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Abstract—Three probabilistic models were developed for characterizing the risk of mortality and subacute coagulopathy to Poouli,
an endangered nontarget avian species, in broadcast diphacinone-baited areas on Hawaii, USA. For single-day exposure, the risk
of Poouli mortality approaches 0. For 5-d exposure, the mean probability of mortality increased to 3% for adult and 8% for juvenile
Poouli populations. For Poouli that consume snails containing diphacinone residues for 14 d, the model predicted increased levels
of coagulopathy for 0.42 and 11% of adult and juvenile Poouli populations, respectively. Worst-case deterministic risk character-
izations predicted acceptable levels of risk for nonthreatened or endangered species such as northern bobwhite quail and mallards.
Also, no acute toxicity was noted for snails and slugs that feed on diphacinone baits.

Keywords—Probabilistic Risk Poouli Diphacinone Rodenticide

INTRODUCTION

Introduced rodent species can negatively impact native eco-
systems. For example, rats have contributed to the extinction
of indigenous flora and fauna on Hawaii, USA, as well as other
islands [1]. The control of rodent pests (rats, mice, ground
squirrels, opossum) in agricultural and urban environments
relies primarily on the use of rodenticides. Warfarin, a widely
used first-generation anticoagulant rodenticide, largely has
been replaced by the more toxic rodenticides such as dipha-
cinone, chlorophacinone, and brodifacoum [2,3]. For example,
the acute oral median lethal dose (LD50) for rats (Rattus sp.)
is 59 mg/kg for warfarin and 2 mg/kg for diphacinone [4].
Current annual usage of rodenticides in the United States is
approximately 3,000 lb of active ingredients (6 million lb of
rodenticide baits) [5]. In remote areas, broadcast application
of rodenticide baits such as diphacinone have been shown
effectively to control rat populations [6]. In humid environ-
ments such as Hawaii, all-weather rodenticide baits (grain for-
tified at 0.005% weight/weight [w/w] diphacinone encapsu-
lated in wax or pressed with oil) commonly are used.

When considering the use of rodenticides to control de-
structive introduced rodent species, risks to native species also
must be considered. For example, gastropods (snails and slugs)
have been observed to consume rodenticide baits in bait sta-
tions and on forest floors [7]. It is likely that lipophilic ro-
denticides such as diphacinone subsequently would be ab-
sorbed and retained by the gastropods. It is plausible that birds
may be exposed to rodenticides through the consumption of
diphacinone-laden gastropods.

* To whom correspondence may be addressed
(john.j.johnston@aphis.usda.gov).

Invertebrate exposure to rodenticides

Following the aerial distribution of Brodifacoum rodenti-
cide baits on Red Mercury Island and Coppermine Island, New
Zealand, a variety of invertebrates, including snails and slugs,
were collected on and around the baits [8]. In another study,
Spurr and Drew [9] monitored invertebrates feeding on four
different types of rodenticide bait matrices that were placed
on the New Zealand forest floor. All bait types were consumed
by terrestrial invertebrates [9].

Similar results were reported by Dunlevy et al. [7]. Fol-
lowing broadcast application of placebo rodenticide baits in
Hawaiian forests, 21 species of invertebrates were observed
on the baits. Although ants were the most abundant species,
snails and slugs represented 27% of the observed invertebrates.
Deroceras laeve (yellow slug) accounted for more than half
of the gastropods observed on the baits.

Anticoagulant rodenticides generally are less toxic to in-
vertebrates than to mammals or birds. For example, 0.002%
brodifacoum baits are extremely toxic to most rodent and rap-
tor species. However, when fed to crabs for several days, no
toxicity was observed [10]. With respect to pesticide adsorp-
tion, disposition and toxicity, crabs are more similar to gas-
tropods and insects than mammals or birds [11]. This suggests
that invertebrates may be able to feed on rodenticide baits or
carcasses for extended periods without suffering acute toxi-
cosis. This would permit invertebrates to ingest and retain
significant quantities of anticoagulant rodenticides. However,
because Hawaii contains endangered species of snails, it would
be prudent to examine the potential toxicity of diphacinone to
snails and slugs before beginning widespread distribution of
diphacinone baits. Quantification of diphacinone residues in
snails and slugs that had consumed diphacinone rodenticide
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baits could be used to estimate diphacinone ingestion in birds
that feed on gastropods.

Rodenticide risks to invertebrate-eating birds

Past studies have evaluated avian risks posed by rodenticide
use. Most have examined the risk to predatory or scavenging
species. However, a few studies have suggested a link between
rodenticide use and risk to nontarget birds that consume in-
vertebrates as a significant portion of their diet.

Many passerine and duck species primarily consume in-
vertebrates. Magpies, hawks, and seagulls routinely consume
insects, snails, and slugs [12]. Following baiting with 0.005%
brodifacoum rodenticide baits, Rammel et al. [13] collected
carcasses of nontarget animals for as long as 28 d postbaiting.
Nontarget fatalities included ducks, seagulls, hawks, magpies,
and passerines. In all the nontarget species collected, the high-
est brodifacoum levels were observed in the liver, followed
by fat and muscle. The highest mean liver concentration (8.1
parts per million [ppm]) was detected in a passerine bird (spe-
cies unreported). The common dietary link between all the
species of poisoned birds detected in this study was inverte-
brates. These birds likely were exposed to brodifacoum
through the consumption of brodifacoum-containing inverte-
brates.

