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(57) ABSTRACT 
Turbine generator faults can be detected by receiving a cur 
rent signal from the turbine generator, and synchronously 
sampling the current signal to obtain a set of current signal 
samples that are evenly spaced in the phase domain, in which 
phase differences between adjacent current signal samples in 
the set of current signal samples are substantially the same. 
The process includes generating a frequency spectrum of the 
current signal samples, identifying one or more excitations in 
the frequency spectrum, and detecting a fault in the turbine 
generator based on the one or more excitations in the fre 
quency Spectrum. 
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DETECTING FAULTS INTURBINE 
GENERATORS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation-in-part of U.S. 
application Ser. No. 13/904,469, filed on May 29, 2013, 
which claims priority under 35 U.S.C. S 119(e)(1) to U.S. 
provisional patent application 61/652,396, filed on May 29, 
2012. The entire contents of the above applications are herein 
incorporated by reference. 

FEDERALLY SPONSORED RESEARCHOR 
DEVELOPMENT 

0002 This invention was made with government support 
under Grant DE-EE0001366 awarded by the Department of 
Energy and Grant ECCS-1308045 awarded by the National 
Science Foundation. The government has certain rights in the 
invention. 

TECHNICAL FIELD 

0003. This disclosure relates to detecting faults produced 
by wind turbine generators. 

BACKGROUND 

0004 Wind turbines generate a clean and renewable 
resource that can be used to provide sustainable electricity to 
the world. The reliability of such wind turbines can be a direct 
correlation to proper installation and maintenance of the tur 
bines. This reliability can be improved upon by using various 
condition monitoring methods to ensure device functionality. 
For example, detecting broken blades before the entire wind 
turbine malfunctions can ensure that damage to other wind 
turbine components is minimized. 
0005 Detecting faults in wind turbines before damage 
occurs to other components can increase the lifespan and/or 
energy output capabilities of the turbine. Conventional fault 
detection techniques typically include using sensors and data 
acquisition devices that can monitor the operation of the wind 
turbines or components in the wind turbines. These sensors 
can be mounted on the surface or buried in the body of wind 
turbine components. During typical use, the sensors and tur 
bines can be subject to failure due to poor working conditions, 
which could cause additional problems with system reliabil 
ity and additional operating and maintenance costs. Early 
detection of possible failures can ensure that such failures 
occur less often. 

SUMMARY 

0006 Methods and systems are described for detecting 
wind turbine generator faults by analyzing generator current 
measurements. Frequency and amplitude demodulation, 
resampling, frequency spectrum analysis, and impulse detec 
tion are used to discover and isolate one or more fault com 
ponents of the current and to generate a fault identifier. In 
general, the measured current can be analyzed through the use 
of signal processing techniques to determine whether or not a 
fault or failure is present in the wind turbine generator, or 
alternatively, in the wind turbine itself. In some implementa 
tions, there are challenges to using current measurements for 
fault detection of wind turbine generators. First, the charac 
teristic frequencies of faults depend on the shaft rotating 
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frequency of the wind turbine generator (i.e., the 1P fre 
quency). Since the 1P frequency of a wind turbine generator 
typically varies with the wind speed during wind turbine 
generator operation, it may be difficult to extract fault signa 
tures directly from the non-stationary current measurements 
of the wind turbine generator by using traditional frequency 
spectrum analysis methods that have been well developed for 
fault detection of rotating machines. Moreover, the dominant 
components of current measurements are the fundamental 
frequency component and associated harmonics. Therefore, 
the usable information in current measurements for wind 
turbine generator fault detection typically has a low signal to 
noise ratio, which can make fault detection more difficult. 
0007. In a general aspect, a method for detecting turbine 
generator faults is provided. The method includes receiving a 
current signal from a turbine generator, synchronously sam 
pling the current signal to obtain a first set of current signal 
samples that are evenly spaced in the phase domain, in which 
phase differences between adjacent current signal samples in 
the first set are substantially the same; generating a frequency 
spectrum of the first set of current signal samples; identifying 
one or more excitations in the frequency spectrum; and 
detecting a fault in the turbine generator based on the one or 
more excitations in the frequency spectrum. 
0008. In another general aspect, a controller configured to 
detect turbine generator faults is provided, in which the con 
troller has a processor that is configured to execute instruc 
tions to receive a current signal from a turbine generator; 
synchronously sample the current signal to obtain a set of 
current samples that are evenly spaced in phase, in which 
phase differences between adjacent current samples in the set 
are substantially the same; generate a frequency spectrum of 
the current signal samples; identify one or more excitations in 
the frequency spectrum; and detect a fault in the turbine 
generator based on the one or more excitations in the fre 
quency Spectrum. 
0009. In another general aspect, a system for detecting 
turbine generator faults is provided. The system includes at 
least one current sensor configured to sense a current signal 
from a turbine generator; and a processor that is configured to 
execute instructions to: receive the current signal from the at 
least one current sensor; synchronously sample the current 
signal to obtain a set of current samples that are evenly spaced 
in phase, in which phase differences between adjacent current 
samples in the set are substantially the same; generate a 
frequency spectrum of the current signal samples; identify 
one or more excitations in the frequency spectrum; and detect 
a fault in the turbine generator based on the one or more 
excitations in the frequency spectrum. 
0010. In one implementation, a wind turbine generator 
fault detection method is described. The method includes 
acquiring current data from a wind turbine generator during 
operation and determining frequency demodulated signals 
and amplitude demodulated signals by frequency demodulat 
ing and amplitude demodulating the current data. The method 
may also include resampling the frequency and amplitude 
demodulated signals corresponding to the current data. The 
resampling can include converting a variable 1 P frequency to 
a constant value, and converting one or more variable char 
acteristic frequencies of at least one identified wind turbine 
generator fault into one or more constant values. The method 
may also include monitoring a frequency spectra of the resa 
mpled frequency and amplitude demodulated signals corre 
sponding to the current data to identify one or more excita 
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tions in the frequency spectra and in response to identifying 
one or more excitations in the frequency spectra at one or 
more of the variable fault characteristic frequencies, generat 
ing and transmitting an alert that indicates that a wind turbine 
generator fault is detected. 
0011. In certain implementations, the method can include 
resampling the acquired current data in which the resampling 
includes converting the variable 1 P frequency to a constant 
value and monitoring a frequency spectra of the resampled 
current data to detect a wind turbine generator fault. In some 
implementations, the wind turbine generator fault is a fault 
having one or more characteristic frequencies. 
0012. In some implementations, acquiring current data 
from the wind turbine generator during operation includes 
measuring one phase of a stator or rotor current in the wind 
turbine generator. In some implementations, the method can 
include using the frequency demodulated signal correspond 
ing to the current data to calculate a shaft rotating frequency 
of the wind turbine generator. 
0013. In certain implementations, the method can include 
using upsampling and downsampling techniques to resample 
the frequency and amplitude demodulated signals corre 
sponding to the current data. In some implementations, the 
upsampling techniques include using a constant upsampling 
ratio to upsample the frequency and amplitude demodulated 
signals corresponding to the current data. In certain, the 
method can further include using a variable downsampling 
step size to downsample the upsampled frequency and ampli 
tude demodulated signals corresponding to the current data, 
in which the downsampling step size is based at least in part 
on an estimated shaft rotating frequency of the wind turbine 
generator. 
0014. In some implementations, the downsampling step 
size is selected to ensure that the sampling frequency of the 
resampled signals is greater than twice the wind turbine gen 
erator fault characteristic frequency. 
0015. In some implementations, identifying an excitation 
in the frequency spectra at one of the fault characteristic 
frequencies can include implementing an impulse detection 
method to discover and isolate a fault component of the at 
least one identified wind turbine generator fault. In certain 
implementations, monitoring the frequency spectra of the 
resampled frequency and amplitude demodulated signals can 
include iteratively calculating the frequency spectra of the 
resampled frequency and amplitude demodulated signals cor 
responding to the current data. In some implementations, the 
method can also include locally normalizing the frequency 
spectra of the resampled frequency and amplitude demodu 
lated signals corresponding to the current data. In some 
implementations, the method may include using a median 
filter to calculate a threshold to determine the excitations in 
the locally normalized frequency spectra of the resampled 
frequency and amplitude demodulated signals corresponding 
to the current data. 
0016. In another implementation, a controller configured 

