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3.3.3. Interannual variability of growing season Re: role of 
controlling factors

To evaluate the role of key controlling variables (LAI, Ta, and Re20) 
in explaining the interannual variability of growing season Re, we 
compared 2 years of data employing Equation (5). By exchanging each 
input parameter in a similar manner outlined in Section 3.2.3, we sepa-
rated the impact on the growing season Re due to changes in LAI, Ta, 
and Re20. Comparison of data from different combination of years is 
shown in Figure 10. The results indicated two features: (a) generally, 
Re20 and LAI contributed to variability in growing season Re, and (b) 
in some cases, the influence of Re20, LAI or Ta offset each other. For 
maize, LAI and Re20 explained most of the interannual variability in 
growing season Re. In addition to LAI and Re20, Ta was also impor-
tant in contributing to the interannual growing season Re variability.

3.3.4. Ecosystem respiration during the non growing season
Non growing season Re was accumulated from the day after har-

vest to subsequent spring planting. The non-growing season Re con-
tributed 10–20% and 17–24% of annual Re in maize and soybean, re-
spectively. However, the soybean crop is harvested earlier than maize 
and planted later so comparisons among years will be biased due to 
different integration periods. Accordingly, the daily Re was accumu-
lated during identical durations (ReNGS: November 1–April 30). Aver-
age ReNGS (±standard deviation) following irrigated and rainfed maize 
harvest was 157 ± 26 and 152 ± 34 g C m−2, respectively (Figure 
11). Following soybean harvest, corresponding values were135 ± 22 
and 124 ± 19 g C m−2, respectively. The ReNGS values are generally 

consistent with (a) greater above ground biomass for maize and thus 
greater residue left on the surface and (b) expected higher respiration 
from the irrigated field. The interannual variability in ReNGS was gen-
erally small (<25% of average ReNGS).

Work at the study sites by Kochsiek (2010) suggested temperature, 
residue biomass left after harvest, and surface moisture content were 
the most important factors influencing ReNGS. Thus, we employed three 
variables: (a) seasonally averaged air temperature, (b) the residue bio-
mass left at harvest (GRes: determined as the difference between total  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Differences in growing season ecosystem respiration (Re) for different combination of years attributable to differences in green leaf area 
(LAI), differences in reference soil surface respiration (Re20), and differences in air temperature (Ta) for (A) irrigated and rainfed maize and (B) irrigated 
and rainfed soybean. Values of the total Re difference are arranged largest to smallest for each management and crop.

Figure 11. Non growing season Re integrated from November 1 to April 
30 for irrigated and rainfed maize and soybean.
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Figure 12. Annual net ecosystem 
production (NEP), gross primary 
production (GPP), and ecosystem 
respiration (Re) for (A) irrigated/rainfed 
maize and (B) irrigated/rainfed soybean.

Figure 13. Departures in annual 
gross primary production (ΔGPP) and 
ecosystem respiration (ΔRe) from 
their respective 4-year means for (A) 
irrigated and rainfed maize and (B) 
irrigated and rainfed soybean. ΔNEP  
=  ΔGPP − ΔRe. Data below the solid 
diagonal line implies above average NEP 
(below average NEP above the line). 
Data in quadrants I and III indicate both 
GPP and Re contributed to NEP (data 
points on the dashed line imply equal 
contribution). Data in quadrants II and 
IV indicate GPP and Re had offsetting 
impacts (data points on the solid line 
imply equally offsetting contributions). 
Data in “A” portion of each quadrant 
indicate greater contribution by GPP 
and data in “B” portion indicate greater 
contribution by Re. Tables include values 
of ΔGPP, ΔRe, and ΔNEP.
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aboveground plant biomass and grain biomass), and (c) the cumulative 
difference between precipitation and evapotranspiration (∑[P-ET]: as 
an indicator of surface moisture) in a stepwise multiple regression of 
ReNGS. Average air temperature explained 68% and residue biomass 
explained 13% of interannual variability in ReNGS (∑[P-ET] was not 
significant).

3.4. Annual net ecosystem production and net biome 
production

Annually integrated GPP, Re, and NEP are depicted in Figure 12. 
About 70% of maize GPP was lost in ecosystem respiration resulting 
in the mean annual NEP (± standard deviation) of 552 ± 73 g C m−2 y−1 
for irrigated maize and 471 ± 52 g C m−2 y−1 for rainfed maize. In con-
trast, in the case of soybean, most of the annual GPP was lost as eco-
system respiration resulting in a mean annual NEP for rainfed and ir-
rigated soybean of 10 ± 52 and −57 ± 43 g C m−2 y−1, respectively.

To examine the role of GPP and Re in explaining departures of 
NEP from the mean (ΔNEP), following a method used by Chen et al. 
(2009), we plotted the departures (ΔGPP, ΔRe) in annual GPP and Re 
from their respective 4-year means (Figure 13; ΔNEP  =  ΔGPP − ΔRe). 
For irrigated maize, the GPP generally contributed more to ΔNEP 
(i.e., ΔGPP generally larger than ΔRe). During 2001 and 2003, rain-
fed maize results were similar to those from irrigated maize. However, 
during 2005 and 2007, both GPP and Re seem to make similar contri-
butions with offsetting impacts on ΔNEP. Data from irrigated soybean 
indicated nearly equal contributions of GPP and Re to the ΔNEP, with 
2 years (2002 and 2008) of essentially offsetting impacts on ΔNEP. In 
rainfed soybean, there seems to be an indication of somewhat greater 
contribution of Re (the ΔGPP were very small and ΔRe was slightly 
larger). Overall, GPP tended to contribute more than Re to the ΔNEP 
of maize. For soybean, both GPP and Re seem important.

Net biome production (NBP  =  NEP − grain C removed during har-
vest) was calculated for each year (Figure 14). The irrigated maize–
soybean rotation began as a moderate source of carbon. However, more 
recently, it appears to be nearly C neutral. The rainfed maize–soybean 
rotation is approximately C neutral, consistent with the results of Hol-
linger et al. (2005).

4. Summary and conclusions

This paper includes an examination of 8 years of measurements of 
carbon exchange in an irrigated and rainfed maize–soybean rotation 
cropping system. Peak daily gross primary production (GPP) ranged 
from about 28–30 g C m−2 d−1 for irrigated maize, occurring about 
50–60 days after emergence. This period corresponded to the approx-
imate time of peak green leaf area index (LAI). Peak GPP was slightly 

lower for rainfed maize (22–27 g C m−2 d−1). For soybean (irrigated 
and rainfed), peak GPP was between 16 and 18 g C m−2 d−1 and also 
corresponded to the period of peak LAI occurring about 60–70 days 
after emergence. Examination of the role of quality of light in relation 
to the annual GPP of these crops indicated a GPP advantage due to dif-
fuse light of 9–14% for maize and 18–20% for soybean. Peak daily val-
ues of growing season ecosystem respiration (Re) ranged from about 
12 to 15 g C m−2 d−1 for irrigated maize and slightly lower for rainfed 
maize (9–13 g C m−2 d−1). For soybean, Re values peaked from 10 to 
14 g C m−2 d−1 in the irrigated and rainfed fields. In both crops, peak 
Re values generally occurred about two weeks after the occurrence of 
peak LAI. Comparison of growing season results among different years 
of measurement and management practices (irrigated, rainfed) indi-
cated a conservative nature of the Re/GPP ratio for each crop. When 
calculated for the entire growing season, the Re/GPP ratio (±standard 
deviation) was 0.56 ± 0.02 for maize and 0.76 ± 0.05 for soybean.
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