Following a rodenticide (sodium monofluoroacetate)-bait-
ing program in New Zealand, robin populations decreased by
approximately 50% in baited areas compared to populations
in unbaited areas. Autopsy of freshly dead robins revealed
fragments of invertebrate exoskeletons in the gizzard. None
of the autopsied robins that were found dead following the
baiting program contained remnants of rodenticide bait in their
digestive tracts. Other invertebrate-consuming species found
dead following the baiting program include the tomit, gray
warbler, and rifleman. None of the gastro-intestinal tracts con-
tained rodenticide baits [14], suggesting that secondary ex-
posure via consumption of invertebrates may have been re-
sponsible for delivering lethal doses of rodenticides to these
birds.

Following a brodifacoum-baiting program in New Zealand,
significant population decreases were observed for the robin
(50%), weka (100%), kaka (20%), and morepork owl (25%)
[15]. The diet of the robin consists almost entirely of insects;
the weka diet consists primarily of insects, snails, and slugs;
the kaka consumes insects and fruit; and the morepork pri-
marily consumes large insects, snails, and slugs [12]. Again,
the primary link between all these nontarget fatalities is the
consumption of significant quantities of invertebrates.

In another study, little spotted kiwi populations decreased
by 10% following baiting with a 2% brodifacoum bait. The
diet of the kiwi consists exclusively of small invertebrates such
as the larval stages of insects and slugs [16]. The results of
this study reinforce the hypothesis that rodenticide poisoning
may be mediated by invertebrates.

Magnitude and persistence of rodenticide residues

The persistence and potency of anticoagulant rodenticides
suggests that the risk of accidental poisoning of nontarget
wildlife is greater than that associated with less persistent
widely used modern organophosphate and pyrethroid insec-
ticides and triazine and glyphosate herbicides [16]. Because
anticoagulant rodenticide residues can remain in animal tissues
for more than 8 months [17], birds feeding on rodenticide-

containing invertebrates may be accumulating a toxic dose
over an extended period of time.

The probability of such a scenario is reinforced in a review
of over 200 published references (encompassing 62 pest spe-
cies) that concludes that repeated exposure to anticoagulant
rodenticides on successive days did not decrease the total dose
needed for acute toxicity [18]. Essentially, the dose accumu-
lated over multiple days is additive. Given the long persistence
of rodenticide residues in exposed animals, this suggests that
secondary poisoning of nontarget wildlife may result from the
repeated consumption of prey (including invertebrates) con-
taining low levels of these rodenticides. In a study of nontarget
fatalities associated with successive baiting with anticoagulant
rodenticides (one month apart), a significant increase in non-
target poisoning was documented after the second baiting [15].

Anticoagulant rodenticide toxicity to birds

The lethal dose of rodenticides to most native birds is un-
known [15]. However, given the persistence of rodenticides in
prey and the ability for nontarget species to accumulate toxic
doses over an extended period of time, many species of birds
may be at significant risk with respect to anticoagulant ro-
denticide use. In a review of nearly 50 secondary poisoning
studies with rodenticides, Joermann [19] concluded that an-
ticoagulant rodenticides are acutely toxic. In a seven-year sur-
vey of nontarget wildlife poisonings in New York State, USA,
anticoagulant rodenticide (diphacinone, chlorophacinone, bro-
difacoum)-poisoned birds accounted for more than half of the
wildlife fatalities [20].

Subacute effects

Savarie et al. [21] examined the effects of secondary di-
phacinone exposure to birds. In this study, golden eagles were
fed 454 g (1 lb) of sheep tissue containing average incurred
diphacinone residues of 2.7 ppm. The eagles were offered 454
g (1 lb) of this sheep tissue per day for 5 (4 birds) or 10 (3
birds) consecutive days. Based on consumption, the mean di-
phacinone doses for eagles were 0.17 mg/kg/d (0.87 mg/kg
total) or 0.16 mg/kg/d (1.16 mg/kg total) for the 5 and 10-d
exposure groups, respectively. Although no acute toxicity was
noted in any of the eagles, prolonged prothrombin clotting
times were noted for all diphacinone-exposed treatment
groups.

Although rodenticides offer many potential benefits to ag-
riculture and ecosystem restoration efforts, potential risks to
nontarget wildlife must be considered before wide-scale ro-
denticide baiting programs should be initiated. The purpose
of this study was to assess such risks with respect to a proposed
diphacinone broadcast–baiting program for the control of in-
troduced rats on Hawaii. Diphacinone residues were quantified
in snails and slugs that had fed on diphacinone-containing
rodenticide baits for 7 d in a laboratory setting or had been
collected on or near diphacinone rodenticide baits during a
diphacinone-baiting program to control introduced rats on Ha-
waii. These data were used to estimate potential diphacinone
exposure and associated risks for birds potentially consuming
gastropods.

MATERIALS AND METHODS

Animal procurement

For the laboratory exposure study, slugs (Limax maximus
and Deroceras laeve) and snails (Oxychilus spp.) were col-
lected from Hawaii Volcanoes National Park. Animals for con-
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trol analyses, analytical method development, and laboratory-
exposure tests were collected from areas with no history of
diphacinone use. Protective plastic bait stations were placed
on the ground at 5-m intervals along trails and were maintained
at high humidity with Perlite and water. A dilute solution of
liquid manure and fish emulsion was added as a scent lure to
attract snails and slugs. Snails and slugs were removed from
the stations daily. Slugs and snails also were collected by
searching in leaf litter and other appropriate areas.