to detect wind turbine generator faults is described. The con 
troller includes a processor programmed to receive a set of 
real-time operating current data from a wind turbine genera 
tor during operation, determine frequency demodulated sig 
nals and amplitude demodulated signals by frequency 
demodulating and amplitude demodulating the current data, 
estimate a shaft rotating frequency of the wind turbine gen 
erator based on the frequency demodulated signal corre 
sponding to the current data, resample the frequency and 
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amplitude demodulated signals of the current databased on 
the estimated shaft rotating frequency of the wind turbine 
generator, calculate frequency spectra of the resampled fre 
quency and amplitude demodulated signals corresponding to 
the current data, and extract one or more impulses in the 
frequency spectra to detect any wind turbine generator faults 
in a frequency domain. 
0017. In certain implementations, the processor is further 
programmed to select a base frequency f, to be an averaged 
value of the estimated shaft rotating frequency. In certain 
implementations, the processor is further programmed to use 
a moving window to locally normalize the frequency spectra 
of the resampled frequency and amplitude demodulated sig 
nals corresponding to the current data. In certain implemen 
tations, the processor is further programmed to select a 
threshold to determine an impulse by using a median filter. 
0018. In some implementations, the controller can include 
a current sensor configured to generate current data by mea 
Suring one or more stator currents of a permanent magnet 
synchronous generator and measuring one or more rotor cur 
rents of a doubly-fed induction generator, a low-pass filter 
configured to receive the generated current data from the 
current sensor, and an analog-to-digital converter configured 
to receive the filtered current data from the low-pass filter. 
0019 Advantageously, the described systems and tech 
niques may provide for one or more benefits, such as a com 
putationally efficient, highly sensitive current-based tech 
nique for using current measurements in online fault 
detection of wind turbine generators which are operating in 
non-stationary conditions. The fault detection process 
described here may have an advantage in that there is no need 
to install additional current sensors or data acquisition 
devices (e.g., analog to digital converters) because the fault 
detection process can use a digital current signal that has been 
used by the control system of the turbine generator. 
0020. The details of one or more implementations are set 
forth in the accompanying drawings and the description 
below. Other features, objects, and advantages will be appar 
ent from the description and drawings, and from the claims. 

BRIEF DESCRIPTION OF DRAWINGS 

0021 FIGS. 1A-1B are conceptual diagrams showing 
example effects of faults in wind turbines. 
0022 FIG. 2 is a flow chart of a process for identifying a 
generator fault. 
0023 FIG. 3 is a flow chart of a process for detecting one 
or more impulses in a frequency spectrum. 
0024 FIG. 4 is a flow chart of a process for performing a 
frequency spectrum analysis. 
0025 FIG. 5 is a flow chart of a process for detecting faults 
in wind turbine generators. 
0026 FIG. 6A is a graph showing an exemplary synchro 
nously sampled nonstationary sinusoidal signal. 
0027 FIG. 6B is a graph showing the phase of the syn 
chronously sampled nonstationary sinusoidal signal. 
0028 FIG. 7 is a diagram of an exemplary process for 
estimating the phase of the nonstationary sinusoidal signal, 
Such as a generator current signal of a wind turbine. 
0029 FIG. 8 is a graph that illustrates the calculation of 
synchronous sampling times. 
0030 FIG. 9 is a graph that illustrates the calculation of 
synchronous samples of the generator current signal. 
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0031 FIG. 10 shows an exemplary impulse detection pro 
cess for identifying the impulses in the power spectral density 
spectrum of the synchronously sampled generator current 
signal. 
0032 FIGS. 11A and 11B are diagrams showing an exem 
plary configuration of a ball bearing. 
0033 FIG. 12 is a diagram showing emulation of a rotor 
eccentricity in a test wind turbine. 
0034 FIGS. 13A and 13B are graphs showing exemplary 
power spectral density spectra of the synchronously sampled 
stator current signals for (a) the healthy case, and (b) the rotor 
eccentricity case. 
0035 FIGS. 14A and 14B are graphs showing exemplary 
locally normalized power spectral density spectra of the Syn 
chronously sampled Stator current signals and the threshold 
generated by the impulse detection process for (a) the healthy 
case, and (b) the emulated rotor eccentricity case. 
0036 FIG. 15 is a graph that shows an exemplary power 
spectral density spectrum of the original uniformly sampled 
stator current signal for the emulated rotor eccentricity case. 
0037 FIG.16 shows exemplary spectrograms of the origi 
nal uniformly sampled Stator current signal generated by 
using the short-time Fourier transform for (a) the healthy 
case, and (b) the emulated rotor eccentricity case. 
0038 FIG. 17 show photographs of an exemplary bearing 
before and after the experiment. 
0039 FIGS. 18A and 18B are graphs that show exemplary 
power spectral density spectra of the synchronously sampled 
stator current signals for (a) the healthy bearing case, and (b) 
the faulty bearing case. 
0040 FIG. 19 is a graph that shows an exemplary locally 
normalized power spectral density spectrum of the synchro 
nously sampled stator current signal and threshold generated 
by the impulse detection process for the faulty bearing case. 
0041 FIG. 20 is a graph that shows exemplary amplitudes 
of the locally normalized power spectral densities of the 
synchronously sampled Stator current records at a bearing 
cage fault characteristic frequency of 64 Hz, during the 
25-hour experiment. 
0042 FIG. 21 is a diagram showing an exemplary fault 
detection process. 
0043 FIG.22 is a flow diagram of an exemplary adaptive 
resampling process. 
0044 FIG. 23 is a diagram of an exemplary two-stage 
gearbox connected to an electric machine. 
0045 FIGS. 24A to 24D show exemplary types of gear 
faults, including (a) one-tooth breakage, (b) two-teeth break 
age, (c) gear crack, and (d) gear Surface wear. 
0046 FIG. 25 is a graph showing an exemplary power 
spectral density spectrum of the nonstationary stator current 
signal obtained directly from the classical FFT analysis. 
0047 FIG. 26 is a graph that includes exemplary data 
about the shaft rotating speed of the electric machine and the 
instantaneous load of the machine. 
0048 FIGS. 27A to 27G are graphs that show exemplary 
power spectral density spectra of the synchronously resa 
mpled normalized stator current signal, including the funda 
mental frequency component and its sidebands for the test 
system in varying-speed conditions for (a) the healthy case, 
(b) one-tooth breakage, (c) two-teeth breakage, (d) gear 
crack, (e) 5% surface wear, (f) 20% surface wear, and (g) 60% 
Surface wear. 
0049. Like reference symbols in the various drawings 
indicate like elements. 
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DETAILED DESCRIPTION 

0050 Wind power generation systems may be imple 
mented to provide power to users connected to the power grid. 
These systems can be prone to faults or failures over time 
based on a number of environmental factors as well as com 
ponent failure or wear in wind turbines or other mechanisms 
associated with the wind power generation system. In gen 
eral, the systems and techniques described in this document 
can monitor wind turbine conditions and detect wind turbine 
faults using efficient and highly sensitive signal processing 
methods performed when the wind turbines are operating in 
non-stationary conditions. The monitoring can include, but is 
not limited to, vibration monitoring, current monitoring, tem 
perature monitoring, chemical analysis, acoustic emission 
monitoring, Sound pressure monitoring, and laser monitor 
ing. Further analysis can be performed on data collected from 
any or all of the monitoring described above and Such analysis 
can be used to preemptively discover failures occurring in one 
or more components of the wind power generation system. 
0051 Implementing fault detection mechanisms for wind 
turbines and/or the generators that operate the turbines can 
include the use of direct measurements, sensor output, and/or 
analysis of both. The direct measurements can include mea 
Surement of signals, inputs, or outputs produced by the tur 
bine components. One example direct measurement can 
include measuring the current from the generator for a par 
ticular wind turbine. Current-based fault detection methods 
typically measure current used by a control system that oper 
ates a wind turbine or current in the generator itself. These 
current measurements are generally reliable and easily acces 
sible from the ground level without intruding upon the wind 
turbine generators that are situated on high towers and/or 
installed in remote areas. The measured current can be ana 
lyzed through the use of signal processing techniques to 
determine whether or not a fault or failure is present in the 
wind turbine. 

