survival rate, body temperature, and T3 and T4 levels
is not consistent with the a priori hypothesis, which
postulated the existence of line x environment interac-
tions for the above traits. This indicates that the lines
were similarly affected by different environmental tem-
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peratures, and no line was at an advantage or a disad-
vantage for any of the above traits under different envi-
ronmental temperatures. This suggests that the lines
were able to make some metabolic, morphological
(changes in pelage density), and behavioral (changes
in activity levels, huddling, etc.) adjustments to accom-
modate different environmental temperatures.

Litter size and corticosterone level were affected by
significant line x environment interactions. However,
the line selected for low heat loss, and hence low mainte-
nance energy intake, did not have poorer litter size and
did not exhibit greater stress as measured by corticoste-
rone level than the other lines when exposed to varia-
tions of thermal environment.

Implications

No line x environment interactions were detected for
conception rate, preweaning mortality, or postweaning
survival rate. This implies that all lines compared simi-
larly when reared in hot and cold environmental tem-
peratures as when reared in normal temperature for
all these traits, possibly through some physiological,
morphological, and behavioral adjustments. Significant
line x environment interactions were detected for litter
size born and corticosterone concentration in dams.
But, the line selected for low heat loss, and hence low
maintenance energy intake, did not perform poorer rel-
ative to the other lines when exposed to differing ther-
mal environments. Thus, results from this study with
mice do not raise concern that selection to decrease
maintenance requirements in livestock will produce an-
imals with any greater liability to cope and perform
under an array of environmental temperatures.
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