To permit the determination of residues from animals ex-
posed to diphacinone under field conditions, snails and slugs
were collected from areas where diphacinone rodenticides cur-
rently were being used. For the field-exposure study, inver-
tebrates were collected on or within 1 m of rodenticide baits.

Animal maintenance

For the laboratory-exposure study, snail and slugs were
maintained at the U.S. Department of Agriculture/Animal and
Plant Health Inspection Service/Wildlife Services National
Wildlife Research Center Hawaii Field Station (Hilo, HI,
USA). Animals were segregated by species. Limax maximus
(1–3 individuals), Deroceras laeve (3–6 individuals), and Ox-
ychilus spp. (ø45 individuals) randomly were assigned to
treatment and control containers. All individuals within each
container were weighed to determine biomass per container.
Gastropod biomass was recorded before the beginning and at
the end of each experimental trial.

Containers consisted of 4-inch diameter styrofoamt con-
tainers with plastic lids. Containers were 5-cm deep and were
covered with plastic lids containing 10 holes (1-mm diameter)
to provide ventilation for snails and slugs. To provide moisture
for the test animals, paper towels moistened with distilled
water were placed on the bottom of each container. Snails and
slugs were maintained on Purinat (St. Louis, MO, USA) lab-
oratory rodent chow ad libitum under an approximately equal
light:dark cycle at 218C.

Laboratory diphacinone exposure

A total of 45 (n 5 45) gastropod samples (Limax maximus
[n 5 15], Deroceras laeve [n 5 15], and Oxychilus spp. [n
5 15]) were offered HACCO Ramikt Green (Madison, WI,
USA; fish-flavored, weather-resistant pelletized rodenticide
bait containing 0.005% rodenticide bait) ad libitum for 7 con-
secutive days. Rodent chow was not provided during the test
period. A control group of five samples of each species (n 5
15) was offered rodent chow instead of Ramik Green. For each
species, samples containing approximately 3.0 g of gastropod
tissue (Limax maximus ø 1 individual, Deroceras laeve ø 9
individuals, Oxychilus spp. ø 45 individuals per sample) were
collected immediately after the 7-d feeding period (n 5 5), 24
h after the bait was removed (n 5 5), and 7 d after the bait
was removed (n 5 5).

Frozen samples were shipped to the National Wildlife Re-
search Center (NWRC) analytical chemistry laboratories (Fort
Collins, Colorado, USA) for diphacinone residue analyses.
Samples were shipped with dry ice to ensure that samples
remained frozen during shipping.

Chemical analysis

The NWRC Analytical Chemistry Method 105 (Determi-
nation of diphacinone residues in snails and slugs) was de-
veloped and validated by the NWRC Analytical Chemistry
Project [22]. This method was used to quantify diphacinone

residues in snail and slug whole body tissues. Diphacinone
residues in control, laboratory-exposed, and field-exposed gas-
tropods were quantified by reversed-phase ion-pair high-per-
formance liquid chromatography. The samples were frozen in
liquid nitrogen and homogenized in a Spex (Metuchen, NJ,
USA) Centiprep 6850 freezer mill. A 0.5-g aliquot of the ho-
mogenized tissue was mixed with 5 g sodium sulfate and ex-
tracted in triplicate with 10 ml acidified chloroform:acetone
(1:1). The extracts were pooled and evaporated to dryness at
608C under a gentle stream of nitrogen. The residue was re-
constituted in 2 ml chloroform and 3 ml hexane and subse-
quently cleaned up via elution through a solid-phase extraction
column containing 500 mg aminopropyl sorbent. The solid-
phase extraction column was rinsed with 3 ml hexane:chlo-
roform (2:1) and 3 ml chloroform. Diphacinone was recovered
from the column by elution with 10 ml of 4 mM methanolic
tetrabutylammonium phosphate. This eluate was reduced to
dryness by evaporation under nitrogen and redissolved in 1.0
ml 60:40 methanol:water containing 5 mM tetrabutylammon-
ium phosphate. Diphacinone was separated by reversed-phase
ion-pair high-performance liquid chromatography using a C18
column and a pH 8.5 mM tetrabutylammonium:50 mM dih-
ydrogen phosphate in methanol:water gradient mobile phase.
Diphacinone was quantified by ultraviolet detection (325 nm)
against an external standard calibration curve.

Statistical analysis

Diphacinone residue data and residuals were examined for
normality by using the Shapiro-Wilk test in PROC UNIVAR-
IATE (SAS, Gary, NC). The variance of the residuals was
examined visually by plotting the residuals versus predicted
values. Diphacinone levels in gastropod species were com-
pared via two-way analysis of variance with residue concen-
tration as the response and species, time, and species·time as
the independent variables. Fisher’s least-significant difference
test was used for multiple comparison means [23].