0052 Various signal processing techniques can be used to 
detect faults with characteristic frequencies (e.g., imbalance 
faults) in wind turbine generators. Example techniques can 
include classical frequency spectrum analysis, bicoherence 
analysis, time-frequency analysis, amplitude demodulation, 
and data mining. In certain implementations, classical fre 
quency spectrum analysis and bicoherence analysis can iden 
tify imbalance faults based on known characteristic frequen 
cies. For example, classical spectrum analysis has been 
applied to detect mass imbalance and aerodynamic asymme 
try faults of a wind turbine based on the magnitudes of the 1P 
frequency components in the frequency spectra of the gen 
erator and tower vibration signals acquired from the wind 
turbine. In certain implementations, the time-frequency 
analysis and amplitude demodulation methods are able to 
extract fault signatures from non-stationary signals. For 
example, continuous wavelet transform, which is a time 
frequency method, has been used for blade damage detection 
of a wind turbine using multiple non-stationary signals 
acquired from different points of the damaged blade. How 
ever, time-frequency analysis and amplitude demodulation 
methods may not clearly identify imbalance faults from inter 
ferences that have similar patterns as the faults in the time or 
frequency domain. This is because time-frequency analysis 
and amplitude demodulation methods have a relatively lower 
resolution in the frequency domain compared to frequency 
spectrum analysis methods. In certain implementations, data 
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mining can be applied for wind turbine condition prediction 
using collected maintenance records. 
0053. In various implementations of the systems 
described in this document, sensors can also be used to moni 
tor conditions, trigger other sensors, or simply alert personnel 
that a fault or failure has been detected. Example sensors can 
include anything from a temperature sensor to a vibration 
sensor. Such sensors are selected depending on a number of 
factors associated with the wind power generation system and 
the types of faults that can occur. For example, factors for 
sensor selection can include particular accuracy require 
ments, range/resolution requirements, environmental condi 
tions that the sensor will incur, and cost, just to name a few. 
Example sensors can include accelerometers, temperature 
sensors, pressure/flow sensors, level sensors, proximity sen 
sors, biosensors, image sensors, chemical sensors, and/or 
mechanical sensors including MEMS (microelectromechani 
cal sensors). 
0054 FIGS. 1A-1B are conceptual diagrams showing 
example effects of faults in wind turbines. In general, imbal 
ance faults constitute a significant portion of all faults in wind 
turbine generators. A common imbalance fault in wind tur 
bine generators includes a shaft or blade imbalance. A blade 
imbalance can be caused by errors in manufacturing and 
construction, icing, deformation due to aging, or wear and 
fatigue during the operation of the wind turbine generator. In 
Some implementations, blade imbalances occur because cer 
tain components tend to shift and wear to varying degrees 
over time. When an imbalance fault occurs on the shaft of a 
wind turbine generator, an additional force can be induced in 
the shaft. In the case of blade imbalance where the mass 
distribution of one blade is different from the mass distribu 
tion of the other blades, a rotor mass imbalance can occur, 
which may induce vibrations in the shaft rotating speed of the 
wind turbine generator. When a blade imbalance fault occurs 
on the shaft of a wind turbine generator, a torque variation will 
be induced in the shaft, which in turn can induce vibrations in 
the shaft rotating frequency of the wind turbine generator and 
generate vibrations of the generator. These vibrations can 
lead to faults in the wind turbine. 

0055 As shown in FIG. 1A, the effect generated by a blade 
imbalance fault is illustrated with respect to deceleration and 
acceleration. In this example, m 102 represents an equiva 
lent imbalance mass, r 104 represents a distance between the 
equivalent imbalance mass m 102 and a center 106 of the 
shaft, and co, 108 represents an angular shaft rotating speed. In 
operation, when the equivalent imbalance mass 102 rotates 
from the top to the bottom of the rotating plane, the power of 
gravity accelerates the shaft. On the other hand, when the 
equivalent imbalance mass 102 rotates from the bottom to the 
top of the rotating plane, the power of gravity decelerates the 
shaft. Consequently, the shaft rotating speed vibrates at the 1P 
frequency, where 1P represents one power peak per revolu 
tion. This resulting vibration may representa blade imbalance 
fault. 

0056. Due to a larger stiffness in the vertical direction and 
a smaller stiffness in the horizontal direction of the wind 
turbine generator, the wind turbine generator will have more 
resistance to deformation or vibration in the vertical direction 
than in the horizontal direction, in response to the centrifugal 
force generated by the imbalance mass. Therefore in some 
implementations, the vibration of the wind turbine generator 
due to the centrifugal force generated by the imbalance mass 
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is mainly in the horizontal direction at the 1P frequency. This 
type of imbalance mass is typically known as an aerodynamic 
asymmetry between blades. 
0057 Referring to FIG. 1B, the effect of an aerodynamic 
asymmetry caused by wind shear is depicted. As shown, F. 
120 represents a force of the wind flow affected on the blades 
of the wind turbine generator: F, 122 represents a force of the 
wind flow affected on a blade that is on the top of the rotating 
plane: F, 124 represents a force of the wind flow affected on 
the blade that is on the bottom of the rotating plane. The 
amplitude of F, 122 will generally be greater than that of force 
F, 124 due to the effect of wind shear, which follows the 
following power law of U(z)/U(z)=(Z/Z)', where U(z) and 
U(Z) represent wind Velocities at a height Z and a reference 
height Z, respectively and C. represents the power law expo 
nent. The power law exponent defines a relationship between 
wind speeds at a first height and wind speeds at other heights. 
0058. In operation, a blade will generally have the largest 
acceleration caused by F, 122 and the Smallest acceleration 
caused by F, 124. Therefore, a vibration at the 3P frequency 
is produced in the shaft speed by wind shear in a balanced 
wind turbine with three blades. In the case of an aerodynamic 
asymmetry, a blade of the turbine will have a different F, 122 
and F, 124 from the other two blades. As a result, the accel 
eration and deceleration of the imbalanced blade produce a 
vibration at the 1P frequency in the shaftspeed. If, instead, the 
other two blades have different F, 122 and F, 124 frequencies 
from the imbalanced blade, a vibration may also appear at the 
2P frequency in the shaft speed signal. In general, character 
istic frequencies of shaft and/or blade imbalance and aerody 
namic asymmetry both appear at the 1P frequency in the shaft 
speed signal of a wind turbine. Therefore, the excitations of 
the shaft speed signal at the 1P frequency can be used as a 
signature for imbalance fault detection. Signal excitations 
that occur because of a blade imbalances and/or aerodynamic 
asymmetries will be discussed in further detail below. 
0059 Systems and methods described in this document 
can analyze current signals, vibrations, and other signals 
associated with wind turbine generators to determine one or 
more wind turbine generator faults. As an example, theoreti 
cal characteristic frequencies in a ball bearing (not shown) 
may include four types of single-point defects in vibration 
measurements. These defects can be represented by the fol 
lowing equations (1)–(4). 

f=0.5 Nf. (1+D cos()/D) (1) 

f=0.5-Naf (1-D, cos (OD) (2) 

f=0.5f. (D/D.)-(1-(D,'cos 0/D)) (3) 

f=0.5f.(1-D, cos (OD) (4) 

where frepresents the characteristic frequency of an inner 
race defect in a ball bearing (not shown), f, represents the 
characteristic frequency of an outer-race defect in the ball 
bearing, f, represents the characteristic frequency of a ball 
defect in the ball bearing, f, represents the characteristic fre 
quency of a cage defect in the ball bearing; f. is the rotating 
frequency of the bearing, which can represented similarly to 
the 1P frequency of a wind turbine generator. In addition, N. 
represents the number of balls in the ball bearing. 
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Modulation of Current Signals in Wind Turbine 
Generator Faults 

0060. As an example, suppose that a wind turbine genera 
tor fault leads to a vibration, and therefore a shaft torque 
variation in the generator at a frequency off. The wind 
turbine generator current signals are frequency and amplitude 
modulated by the shaft torque variation at the corresponding 
characteristic frequency for which is shown in the analysis 
below. 
0061 The shaft torque of a wind turbine generator with a 
fault can be modeled by T(t). 

0062. In equation (5), t represents a time index, T repre 
sents the torque on the wind turbine shaft, To represents the 
torque due to wind power, and T represents the amplitude of 
the shaft torque variation created by the wind turbine genera 
tor fault. The shaft torque variation has a characteristic fre 
quency of f, which can be assumed to be constant in 
steady-state operation of the wind turbine generator. The 
steady-state operation may be represented by a state in which 
the shaft speed varies slowly due to variable wind power. 
0063 A shaft system of the wind turbine generator may be 
represented by a one-mass model in which the motion equa 
tion is given by the following equations (6) and (7). 

J-Ido.(t), dit=T(t)-T(t)-D-co.(t) (6) 

(), (t)=2J f(t) (7) 

0064. In equations (6) and (7), J represents the total inertia 
constant of the wind turbine generator, co, represents the 
angular shaft rotating speed of the wind turbine generator, and 
do), (t)/dt represents the angular acceleration. In addition, T. 
represents the electric torque of the wind turbine generator 
and D represents the damping coefficient, which is approxi 
mately Zero. 
0065. If the wind turbine generator with the fault is oper 
ated at steady state, the electric torque T can be expressed by 
equation (8) below: 

where To and T. represent the electric torques induced by 
To and T, respectively, p represents the phase shift between 
the torque variations in the shaft and in the generator created 
by the wind turbine generator fault. The angular shaft rotating 
speed can be derived from equations (5), (6), and (8) to obtain 
equations (9), (10), (11), and (12) below. 

do...(t)/dt-fTo(t)-To(t)}J-Ticos(27tfit--p)/J (9) 

Ticos(27tfit--p)=Tycos(27tfit,t)-Tacos 
(27tfit, t+(p) (10) 

T={/T-T cos(p) +/T...sin(p) }'' (11) 

(parctan-Tsin(p)/IT-Tycos(p))} (12) 

0066. The angular shaft rotating speed can then be calcu 
lated by integrating the right-hand side of equation (9), which 
yields equation (13) below. 