Deterministic risk quotients

Comparison of risk quotients to levels of concern is a
screening approach used by the U.S. Environmental Protection
Agency (U.S. EPA) for evaluating worst-case potential hazards
to nontarget species [24]. For this study, risk quotients were
calculated by dividing exposure (upper 95th percentile of Der-
oceral diphacinone concentrations from laboratory-feeding
study 5 4.93 ppm) by the median lethal concentration (LC50)
for potentially exposed nontarget species. These LC50 esti-
mates were generated from dose versus mortality experiments
conducted with juvenile birds. In diphacinone-feeding studies
conducted by Shirazi et al. [25], adult northern bobwhite quail
LC50 values were 2.5 times greater than juvenile values. Based
on these findings, diphacinone LC50 values for juvenile north-
ern bobwhite quail and mallards were multiplied by 2.5 to give
LC50 estimates for adult birds of the same species. The LC50
values for adult and juvenile Poouli were estimated by dividing
the appropriate mallard LC50 value by 38.5, the interspecies
range of toxicity values for the anticoagulant rodenticide Bro-
difacoum. These risk quotients were compared with the 0.5
level of concern for nontarget species or 0.1 level of concern
for threatened or endangered species, as appropriate for the
species of consideration [24].

Probabilistic model

Probabilistic models were constructed to apply single-day
toxicity and 5-d dietary exposure toxicity data to the risk as-
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Fig. 1. Probabilistic model based on single-day acute exposure. LD50 5 median lethal dose; bw 5 bodyweight.

sessment using Crystal Ball (Decisioneering, Denver, CO,
USA). Each iteration of the model simulated consumption and
diphacinone exposure and then calculated the risk of mortality
for an individual bird. Each iteration of the single-day exposure
model was initiated by random selection of a daily energy
requirement from a normal distribution of energy needs as
calculated by Nagy et al. [26] for a 32-g adult and 5-g juvenile
passerine (Fig. 1). The fraction of snails and insects in the
daily diet of each bird was estimated by random selection of
normally distributed values based on previously reported con-
tents of Poouli gastrointestinal tract [27]. Energy content dis-
tributions for snails and insects (beetles) [28,29] were sampled
and multiplied by the dietary fraction of snails and insects to
yield the overall energy content for the daily diet. This daily
energy requirement was divided by energy content to yield the
weight of the daily diet. This was multiplied by the fraction
of snails in the diet to yield the weight of snails consumed.
The weight of snails consumed was multiplied by a randomly
selected value from the distribution of snail diphacinone-res-
idue values to yield the daily diphacinone dose (mg diphaci-

none/g body weight). This dose was regressed against a dose
versus probability mortality curve constructed for each bird
to yield a probability of mortality. The dose versus probability
curve was constructed from randomly sampled values from
normal distributions of slope and log median dose (LD50)
values for adult quail receiving a single dose of diphacinone
[30–32]. Because the interspecies range of reported rodenticide
LD50 values differ by a factor of 38.5, the estimate quail LD50
values were extrapolated to Poouli applicable values following
division by a randomly selected value between 1 and 38.5.
Using the Crystal Ball (Decisioneering) 2D function, 95% con-
fidence intervals (CIs) for mortality predictions were calcu-
lated by running 200 uncertainty trials consisting of 100 var-
iability trials each. The fraction of snails in the diet and the
diphacinone content of snails were categorized as variability
with the remaining assumptions categorized as uncertainty.

The 5-d exposure model was initiated by multiplying ran-
domly selected values from the normal distributions of the
fraction of snails in the diet and concentration of diphacinone
residues in diphacinone-exposed snails to yield a dietary di-
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Fig. 2. Probabilistic model based on 5-d dietary exposure toxicity data. LC50 5 median lethal concentration.

phacinone concentration (Fig. 2). This concentration was re-
gressed against the diphacinone dietary concentration versus
probability of mortality curve for juvenile mallards fed di-
phacinone-fortified diets for 5 consecutive days [33]. For es-
timation of adult mortality, these LC50 values were extrapo-
lated to adult LC50 values following multiplication by 2.5
[25]. This age-related differential in LC50 likely stems from
juvenile versus adult differences in food consumption rates (g
food/g body wt). The LC50 values were extrapolated to es-
timate Poouli LC50 values following division by a randomly
selected value between 1 and 38.5. Using the Crystal Ball 2D
function, 95% CIs for mortality predictions were calculated
by running 200 uncertainty trials consisting of 100 variability
trials each. The fraction of snails in the diet and the dipha-
cinone content of snails were categorized as variability with
the remaining assumptions categorized as uncertainty.

The probability of nontarget subacute effects was estimated
using the single-day exposure probabilistic model with the
following modification: For each iteration, a diphacinone dose
was calculated for 14 consecutive days. A risk quotient then
was calculated by dividing the average diphacinone dose by
the LD50 for each bird. A distribution of risk quotients was

generated for 10,000 birds (Fig. 3). These risk quotients were
compared to a 0.017 level of concern [34].

RESULTS AND DISCUSSION

Diphacinone toxicity to snails and slugs

At the end of the 7-d posttreatment period, all control and
diphacinone-exposed snails and slugs were viable. This indi-
cates that the acute primary toxicity of diphacinone to snails
and slugs feeding on diphacinone rodenticide baits is minimal.

Diphacinone residues in snails and slugs

Diphacinone residues in laboratory diphacinone–exposed
snail and slug tissue of the three species analyzed ranged from
,limit of detection to 4.00 mg/kg (Table 1). The diphacinone
residue data were normally distributed ( p 5 0.356); the re-
siduals were normally distributed ( p 5 0.637) and homoge-
neous. The analysis of variance indicated that the effect of
species was highly significant ( p , 0.0001), although time ( p
5 0.2493) and species·time ( p 5 0.443) were not significant.
Because the effect of species was highly significant, mean
residue values for each species were compared (Table 1). For
these data, the Fisher’s test indicated a least significant dif-
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Fig. 3. Probabilistic model for prediction of coagulopathy based on 14-d exposure data. RQ 5 risk quotient; LD50 5 median lethal concentration;
bw 5 bodyweight.

Table 1. Residues of diphacinone in laboratory-exposed snail and slug tissues

Species

Range of
residue concn.

(ppm)a

Mean
residue

concn. (ppm)b

95%
Percentile

residue
concn. (ppm)

t Tests
(LSD)c

Snails
Oxychilus spp. n 5 15 1.06–2.91 1.77 2.79 A

Slugs
Limax maximus n 5 19
Deroceral leave n 5 37

,MLOD–2.26
1.63–5.01

0.806
2.64

2.08
4.93

B
C

a ppm 5 parts per million.
b To calculate the mean residue for samples reported as ,MLOD (method limit of detection), the MLOD

was used as the value for these samples.
c LSD 5 least significant difference; means with the same letter are not significantly different ( p 5

0.005).

ference of 0.4813. Based on this value, the mean residue for
each species of gastropod was significantly different. The di-
phacinone residues in Deroceras contained the highest resi-
dues and Limax contained the lowest. The magnitude of res-
idues in Oxychilus, the only snail tested, were midway between
the two slug species.

For each species, the diphacinone residues in the gastropods
did not change significantly between the first sampling interval
(immediately following 7-d exposure period) and the last sam-
pling interval (7 d postexposure). This conclusion is confirmed
by visual inspection of the mean residue (6 standard deviation)

versus sampling period data presented in Figure 4; for each
species, the error bars overlap for all sampling periods. Based
on these results, data from all sampling periods were pooled
for exposure/risk assessment. The fact that diphacinone con-
centrations in gastropods did not decline for 7 d postexposure
is consistent with the observation that anticoagulant rodenti-
cide poisoning is somewhat cumulative; doses acquired over
several days are excreted very slowly.

The magnitude of residues observed in field-collected gas-
tropods was less than half of that observed in the laboratory
study. This was due to the fact that, under field conditions,
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Fig. 4. Diphacinone residues versus sampling period.

Table 2. Residues of diphacinone in field-exposed snail and slug tissues

Species
Range of residue

concn. (ppm)a

Mean
residue

concn. (ppm)b

95%
Percentile

residue
concn. (ppm)

t Tests
(LSD)c

Snails
Oxychilus spp. n 5 3 0.59–0.79 0.69 0.78 A

Slugs
Limax maximus n 5 3
Deroceral leave n 5 3

0.60–0.61
0.21–0.25

0.61
0.23

0.61
0.25

A
B

Unknown species n 5 2 0.56–0.68 0.62 0.67 A

a ppm 5 Parts per million.
b To calculate the mean residue for samples reported as ,MLOD (method limit of detection), the MLOD

was used as the value for these samples.
c LSD 5 Last significant difference; means with the same letter are not significantly different (p 5

0.005).

gastropods have a variety of potential food sources. However,
in the laboratory feeding trials, the only food source available
was the diphacinone baits. Contrary to the laboratory study,
higher levels of diphacinone were observed in Oxychilus snails
than in any of the slug species; mean residue values ranged
from 0.69 ppm for Oxychilus to 0.23 ppm for Deroceral leave
(Table 2). This suggests that, under field conditions, snails
probably spend more time consuming the baits than do slugs.

Secondary exposure assessment

Deterministic risk assessment. Hawaiian birds could be ex-
posed to diphacinone in baiting areas via consumption of gas-
tropods containing diphacinone residues. Both quail and mal-
lard inhabit the Hawaiian Islands and consume invertebrates
including gastropods [35,36]. Potential daily exposure can be
determined via the widely used approach (U.S. EPA Ecological
Committee on Federal Insecticide, Fungicide, and Rodenticide
Act Risk-Assessment Methods Terrestrial Draft Report 1999;
http://www.epa.gov/ecotox):

dietary diphacinone concentration

(mg diphacinone/kg food or ppm) 5 PD ·C ·PT

The PD is the proportion of diet consisting of gastropods
(unitless), C is the concentration of diphacinone residues (ppm
5 mg diphacinone/kg gastropod), and PT is the fraction of
gastropods consumed in treated area. Because diphacinone di-
etary toxicity data are available for northern bobwhite quail
and mallard (Table 3), these species can be used to estimate
secondary risks to birds consuming gastropods in diphacinone-

baited areas in Hawaii. For a worst-case scenario, we assumed
that PD and PT were equal to one; the diet of these birds
consisted entirely of gastropods containing 4.93 ppm dipha-
cinone (the upper 95% confidence limit for laboratory-exposed
gastropod diphacinone residues). For adult quail and mallard,
the diphacinone LC50 values are .1,250 and 2,265 ppm, re-
spectively (Table 3). Dividing the dietary diphacinone con-
centration (4.93 ppm) by the LC50 values yielded a risk quo-
tient of ,0.0004 for adult quail and 0.002 for adult mallards.
For juvenile quail and mallards, the LC50 values are .5,000
and 906 ppm, which yield risk quotients of ,0.001 and 0.005,
respectively. Because all these risk quotients are less than the
0.5 level of concern, the risks of diphacinone-induced mor-
tality to nonthreatened or nonendangered birds consuming di-
phacinone-containing gastropods appear to be acceptable.