0067 Equation (13) can be rewritten as shown in equation 
(14) below: 

(0.(t)=(0.0+(0....(t)+(), sin(27tfit, t+(p) (14) 
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where (),o represents the constant component of the angular 
shaft rotating speed, (), represents the angular shaft rotating 
speed generated by the variable wind power, and (), repre 
sents the amplitude of the excitation in the angular shaft 
rotating speed due to the wind turbine generator fault. The 
terms co, and (), can be expressed as follows: 

(0,1/(J271 ft.) T. (16) 
0068. Using equation (7) above, the shaft rotating fre 
quency of a wind turbine generator with a fault can be mod 
eled as shown in equation (17) below: 

where f(t) and fare represented as shown in equations 
(18) and (19) below. 

f(t)=(),o--(1), (t)at (18) 

f(t)/2J (19) 

0069. In the event that the wind turbine generator system is 
equipped with a permanent magnet synchronous generator, 
the relationship between the shaft rotating frequency and the 
fundamental frequency f of the stator current signal can be 
represented by equation (20) below. 

f(t) pxf(t) (20) 

The term p represents the number of pole pairs of the perma 
nent magnet synchronous generator. Using equations (17) 
and (20), the fundamental frequency of the stator current 
signal is represented by equation (21) below. 

fl(t)-pf...(t)+pify sin(27tfit--p) (21) 

0070 Therefore, the stator current signal C of the perma 
nent magnet synchronous generator can be modeled as shown 
in equation (22) below: 

where the harmonics of the stator current C are typically not 
considered due to their low magnitudes compared to the 
fundamental-frequency component. The term I represents 
the amplitude of the stator current signal and shows that the 
stator current signal of a direct-drive permanent magnet Syn 
chronous generator wind turbine is frequency modulated by 
the shaft torque variation generated by the wind turbine gen 
erator fault. 
(0071. The amplitude of the voltage E induced in a given 
stator phase can be represented as shown in equation (23) 
below. 

where K is a constant representing the structure of the per 
manent magnet synchronous generator and p is the total flux 
in the permanent magnet synchronous generator. The ampli 
tude of the phase current I is represented in equation (24) 
below: 

where Z is the equivalent complex impedance of the genera 
tor stator circuit and the external circuit or load to which the 
permanent magnet synchronous generator is connected. 
According to equations (21), (23), and (24), the amplitude of 
the stator current signal I can be presented as shown in 
equations (25), (26), and (27) below. 

I.(t)=1...(t)+...(t) sin(27tfit, t+(p) (25) 
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I,(t)=K-pipf(t)/Z.(t)| (26) 

I(t) Koppf/Z(t) (27) 

0072 The above equations show that the stator current 
signal of the permanent magnet synchronous generator is 
amplitude modulated by the shaft torque variation created by 
the wind turbine generator fault. 
0073. In the event that the wind turbine generator system is 
equipped with a doubly-fed induction generator, the relation 
ship between the shaft rotating frequency and the electrical 
frequency fof the rotor current signal is given by equation 
(28) below: 

foo(t) pxf(t) f. (28) 

where p represents the number of pole pairs of the doubly-fed 
induction generator, f, represents the frequency of the dou 
bly-fed induction generator stator current, which is normally 
constant at 50 Hz or 60Hz, for example. Using equations (17) 
and (28), the electrical frequency of the rotor current signal 
can be found as shown in equation (29). 

f(t) pf...(t)+pf, sin(27t.fi.it+(P)-f. (29) 

0074 Therefore, the rotor current signal C of the doubly 
fed induction generator can be modeled as shown in equation 
(30) below: 

where I, represents the amplitude of the rotor current signal. 
This shows that the rotor current signal of a doubly-fed induc 
tion generator wind turbine is frequency modulated by the 
shaft torque variation generated by the wind turbine generator 
fault. 

0075. The amplitude of the induced rotor voltage E. in a 
doubly-fed induction generator may be represented by equa 
tions (31) and (32) below: 

E(t)=-SEo (31) 

S foo(t)/ (32) 

where s represents the slip of the doubly-fed induction gen 
erator, Elo represents the magnitude of the induced rotor 
Voltage at locked-rotor conditions, which is a constant at a 
given grid voltage level. The amplitude of the doubly-fed 
induction generator rotor current I, is represented by equation 
(33) below: 

where Z represents the equivalent complex impedance of the 
doubly-fed induction generator rotor circuit and the external 
circuit to which the doubly-fed induction generator rotor 
windings are connected. According to equations (28), (31), 
(32), and (33), the amplitude of the rotor current signal I can 
also be represented as shown in equations (34), (35), and (36) 
below. 

I.(t)=1...(t)+...(t) sin(27tfit--p) (34) 

I...(t)-E-olpf...(t)-fi/IZ.(t)f (35) 

I...(t)-Eopf.../IIZ.(t)lf. (36) 

These equations show that the rotor current signal of the 
doubly-fed induction generator is amplitude modulated by 
the shaft torque variation created by the wind turbine genera 
tor fault. 
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Current Frequency and Amplitude Demodulation 
Methods for Fault Detection 

0076. In some implementations, wind turbine generator 
current signals are frequency and amplitude modulated by the 
vibration generated by a wind turbine generator fault. 
According to equations (22), (25), (30) and (34) above, the 
stator current Cs of a permanent magnet synchronous genera 
tor and the rotor current C of a doubly-fed induction genera 
tor can be shown by equations (37) and (38) below. 

Therefore, not only frequency demodulation methods can be 
used to discover the excitations in f(t) related to the wind 
turbine generator fault, but also amplitude demodulation 
methods can be applied to extract the vibrations in I(t) or I, (t) 
created by the wind turbine generator fault. 
0077. In a wind turbine generator, information represent 
ing shaft rotating frequency is typically used for maximum 
power point tracking control. The shaft rotating frequency 
can be measured by using a position and/or speed sensor, e.g., 
an encoder or resolver, or alternatively, can be estimated from 
the wind turbine generator current measurements using an 
observer. The shaft rotating frequency is the frequency 
demodulated signal of current and can be used for wind 
turbine generator fault detection. A simple method (i.e., using 
an observer) to demodulate the frequency from current sig 
nals may include the phase lock loop method. A phase lock 
loop is a closed loop frequency control system which gener 
ates an output signal whose phase is related to the phase of an 
input reference signal. Since frequency is the time derivative 
of phase, keeping the input and output phases in lock step 
implies keeping the input and output frequencies in lock step. 
Therefore, a phase lock loop can be used to track the fre 
quency of an input signal. 
0078. In some implementations, an amplitude demodula 
tion method can be applied to calculate the variable ampli 
tudes I.(t) or I,(t) of current measurements in equations (37) 
and (38), respectively. For instance, the square law, which is 
a classical method for amplitude demodulation or envelope 
detection, can be used to extract the variable amplitudes of the 
current signals. 
0079 According to equation (25), the current signal of a 
wind turbine equipped with a permanent magnet synchronous 
generator in equation (37) can be rewritten as shown by 
equations (39) and (40). 

C.(t)=1...(t)+...(t) sin(27tfit--p) sin(0(t)) (39) 

Continuing with the above example, the square law can be 
applied to the signal C as shown by equation (41) below. 

0080 Equation (41) can be rewritten by using trigonomet 
ric functions. The components can then be sorted from low 
frequency to high frequency, as shown by equation (42) 
below: 
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where the current squared signal (C) represents the ampli 
tude demodulated signal of current C and the term I...(t):I 
(t) sin(27tf(t):t+(p) represents an excitation due to the 
wind turbine generator fault. The term If(t) cos490 faut, 
(t) t+29/4 represents the second harmonic of the excitation 
in C, generated by the wind turbine generator fault. Both 
terms can be used for fault detection. Since the fundamental 
frequency is typically the dominant component in stator cur 
rent signals, the magnitude of I(t) is generally much larger 
than that of I(t). Therefore, the second harmonic of the 
excitation generated by the wind turbine generator fault has a 
low magnitude and can be neglected, in this example. 
0081. Since wind turbine generator faults can lead to both 
frequency and amplitude modulations of current signals, 
either a frequency or an amplitude demodulation method can 
discover the effect caused by wind turbine generator fault in 
current measurements. To improve the accuracy of fault 
detection and increase the redundancy and reliability of the 
fault detection system, both the frequency and amplitude 
demodulation methods can be applied. 
0082 In some implementations, current signals can also 
be used directly for wind turbine fault detection, and the 
procedure of using current signals for wind turbine fault 
detection is similar to that of using frequency and amplitude 
demodulated signals corresponding to the current data. How 
ever, using the demodulated signals for wind turbine genera 
tor fault detection may provide for several advantages. In 
particular, using current signals directly in wind turbine gen 
erator fault detection processes can result in dispersion of the 
total energy of the excitations related to faults into multiple 
characteristic frequencies. For example, if stator current mea 
surements are directly used for wind turbine generator fault 
detection, the energy of excitations related to wind turbine 
generator faults will disperse to multiple characteristic fre 
quencies. The magnitudes of excitations at these multiple 
characteristic frequencies may be less outstanding than that at 
the only fault characteristic frequency fit of the current 
demodulated signals in the frequency domain, for example. 

1P-invariant Frequency Spectrum Analysis 

0083. Since the fault characteristic frequencies of a wind 
turbine generator vary with the shaft rotating frequency dur 
ing variable-speed operating condition of the wind turbine 
generator, it can be difficult to extract the fault signatures 
from the non-stationary current signals of the wind turbine 
generator using classical frequency spectrum analysis meth 
ods. However, if a wind turbine generator rotates at a constant 
frequency, classical frequency spectrum analysis can be used 
to identify a wind turbine generator fault effectively based on 
characteristic frequencies. For example, if the wind turbine 
generator current signals or current demodulated signals are 
preprocessed in Such a way that the variable fault character 
istic frequencies of the wind turbine generator are converted 
into constant values, the classical frequency spectrum analy 
sis methods can be used to detect the faults for a variable 
speed wind turbine generator. 
0084. In operation, the systems described in this document 
can begin by defining both a normalized frequency of a cur 
rent demodulated signal S2, as well a sampling frequency f. of 
the current measurement. An example relationship amongst 
f, f, and S2, is shown below by equation (43): 
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where S2(t) is expected to be constant to facilitate the fault 
detection by using classical frequency spectrum analysis. 
Therefore, if the sampling frequency f. is changed continu 
ously with f(t) to make the right-hand side of equation (43) 
constant, S2, (t) will eventually become constant. The above 
method can include preprocessing the current demodulated 
signal of a wind turbine generator to obtain a constant G2(t), 
which can be implemented in the following example steps, as 
shown in FIG. 2. 

I0085 FIG. 2 is a flow chart of a process 200 for identifying 
a generator fault. In short, process 200 generates an alert in 
response to detecting a wind turbine generator fault. The fault 
may be a wind turbine generator fault having one or more 
characteristic frequencies. For example, the fault may be a 
wind turbine generator imbalance fault. In general, the pro 
cess 200 can be performed by a processor, controller, or 
computer system capable of analyzing complex signals. The 
mechanism that performs each of the steps in this method will 
be referred to as a system, but such a system contemplates 
employing a number of processors, computers, sensors, and/ 
or other peripherals. The process 200 can begin by acquiring 
(202) current data from a wind turbine generator during 
operation. For example, the current data can be acquired by a 
server system from a sensor measuring current from a gen 
erator operating the wind turbine. In some implementations, 
the current data can be acquired during operation of the wind 
turbine generator by measuring one phase of a stator (i.e., in 
a permanent magnet synchronous generator) or rotor (i.e., in 
a doubly fed induction generator) current in the generator. 
I0086. Upon acquiring the current data, the system deter 
mines (204) frequency demodulated signals and amplitude 
demodulated signals by frequency demodulating and ampli 
tude demodulating the current data. For example, the current 
data typically includes signals with both amplitude portions 
and frequency portions. The system can perform demodula 
tion techniques on both the frequency portions and the ampli 
tude portions to retrieve signal information, for example. In 
Some implementations, demodulated signals can be used as 
inputs when calculating other information used in fault detec 
tion of wind turbine generators. For example, the system can 
use frequency demodulated signal information correspond 
ing to the acquired current data, from Step 202, to calculate a 
shaft rotating frequency of the wind turbine generator that 
Supplied the current data. 
I0087. At some point during operation, the system can 
resample (206) the frequency and amplitude demodulated 
signals corresponding to the current data. The resampling can 
include using upsampling and/or downsampling techniques 
on the frequency and/or the amplitude demodulated signals. 
Such resampling may result in converting one or more vari 
able characteristic frequencies of at least one identified wind 
turbine generator fault into one or more constant values. For 
example, the upsampling techniques can include using a con 
stant upsampling ratio to upsample the frequency and ampli 
tude demodulated signals corresponding to the current data. 
In some implementations, the resampling can include using a 
variable downsampling step size to downsample the 
upsampled frequency and amplitude demodulated signals. In 
particular, the downsampling step size may be based at least 
in part on an estimated shaft rotating frequency of the wind 
turbine generator. In some implementations, the downsam 
pling step size may be selected to ensure particular frequency 
sampling occurs. For example, the system can select a down 
sampling step size that ensures that the sampling frequency of 



US 2016/0033580 A1 

the resampled signals is greater than twice the wind turbine 
generator fault characteristic frequency Such that each resa 
mpled signal can be reconstructed from its countable 
sequence of samples and contain the fault characteristic fre 
quency (according to the Nyquist-Shannon sampling theo 
rem). In some implementations, the resampling can include 
resampling the acquired current data directly in addition to 
resampling the frequency and amplitude demodulated sig 
nals. This resampling can include converting the variable 1P 
frequency to a constant value and monitoring a frequency 
spectra of the resampled current data to detect a wind turbine 
generator fault. 
0088. The system can monitor (208) a frequency spectra 
of the resampled frequency and amplitude demodulated sig 
nals corresponding to the current data. The monitoring can be 
performed to identify one or more excitations at the fault 
characteristic frequency or frequencies in the frequency spec 
tra. An excitation at a fault characteristic frequency in the 
frequency spectra can indicate a fault has occurred in the wind 
turbine generator. The fault may becaused by yaw error, wind 
shear, tower shadow, blade imbalance, or aerodynamic asym 
metry, just to name a few examples. Identifying an excitation 
in the frequency spectra at one of the converted constant fault 
characteristic frequencies can include implementing an 
impulse detection method to discover and isolate a fault com 
ponent of at least one identified wind turbine generator fault. 
Example impulse detection methods are described with ref 
erence to FIG. 5 below. 

0089. In some implementations, monitoring the frequency 
spectra of the resampled frequency and amplitude demodu 
lated signals can include iteratively calculating the frequency 
spectra of the resampled signals corresponding to the current 
data. In some implementations, identifying an excitation in 
the frequency spectra can include locally normalizing the 
frequency spectra of the resampled frequency and amplitude 
demodulated signals corresponding to the current data. In 
certain implementations, identifying an excitation in the fre 
quency spectra can include using a median filter to calculate 
a threshold to determine the excitations in the locally normal 
ized frequency spectra of the frequency and amplitude 
demodulated signals corresponding to the current data. In 
some implementations, the threshold level is predetermined 
by the system. In other implementations, each wind turbine 
generator is set to a unique threshold level. 
0090. In response to identifying one or more excitations in 
the frequency spectra at the converted constant fault charac 
teristic frequencies, the system can generate (210) and trans 
mit an alert message that indicates that a wind turbine gen 
erator fault has been detected. The alert can be presented at or 
near the wind turbine, or alternatively sent to a server system 
to be analyzed. 
0091 FIG. 3 is a flow chart of a process 300 for detecting 
one or more impulses in a frequency spectrum. The process 
300 can, for example, be performed by a controller configured 
to detect wind turbine generator faults. The controller can 
include a current sensor configured to generate current data 
by measuring one or more stator currents of a permanent 
magnet synchronous generator and measuring one or more 
rotor currents of a doubly-fed induction generator. The con 
troller can also include a low-pass filter configured to receive 
the generated current data from the current sensor and an 
analog-to-digital converter configured to receive the filtered 
current data from the low-pass filter. 
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0092. The process can begin by receiving (302) a set of 
real-time operating current data from a wind turbine genera 
tor during operation. The received current data can be used to 
determine (304) frequency demodulated signals and ampli 
tude demodulated signals by demodulating the current data. 
0093. The system can estimate (306) a shaft rotating fre 
quency of the wind turbine generator based on the frequency 
demodulated signal corresponding to the current data. In 
Some implementations, the system (or a user) may select a 
base frequency f, to be an averaged value of the estimated 
shaft rotating frequency during a certain period. In this way, 
the quantization error due the variable downsampling rate 
will be minimized. 