In addressing such risks on Hawaii, the Poouli (Melam-
prosops phaesoma), an endangered native Hawaiian bird, must
be considered. The Poouli likely represents the honeycreeper
species of greatest concern; of all endangered honeycreeper
species, Poouli populations are the smallest. Insects and snails
constitute a significant portion of the Poouli diet [27]. Because
no diphacinone toxicity data exist for the Poouli, toxicity data
from surrogate species must be employed. For this risk as-
sessment, it was assumed that the diphacinone LD50 for the
adult Poouli is less than 2,265 ppm, which is equivalent to
that of the most-sensitive species (mallard). Examination of
the range of reported mammalian toxicity values for dipha-
cinone suggests an interspecies range for acute toxicity be-
tween one to two orders of magnitude (50-fold; Table 4). For
birds, there are insufficient data to estimate interspecies sen-
sitivity to diphacinone; toxicity values are documented for only
mallard and northern bobwhite quail. However, such data exist
for the rodenticide brodifacoum, an anticoagulant with the
same mode of action as diphacinone [37]. The range of mam-
malian interspecies sensitivity to brodifacoum (86-fold) is be-
tween one and two orders of magnitude, which is similar to
the 50-fold range for diphacinone LD50 values. The range of
avian interspecies sensitivity to brodifacoum is 38.5-fold (Ta-
ble 5); given the similarity in the range of mammalian inter-
species sensitivities for diphacinone and brodifacoum, we as-
sumed that the range for avian sensitivity to brodifacoum also
was applicable to diphacinone. To extrapolate quail LD50 val-
ues to Poouli, each mallard LD50 value was divided by 38.5.
This is consistent with the conservative assumption that the
Poouli are more sensitive to diphacinone than are mallard.
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Table 3. Deterministic avian secondary risk assessments; LC50 5 Median lethal concentration

Species

Diphacinone
residue
concn.
(ppm)a

LC50
(ppm)

Risk
quotient

Level of
concern

Northern Bobwhite Quail

Mallard

Po’ouli

4.93

4.93

4.93

.1,250b

.5,000cde

2,265b

906cdf

58.8b

23.5c

,0.0004b

,0.001c

0.002b

0.005c

0.08b

0.21c

0.5

0.5

0.1

a Upper 95th percentile for diphacinone residue concentrations in Deroceral (laboratory-feeding study).
b Adult.
c Juvenile.
d U.S. Environmental Protection Agency [5].
e Long et al. [33].
f Long et al. [30].

Table 4. Mammalian anticoagulant median lethal dose values
(mg/kg)

Rodenticide Rabbit Dog Cat Pig Range

Brodifacoum
Diphacinone

0.29a

35c
3.56b

3d
25a

14.7c
0.5a

150e
25/0.29 5 86

150/3 5 50

a U.S. Environmental Protection Agency [5].
b Godfrey [41].
c Interagency Program on Chemical Safety [37].
d Mount and Feldman [42].
e Kosmin and Barlow [43].

Table 5. Avian anticoagulant rodenticide toxicity values; LD50 5
median lethal dose; LC50 5 median lethal concentration

Species

LD50 (mg/kg)

Brodifacoum Diphacinone

LC50
(ppm)

Diphacinone

Northern bobwhite
Mallard 0.26c

1,630a

3,158c
388b

906d

Canada goose
Black-backed gull
Purple gallinule
California quail
Mallard

,0.75e

,0.75e

0.95e

3.3e

4.6e

Black-billed gull
Ring-necked pheasant
Australian harrier
Blackbird
Hedge sparrow

,5e

10e

10e

.3e

.3e

House sparrow
Pukeko
Wax eye

.6e

0.95e

.6e

Range 38.5 1.9 2.3

a Campbell et al. [31].
b Shirazi et al. [25].
c U.S. Environmental Protection Agency [5].
d Long et al. [33].
e Godfrey [41].

Anticoagulant acute (LD50) and dietary (LC50) toxicity
values for identical wildlife species are available only for the
anticoagulant diphacinone and the species bobwhite quail and
mallard. The range of LD50 values for these two species is
1.9, which is nearly identical to the 2.3-fold range of LC50
values (Table 5). Based on the similarity of LC50 and LD50
ranges, we also applied the 38.5 interspecies correction factor
to the extrapolation of quail LC50 values to Poouli.

Because risk quotients for mallard and quail were less than
the 0.5 level of concern, the deterministic approach indicated
that broadcast distribution of diphacinone baits on Hawaii
would be accompanied by an acceptable level of risk for non-
threatened avian species such as mallard and quail (Table 3).
However, the juvenile Poouli risk quotient of 0.21 exceeds the
0.1 level of concern for threatened and endangered species.
This suggests that a more detailed, probabilistic-based risk
assessment was warranted to better estimate nontarget sec-
ondary risks to the Poouli.

Probabilistic risk assessment. The probabilistic-based 1-d
exposure model predicted very low probabilities of mortality
for exposed Poouli. Predicted levels of mortality were 0.03
(95% CI 5 3.9 3 1025 to 0.18) and 0.57% (95% CI 5 2.6 3
10–4 to 4.28) for adult and juvenile populations, respectively
(Fig. 5). Additionally, examination of percentile rankings for
probability of mortality (data not shown) indicates that ap-
proximately 30% of adults and 80% of juveniles have greater
than 0.01% (i.e., one in ten thousand) probability of mortality.
Examination of the range of predicted mortalities (data not
shown) indicate that the greatest probability of mortality for
an individual Poouli is about 5.5% for adults and 28% for
juveniles (i.e., no bird would have greater than 28% probability
of dying due to diphacinone exposure).