0094. The system can resample (308) the frequency and 
amplitude demodulated signals of the current databased on 
the estimated shaft rotating frequency of the wind turbine 
generator and calculate (310) frequency spectra of the resa 
mpled frequency and amplitude demodulated signals corre 
sponding to the current data. In some implementations, the 
processor may be further programmed to use a moving win 
dow to locally normalize the frequency spectra of the resa 
mpled frequency and amplitude demodulated signals corre 
sponding to the current data. 
0.095 The system can extract (312) magnitudes of one or 
more impulses in the frequency spectra to detect any wind 
turbine generator faults. The extracted magnitudes of the 
impulses can be used as an index to detect wind turbine 
generator faults in the frequency domain. In some implemen 
tations, the system can select a threshold to determine an 
impulse by using a median filter. The threshold can be auto 
matically generated by setting its value to be the maximum 
value of the output signal of the median filter. If the magnitude 
of the locally normalized frequency spectrum of the resa 
mpled frequency or amplitude demodulated signal corre 
sponding to the current data is greater than the threshold at a 
certain frequency point, it indicates that there is an impulse at 
that frequency. 
(0096 FIG. 4 is a flow chart of an example process 400 for 
performing a frequency spectrum analysis. The process 400 
performs the analysis using the 1P-invariant frequency. In 
operation, the process 400 may begin by receiving real-time 
operating current measurements i(t). The process 400 can 
also include receiving or selecting particular predetermined 
variables that can be applied during resampling or demodu 
lation techniques. For example, the process 400 can include 
receiving (402) user input that selects an upsampling ratio M. 
In addition, the process 400 can also include selecting or 
receiving a base value of a downsampling step size of L. The 
process 400 can additionally include receiving or selecting 
(404) a base frequency f. For example, the system (or a user) 
may select a base frequency f. to be an averaged value of an 
estimated shaft rotating frequency during a certain period. 
0097. As shown in FIG.4, the real-time operating current 
measurements i(t) can be sampled (406) to obtain current 
samples C(n), where n=1,2,3,..., Nand N is the length of the 
current measurement. The sampling generally includes Sam 
pling of measured non-stationary current i(t) of the wind 
turbine generator with a fixed sampling rate. 
0098. The process 400 includes demodulating the fre 
quency (408) and demodulating the amplitude (410) of the 
non-stationary current signal C(n). The demodulation results 
in a current frequency demodulated signal SAn) and a current 
amplitude demodulated signal S(n). 
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I0099 For the frequency demodulated signal S(n), the pro 
cess 400 includes estimating (412) the shaft rotating fre 
quency f(n) by using the current frequency demodulated 
signal SAn). The process may include choosing (404) a base 
frequency f, based on f(n). Alternatively, the base frequency 
may be predetermined before the demodulation occurs. In an 
example of a permanent magnet synchronous generator, the 
shaft rotating frequency can be represented by the equation 
f(n)=S(n)/p. For a doubly-fed induction generator, the shaft 
rotating frequency can be represented by the equation f(n)- 
|s,(n)+f/p. Here p is the number of pole pairs of the gen 
eratOr. 

0100 For the amplitude demodulated signal S(n), the 
previously selected upsampling ratio M and a base value of 
downsampling ratio L is selected (402). The process can 
include upsampling (414-418) which may represent interpo 
lating the shaft rotating frequency f(n), the frequency 
demodulated signal s(n), and the amplitude demodulated 
signal s(n) by a constant upsampling ratio of M. The results 
are represented by the upsampled shaft rotating frequency 
signal F(k), the upsampled current frequency demodu 
lated signal S(k), and the upsampled current amplitude 
demodulated signal S(k), where k=1,2,3,..., MXN. 
0101 Next, the process 400 includes a variable rate down 
sampling (420). For example, the process can downsample 
S(k) and S(k) by a variable downsampling step size. 
The results may include St.(i) and St.(j), respectively, 
where j=1, 2, 3, . . . , J and J is determined by M, N, and L. 
Suppose that s(n) stands for s(n) or s(n) and SG) stands 
for So,(j) or So,(j): and S(k) stands for S(k) or 
S(k). In the downsampling process, equations (44) and 
(45) are rendered as: 

Sion.(1)=S(1) (44) 

If Sdow? )=S. (k), then, 
S(j+1)=S(k+roundLifi/f(k))) (45) 

where round IL-f/f(k) is the variable downsampling step 
size, which depends on the upsampled shaft rotating fre 
quency f(k). In addition, round() stands for rounding a 
number to the nearest integer. The downsampling process to 
obtain S() is equivalent to resampling the original or 
upsampled current demodulated signal s(n) or S(k), 
respectively with a variable sampling frequency f(k), whose 
value is proportional to the value of f(k). According to 
equation (43) above, the normalized frequency of S(i). 
which is G2(j), is given by the following equation S2, 
(j)/2JLS,(i)/f(j), where G2(j) is now a constant value. 
0102 The process 400 includes calculating (422) the clas 
sical frequency spectrum of the downsampled current 
demodulated signal S(i) for the fault signature extraction, 
which now has a constant characteristic frequency. By using 
the above method 400, the variable 1 P frequency of the wind 
turbine generator and variable characteristic frequency f. 
of a wind turbine generator fault become constant values in 
the frequency spectrum of S(i). Therefore, the resulting 
frequency spectrum is called the 1P-invariant frequency spec 
trum and the magnitude of the excitation at fit, in the fre 
quency spectrum of S(i) can be used as a signature to 
clearly identify and quantify wind turbine generator faults. 
0103) In some implementations of method 400, the con 
stant base value of the downsampling step size L is chosen 
based on two criteria. First L should be large enough to 
eliminate the quantization error due to the requirement of an 
integral downsampling step size. Second, L should be small 
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enough to ensure that the sampling frequency after downsam 
pling is greater than twice theft, frequency. In one example, 
L is larger than 10. The base frequencyfb is chosen to be the 
mean value of the estimated shaft rotating frequency f(n). 
Furthermore, if the measured current is sampled with a suf 
ficiently high sampling rate, as in step 406, Such that the 
sampling frequency of the downsampled signal S() with 
out using upsampling is greater than twice the characteristic 
frequency of the wind turbine generator fault, then M is 1 and 
the upsampling steps 414-418 can be excluded. 

Impulse Detection for the 1P-invariant Frequency 
Spectra 

0104 FIG. 5 is a flow chart of a process 500 for detecting 
faults in wind turbine generators. The process 500 provides an 
impulse detection algorithm for automatic extraction of fault 
signatures from the 1P-invariant frequency spectra. The 
1P-invariant frequency spectra of the current demodulated 
signals usually have non-stationary amplitudes. Therefore, a 
localized process for impulse detection from the frequency 
spectra is employed. In a 1P-invariant frequency spectrum, 
the magnitude at one frequency represents the energy of the 
time-domain signal at that frequency. If the energy around a 
certain frequency is high, it will generate an impulse in the 
frequency spectrum. The impulse detection method is pro 
posed based on the amplitude of a 1P-invariant frequency 
spectrum. 
0105. In this example, assume that X(f) represents the 
sampled 1 P-invariant frequency spectrum of a current 
demodulated signal, where f=1,2,3,...F and F is the length 
ofx(f). The process 500 includes defining the energy of X(f) as 
P(f)=x(f) and selecting (502) a moving window W. If the 
moving window W is of length 2W+1 is used, the energy of 
the data in the window can be defined as PX(f-W)+X(f- 
W+1)+...+x(f+W). A ratio R(f) is defined to present the 
percentage of the energy at the frequency f with respect to the 
total energy of the points contained in the moving window 
R(f)=P(f)/P. In some implementations, the system can use 
a moving window to locally normalize the frequency spectra 
of particular resampled frequency and amplitude demodu 
lated signals. 
0106 The process 500 includes locally normalizing (504) 
X(f) resulting in R(f), which represents a locally normalized 
spectrum of the original frequency-domain signal X(f). If R(f) 
at a certain frequency point is greater than a predetermined 
threshold T, it can indicate that there is an impulse at that 
frequency. In operation, the threshold T is automatically gen 
erated from the 1P-invariant frequency spectrum. 
0107 The process 500 includes filtering (506)R(f) using a 
median filter, which is a nonlinear filter, to remove the 
impulse. The filtered R(f) is represented by R/(f), which is the 
result of R(f) processed by the median filter. The process 500 
includes selecting a thresholdTby performing (508) a thresh 
old calculation. The threshold T is generally set to be the 
maximum value of RAf). If an impulse is detected (510) at a 
fault characteristic frequency f. in the locally normalized 
frequency spectrum of S,C), it indicates that one or more 
components of the wind turbine generator have a fault. This is 
typically an abnormal condition and as such, the process 400 
can determine the abnormal condition by performing (512) an 
abnormal impulse search and if the impulse is indeed abnor 
mal, the process 400 can issue an alarm or message indicating 
the abnormal condition. 
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0108) Although the various actions in FIGS. 2-5 have been 
shown in a linear grouping as one example, the particular 
determinations made in the process and the order of those 
determinations may vary depending on the implementation. 
0109 The following examples of experimental studies 
include use of a direct-drive wind turbine generator. The 
generator includes six pole pairs and is operated in a wind 
tunnel. The wind tunnel can use a variable-speed fan togen 
erate controllable wind flows with speeds from 0 to 10 m/s. In 
the experimental studies, the rotating speed of the fan is 
varied to generate variable wind speed in the wind tunnel. 
One phase stator current of the wind turbine generator is 
recorded via a current clamp and data acquisition system at a 
sampling rate of 10 kHz. The current samples are acquired by 
the Software operating on a computing system. The length of 
each current record is 60 seconds. 

Example: Blade Imbalance Detection 

0110. To create a blade imbalance, additional masses are 
added close to the tip of a blade of the wind turbine generator. 
The mass of a healthy blade is measured to be 181 grams. 
Four blade imbalance scenarios are tested by adding a mass of 
2.3 grams, 4.5 grams, 6.8 grams, and 9 grams, respectively, to 
a blade. Therefore, the weight of the blade is increased by 
1.25%, 2.5%, 3.75%, and 5%, respectively. During the 
experiments, the wind turbine generator is operated at vari 
able speeds in the range of 6-13 Hz, which represents the 
variable 1 P frequency. The proposed methods above are 
applied to obtain the 1P-invariant Power Spectral Density 
(PSD) of the estimated shaft rotating frequency of the wind 
turbine generator for the four blade imbalance scenarios and 
the baseline case. In the proposed methods, the base fre 
quency f. is chosen to be 10 Hz and the base value of the 
downsampling step size L is 100. In the experiments, excita 
tions are observed at the fixed 1P frequency of 10 Hz in the 
1P-invariant power spectral density plots in the blade imbal 
ance scenarios. Thus, the magnitude of this excitation pro 
vides an effective index for detecting blade imbalance faults. 
The greater the magnitude of the excitation appears at the 1P 
frequency, the higher degree of the blade imbalance. There 
fore, the proposed methods can not only identify, but can also 
quantify the degree of blade imbalance of the wind turbine 
generator. 

Example: Bent Blade Detection 

0111) A bent blade is a blade of a wind turbine generator 
that twists flapwise or edgewise from the respective normal. A 
bent blade may also generate an imbalance fault in the wind 
turbine generator. During the experiments, one blade of the 
wind turbine is bent edgewise at 2, 4, and 6 degrees, respec 
tively. 

0112. In the experimental studies, an excitation appears at 
a fixed frequency of 1P (10 Hz) in the 1P-invariant power 
spectral density plots of the bent blade cases. The magnitude 
of the 1P excitation provides an effective index for detecting 
and quantifying the bent blade faults. Since the wind turbine 
is operated in the wind tunnel during the experiments and 
there is no wind shear or yaw error in the wind tunnel, there is 
no excitation at 2P frequency in the experimental results, 
which is another characteristic frequency of aerodynamic 
asymmetries. 
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Synchronous Sampling and Impulse Detection 
0113. The following describes a fault detection process 
that uses a synchronous sampling and impulse detection tech 
nique. The current signals are synchronously sampled or resa 
mpled such that the varying characteristic frequencies of the 
excitations generated by wind turbine faults in the current 
signals become constant values. An impulse detection algo 
rithm is used to detect the faults by identifying the excitations 
from the frequency spectra of the synchronously sampled or 
reampled stator current signals. The current signal can be a 
raw analog current signal measured from a turbine generator. 
The current signal can also be a digital current signal that has 
been used by the control system of the turbine generator. In 
this case, the current signal is still measured from the turbine 
generator using a current sensor, but has been sampled for 
other purposes, such as control. The fault detection process 
can use raw analog current signal measured by using one or 
more additional current sensors, but can also use the existing 
current signal which is already available in the turbine gen 
erator control system. In the latter case, there is no need to 
install additional current sensors or data acquisition devices 
(e.g., analog to digital converters) to implement the fault 
detection process described here. 
0114. In some implementations, a current-based fault 
detection process for direct-drive wind turbines operating 
with varying shaft rotating frequencies includes a low-com 
putational-cost, high-resolution, wide-band, synchronous 
sampling process and an impulse detection process. In the 
Synchronous sampling process, the phase of the original time 
domain uniformly sampled generator current signal is first 
estimated. According to the estimated phase, synchronous 
resampling is then performed for the current signal such that 
the varying characteristic frequencies of wind turbine faults 
in the current signal are converted to constant values. An 
impulse detection process then identifies the fault signatures, 
which are the excitations (i.e., impulses) generated by wind 
turbine faults at the fault characteristic frequencies in the 
frequency spectrum of the synchronously sampled current 
signal. The detected impulses are then used for health condi 
tion evaluation and fault detection of the wind turbine. 

Synchronous Sampling for Current Signals 
I0115 Many faults indirect-drive wind turbines, e.g., blade 
imbalance, aerodynamic asymmetry, rotor eccentricity, bear 
ing faults, etc., will generate excitations at certain frequencies 
(called fault characteristic frequencies) in the frequency spec 
tra of generator current signals. In general, a fault character 
istic frequencyft, can be expressed as follows. 

k (46) 
frault = kif f = , f 

where f is the shaft rotating frequency of the wind turbine, f, 
is the fundamental frequency of the stator current signal: k, is 
a positive real number; and p is the number of pole pairs of the 
generator. Since a wind turbine is typically operated with a 
varying shaft rotating frequency, f, and fit are varying. 

Synchronous Sampling 
0116 Synchronous sampling is a non-uniform sampling 
method for signal processing. FIG. 6A is a graph 600 showing 
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a synchronously sampled nonstationary sinusoidal signal 
602. FIG. 6B is a graph 604 showing the phase of the signal 
602, in which “nonstationary' means that the amplitude, fre 
quency, and/or phase of the sinusoidal signal are variable. For 
example, when the wind is stronger, the wind turbine rotor 
blades may rotate at a faster rate, whereas when the wind is 
weaker, the rotor blades may rotate at a slower rate. If the 
current signal from the wind turbine is sampled at constant 
time intervals, the intervals of the phases of the current 
samples will not be constant the phase interval between two 
samples will be smaller if the rotor blades rotate at a slower 
speed, and the phase interval between two samples will be 
larger if the rotor blades rotate at a higher speed. 
0117. In synchronous sampling, the phases, instead of the 
time intervals, of the time-domain sampling points of the 
sinusoidal signal are evenly distributed. As shown in FIG. 6A, 
S. S. S. S., and Ss are the time instants of the synchronous 
sampling points of the sinusoidal signal 602 in one cycle. As 
shown in FIG. 6B, the corresponding phases of the signal 602 
at the five sampling points are 60, 120, 180, 240, and 300 
degree, respectively. In this example, the signal is sampled at 
a constant phase interval (i.e., 60 degree interval). In this case, 
in each cycle of the synchronously sampled nonstationary 
sinusoidal signal, the number of the sampling points is a 
COnStant. 

Signal Phase Estimation 
0118. To perform synchronous sampling, one needs to find 
the location of each synchronous sampling point of the pro 
cessed signal in the time domain. In some examples, this is 
done using the phase of the signal. 
0119 FIG. 7 is a diagram of a process for estimating the 
phase of the nonstationary sinusoidal signal, which for 
example can be a generator current signal of a wind turbine. 
First, a forward-backward filter 610 is used to filter out the 
high-frequency sampling noise in the current signal, which is 
implemented as follows. 

C = I. sin(0) + C (47) 

C = H . C (48) 

C = H. C. (49) 
hfo 0 ... O (50) 

H = hf hf.0 0 

hf N-1 ... hf.1 hf.0 

C = I sin(0) (51) 

where C=C(1),..., C(N) is a column vector representing 
the sampledgenerator current signal with a constant sampling 
frequency, such as that used in the control system of the wind 
turbine; N is the length of the sampled current signal; I and 0 
are the instantaneous amplitude and phase of the fundamental 
frequency component of C, respectively; C' represents the 
harmonics of Cand the sampling noise: His a filterexpressed 
in a matrix form; C, is the forward-filtered result of C: Cf is 
obtained by reversing the sequence of the samples of CA 
therefore, C. is the backward-filtered result of C. Finally, 
C, which is the forward-backward filtered result of C, is 
obtained by reversing the sequence of the samples of C'. AS 

Feb. 4, 2016 

given in equation (51), C, is an estimation of the fundamental 
frequency component of C. The forward-backward filter 610 
is a Zero-phase-distortion filter used to facilitate the phase 
estimation of the signal, which is critical to synchronous 
sampling. 
0.120. A Hilbert transform 612 is used to calculate the 
instantaneous amplitude I of the forward-backward filtered 
current signal C. 

HC = F '{FIC, u} (52) 

1, n = 0, N / 2 (53) 
u = 2, n = 1, 2, ... , NA2 - 1 

0, n = N (2 + 1, ... , N - 1 

I = W{C}, + (HIC)}? (54) 

where H(...) stands for the Hilbert transform; F(-) and F(.) 
stand for the fast Fourier transform (FFT) and inverse FFT 
(IFFT), respectively. C., is then normalized 614 with respect 
to its instantaneous amplitude I and the resultis the following 
according to equation (51). 