For multiple-day exposures, each bird’s exposure varied

from day to day because different values for the quantity of
invertebrates consumed and the diphacinone concentrations of
the invertebrates were selected from the appropriate distri-
butions. However, the same distributions were sampled each
day because the residue analyses of the laboratory-exposed
invertebrates indicated that the intraspecies diphacinone con-
centrations were not significantly different during the 7-d post-
exposure period. Because diphacinone residues are persistent
in invertebrates, it is probable that birds could consume di-
phacinone-containing invertebrates on multiple days. Given
the persistence of rodenticides in animals, it is likely that di-
phacinone doses consumed on consecutive days would be at
least partially cumulative. As such, it is logical that the 5-d
exposure model predicted higher probabilities of mortality for
Poouli than did the single-day exposure model. The mean mor-
tality for exposed populations of Poouli were 3.2% (95% CI
5 0.24–11.9) for adults and 7.7% (95% CI 5 0.62–22.6) for
juveniles. For this 5-d exposure scenario, the model predicted
that 99.4% of adults and 100% of juvenile Poouli have greater
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Fig. 5. Probability of mortality for adult and juvenile Poouli, single-
day exposure.

Fig. 6. Probability of coagulopathy in adult and juvenile Poouli based
on 14-d exposure. Probability versus risk quotients (dose/LD50).
LD50 5 median lethal concentration.

than 0.01% probability of mortality. Examination of the range
of predicted mortalities (data not shown) indicates that the
maximum probability of mortality for an individual Poouli is
about 30.4% for adults and 46.6% for juveniles.

Anticoagulant baiting programs with brodifacoum were as-
sociated with 20 to 100% reductions in avian populations
[14,15]. The upper 95% confidence levels of mortality pre-
dicted by this model are less than 23%. These lower levels of
mortality predicted for the broadcast application of diphaci-
none baits is consistent with the toxicity data presented in
Table 5; brodifacoum is 3 to 4 orders of magnitude more toxic
to birds than is diphacinone.

Evaluation of potential undesirable effects to nontarget
wildlife, especially threatened or endangered species, should
not be limited to mortality because nonlethal effects also could
affect the survival of exposed individuals. For anticoagulant
rodenticides, such effects include delayed prothrombin clotting
times, which have been observed in diphacinone-exposed birds
[21]. Prolonged prothrombin clotting times could result in a
compromised ability to survive insults leading to external and/
or internal bleeding. Unfortunately, prediction of the magni-
tude of delayed clotting times in Poouli is not possible because
dose versus prothrombin clotting time data are not available
for diphacinone-exposed birds. Given this paucity of data, an
estimated no-adverse-effect-level risk quotient was generated
based on the observed no-coagulopathy level for diphacinone-
exposed rats [34]. In that study, the coagulopathy-no-effect
level was 0.04 mg/kg body weight. The observed LD50 for
diphacinone was 2.3 mg/kg body weight. Division of the no-
effect level by the LD50 yielded a no-effect risk quotient of
0.017. Because levels of concern for risk quotients are applied
routinely to a wide variety of species, we assumed that ex-
posures associated with risk quotients less than 0.017 presented
no detectable risks of coagulopathy [38]. Using the 14-d ex-
posure probabilistic model, a distribution of risk quotients was
generated for quail and Poouli. For both adult and juvenile
quail, all subacute risk quotients for quail were less than the

0.017 level for concern. The predicted levels of measurable
coagulopathy in exposed Poouli can be gleaned from the dis-
tributions for 10,000 adult and juvenile risk quotients (Fig. 6).
The average risk quotient was ,0.001 (95% CI 5 0.00012–
0.0093) for adults and 0.001 (95% CI 5 0.00046–0.035) for
juveniles. For Poouli consuming snails in a diphacinone-baited
area, the model predicted that 4.0% of adults and 10.9% of
juveniles would display measurable levels of coagulopathy. If
exposure persists for more than 14 d, then these predicted
levels of coagulopathy-positive Poouli likely would increase.

Delayed prothrombin clotting times were noted for eagles
that had been exposed to 0.87 mg/kg body weight over 5 d
[21]. Based on the average concentration of 1.77 ppm dipha-
cinone, a Poouli would need to consume about 15.7 g of snails
over 5 d to ingest this dose. This equates to consumption of
less than 10% of the Poouli’s body weight of snails each day.
This seems quite plausible for a bird such as the Poouli, whose
diet typically consists of about 60% snails [27]. This analysis
reinforces the reasonableness of the model predictions; the risk
of diphacinone-induced coagulopathy in Poouli may be sig-
nificant.

Several assumptions included in the execution of this model
may result in an overestimation of risk. For example, it was
assumed that the all of the snails consumed by Poouli contained
diphacinone residues. If a portion of snails are consumed out-
side of baited areas and do not contain diphacinone, the level
of exposure would be less than predicted by the model. Also,
only three field-collected snail samples were available for anal-
ysis, the distribution of snail diphacinone residues used for
these predictions were based on residues observed in snails
collected from the laboratory feeding study. In the few field-
collected samples analyzed, the average residue concentration
was less than half of that observed in the laboratory-collected
samples. Although it would not be prudent to base toxicant
exposure estimates for an endangered species on the results
of three analyses, this observation suggests that it is very
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Table 6. Assumption distribution parameters

Assumption Units
Lower
limit

Maximum
(mean)

Upper
limit

Standard
deviation Distribution

Pertinent
model(s)a

Adult daily energy requirement
Juvenile daily energy requirement
Energy content of snails
Fraction of snails in diet
Energy content of insects

kJ/g bw
kJ/g bw
kJ/g
—
kJ/g

0.88
1.38
1.39
0
2.1

1.6
2.9
1.15
0.61
5.7

2.92
5.76
1.61
1

10.3

0.2
0.2
0.05
0.1
—

Lognormal
Lognormal
Normal
Normal
Triangular

A, C
A, C
A, C
A, D
A, C

Fraction of insects in diet
Diphacinone content in lab-exposed snails
Diphacinone content in field-exposed snails
Interspecies LC50 or LD50 extrapolationb

Log LD50 northern bobwhite quail

—
ppm
ppm
—
mg/kg bw

0
0.35
0.53
1
2.24

0.39
1.77
0.69
—
3.14

1
3.19
0.85

38.5
4.04

0.1
0.47
0.07
—
0.3

Normal
Normal
Normal
Uniform
Normal

A, D
A, C, D
A, C, D
A, D
A, C

Slope—log dose vs probit mortality curve
Log LC50 mallard
Slope—log concn. vs probit mortality curve

—
ppm
—

1.56
2.29
1.06

1.59
3.03
1.08

1.62
3.77
1.09

0.01
0.25

Normal
Normal
Normal

A
D
D

a A 5 acute toxicity model (Fig. 1); C 5 14-d coagulopathy model (Fig. 3); D 5 5-d dietary model (Fig. 2).
b LC50 5 median lethal concentration; LD50 5 median lethal dose; bw 5 body weight.

possible that diphacinone residues in snails consumed under
field conditions would be less than those residues observed in
the laboratory study. Mortality predictions based on the dis-
tribution of diphacinone residues observed in the field-col-
lected snails were about 50% less than those based on the
residues in laboratory-collected snails (data not shown). Co-
agulopathy predictions based on field-collected residue data
were about 80% less than those modeled with laboratory-col-
lected residue data (Table 2). Also, the use of allometric equa-
tions rather than species-specific energy utilization data for
estimating Poouli energy requirements is another potential
source of uncertainty that may impact model predictions.

Sensitivity analysis

Sensitivity analysis indicates that the most-significant as-
sumptions (Table 6) for the mortality predictions in both the
single-day and 5-d models are the values selected from the
LD50 and the interspecies LD50 extrapolation distributions,
suggesting that careful consideration of these variables are
essential in constructing a valid model. Significant, although
less important, variables include the diphacinone residue con-
centrations in the snails and the fraction of snails in the Poouli
diet.

Probabilistic risk assessment

Compared to the widely used deterministic approach, prob-
abilistic risk assessments provided a higher degree of refine-
ment for characterizing risk. Deterministic approaches use
fixed values to estimate toxicity and exposure and generate a
single measure of risk, such as a risk quotient. Uncertain and
variable parameters are fixed to nearly worst-case estimates.
As such, the deterministic approach is very conservative and
tends to overestimate risk; when a deterministic risk assess-
ment indicates an acceptable level of risk, no further risk char-
acterization is warranted. However, when the deterministic as-
sessment suggests an unacceptable level of risk, as was the
case for Poouli that consume gastropods in diphacinone ro-
denticide–baited areas, a more refined probabilistic assessment
is warranted [39,40].

Risk management

The mortality estimates provided by this model provide risk
managers with valuable information for weighing the risks
against the benefits of the proposed baiting program. These

mortality estimates can be compared directly to estimates gen-
erated for the evaluation of alternative proposed baiting strat-
egies, or the mortality estimates subsequently may be incor-
porated into population models to permit the estimation of
long-term population effects associated with the proposed bait-
ing programs. In any case, by generating mortality (or subacute
effects) estimates, we strongly believe that the modeling ap-
proach presented here offers a significant improvement over
the widely used risk-quotient versus level-of-concern approach
for determining ecotoxicological risks to nontarget wildlife.

The proposed use of diphacinone rodenticides to control
invasive rat species in Hawaii is associated with a combination
of ecological benefits and risk to nontarget native species. To
maximize the ratio of benefits to risks, baiting strategies that
minimize risk to endangered species should be further con-
sidered. In the case of the Poouli, only several birds are known
to exist in Hawaii. For this reason, a small degree of risk may
be unacceptable. For proposed baited areas that encompass the
range of the Poouli, it may be feasible to evaluate baiting with
a rodenticide that may present a much lower risk of secondary
hazards, such as zinc phosphide. In areas outside of the
Poouli’s range, this risk assessment indicates the benefits of
reducing pest rodent populations via broadcast distribution of
diphacinone baits are accompanied by acceptable levels of risk
to nonthreatened or nonendangered nontarget species. In this
scenario, a myriad of native species could reap the benefits
associated with diphacinone baiting for the reduction of in-
vasive rat populations without risk to the vulnerable Poouli.
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