Cp = sin(6) (55) 

I0121 The inverse sine function "arcsin() 616 is applied 
to the normalized current signal and the result is the instan 
taneous phase 0 of the fundamental component of the origi 
nal current signal C with a domain of definition of 0, 360) 
degree. 

Resampling 

0.122 Assume that the original nonstationary generator 
current signal is uniformly sampled with a constant sampling 
frequency F. The total number of the sampling points in one 
cycle of the fundamental component of the current signal is 
F/f, which is variable because the fundamental frequency of 
the nonstationary stator current signal, f, is variable. A resa 
mpling algorithm is used to achieve Syncgronous sampling of 
the generator current signal. Assume that there are L. Sam 
pling points in each cycle of the synchronously sampled 
generator current signal, where L is a constant natural num 
ber. According to the Nyquist-Shannon sampling theorem, L. 
needs to satisfy the following condition: 

L. f. 2 faut, (56) 
The phase value 0 of the I-th (I-1,2,..., L.) Synchronous 
sampling point is: 

9. L) = (1-1 (57) (Ls) = Ls (l - 1) 

I0123 Referring to FIG. 8, a graph 620 illustrates the cal 
culation of synchronous sampling times. The graph 620 
shows the phase 0(t) of the current signal versus time t in a 
segment of the signal, where S(n), S(n+1) and S(n+2) are the 
sampling times of the original current samples; 0(n), 0(n+1) 
and 0(n+2) are the corresponding phase values of the original 
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current samples, respectively, obtained by using the process 
in FIGS. 7. S(I) and S(I+1) are the pending synchronous 
sampling times of the current signal satisfying 

and 0 (I) and 0 (I+1) are the corresponding phase values of 
the synchronously sampled current signal, respectively. If the 
sampling frequency F is sufficiently higher than f, e.g., 
F>50-f, then it is reasonable to assume that the phase value 
0 is linear between any two consecutive samples. Such as S(n) 
and S(n+1). Therefore, S.(I) can be calculated by: 

S(n + 1) - S(n) (59) 
S(i) = S(n) + 0(n + 1) - 0(n) .6(i) - 6(n) 

0124. The calculated synchronous sampling time S(I) 
will be used to resample the current signal in the next step. 
Similarly, it is reasonable to assume that the current signal C 
is linear between any two consecutive samples. 
0125 Referring to FIG.9, a graph 630 illustrates the cal 
culation of synchronous samples of the generator current 
signal. The graph 630 shows the current sample C (I) at the 
time S(I) can be calculated via synchronous resampling as 
follows: 

C(i) = C C(n + 1) - C(n) S(i) - S (60) s(t) = ()' s , 1) so I (is) - S(n) 

0126. In the example above, linear interpolation is used to 
estimate the sampling time S(I) and the current sample 
C(I), but other interpolation methods can also be used. Such 
as polynomial interpolation or spline interpolation. 
O127 
0128. The power spectral density analysis is applied to 
extract the wind turbine fault signature from the synchro 
nously sampled current signal C(I), where I-1,2,..., L. 
In the power spectral density analysis, C.(I) is treated as a 
uniformly sampled signal, namely, the sampling interval T of 
C(I) is treated as a constant. Since the number of the Sam 
pling points, L, in each cycle of C(I) is also a constant, the 
fundamental frequency f of C(I) is now a constant value in 
the power spectral density analysis: 

Power Spectral Density Analysis 

1 (61) 

0129. In a direct-drive wind turbine, the relationship 
between the shaft rotating frequency f. and the fundamental 
frequency f1 of the generator stator current is given below: 

fpf. (62) 

Thus, f is also a constant value in the power spectral density 
analysis of the synchronously sampled current signal C(I). 
Moreover, since the wind turbine fault characteristic fre 
quency fit is proportional to f and f as expressed in equa 
tion (46), f, also becomes a constant value in the power 
spectral density analysis of C(I). 
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Fault Signature Extraction and Evaluation 
0.130. In a power spectral density spectrum, the magnitude 
at a certain frequency represents the energy of the time 
domain signal at the frequency. If the signal has high energy 
at a certain frequency, it will generate an excitation or impulse 
at that frequency in the power spectral density spectrum of the 
signal. 
I0131 FIG. 10 shows an impulse detection process 640 for 
identifying the impulses in the power spectral density spec 
trum of the synchronously sampled generator current signal. 
In Some examples, the power spectral density spectrum of the 
synchronously sampled current signal has nonstationary 
amplitudes, so it is difficult to use a global threshold to iden 
tify the impulses of the power spectral density spectrum. 
Thus, a localized method is used to preprocess the power 
spectral density spectrum for impulse detection. 
I0132 Assume that S(f) is the sampled power spectral 
density of the synchronously sampled current signal, where 
f=1,2,3,...F; and F is the length of S(f). Define the energy 
of the synchronously sampled signal at frequency f is P(f), 
then: 

I0133. The process 640 includes applying local normaliza 
tion, in which a moving window of length 2W+1 is applied to 
S(f)(642). The total energy of the signal at the frequencies in 
the moving window is defined as P(f), which can be calcu 
lated according to the following: 

I0134. The ratio R(f) is defined to be the percentage of the 
energy of the synchronously sampled current signal at the 
frequency f with respect to the total energy of the signal at all 
frequencies contained in the moving window: 

P.(f) (65) 
R(f) = r 

0.135 The R(f) represents the locally normalized power 
spectral density of the synchronously sampled current signal. 
If R(f) at a certain frequency is greater than a threshold T, it 
indicates there is an impulse at that frequency. In some imple 
mentations, T is automatically generated from the power 
spectral density spectrum. The process 640 includes applying 
a median filter, which is a nonlinear filter, to process R(f) as 
follows to generate the threshold: 

R(f) = Fear(f -3). 2 L- l (66) , R(f), ... r(t + . 

where R(f) is the filtered result of R(f), L(>3) is the order of 
the median filter, and F. Stands for selecting the 
median in the set . (644). The process 640 includes calcu 
lating the threshold Taccording to the following: 

T-FAIR(1), RA2),..., R(F) (67) 
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where F. Stands for selecting the maximum value in the 
set.(646). In order to effectively extract the impulses in the 
power spectral density using equation (65), the length of the 
moving window 2W+1 is chosen to be shorter than the distant 
between two nearest excitations in the power spectral density 
spectrum, so that the normalized energy (i.e., magnitude) of 
each impulse calculated by equation (65) will not be reduced 
by the existence of multiple impulses in the same window. In 
addition, the length of the moving window 2W+1 should be 
large enough (e.g., 2W+1 >50) to minimize the values of R(f) 
in the frequency intervals without any impulses. 
0136. The process 640 includes analyzing the locally nor 
malized power spectral density of the synchronously sampled 
current signal R(f) to detect impulses based on the threshold 
T, and generate a list of impulses in the power spectral density 
spectrum (648). The process 640 includes searching for 
abnormal impulses (650). In the locally normalized power 
spectral density of the synchronously sampled current signal, 
the amplitudes of the impulses at the characteristic frequen 
cies of wind turbine faults are the signatures for fault detec 
tion. Usually there are no impulses at the fault characteristic 
frequencies when the wind turbine is in healthy conditions. 
On the other hand, if an impulse is detected at a characteristic 
frequency of the wind turbine faults, it indicates that the wind 
turbine is in a faulty condition and maintenance may be 
required. 

Signatures of Wind Turbine Faults in Current Signals 

0.137 Rotor eccentricity and bearing fault of direct-drive 
wind turbines can be detected using synchronous sampling 
and impulse detection. 

Rotor Eccentricity 

0.138. The following describes rotor eccentricity detection 
for direct-drive wind turbines, which for example can be 
equipped with permanent-magnet synchronous generators 
(PMSGs) operating in variable-speed conditions. The char 
acteristic frequencies f of rotor eccentricity faults of a 
direct-drive wind turbine in the power spectral density of a 
permanent-magnet synchronous generator stator current sig 
nal can be expressed below: 

where k=1, 2, 3, are integers. Since the fundamental fre 
quency f. is not constant due to the variable-speed operation 
of the wind turbine, resampling of the current signal is per 
formed to produce a constant fundamental frequency before 
applying current spectrum analysis directly for rotor eccen 
tricity detection. 

Bearing Fault 

0139 FIGS. 11A and 11B are diagrams showing the con 
figuration of a ball bearing 660 that has balls 662 held by a 
cage 668 positioned between an outer race 664 and an inner 
race 666. In FIG. 11A, the rotational axis of the ball bearing 
660 is perpendicular to the page, and in FIG. 11B, the rota 
tional axis of the ball bearing 660 is parallel to the page. As 
shown in FIG. 11B, D, is the ball diameter, D is the pitch 
diameter, and p is the ball contact angle, which can be, e.g., 
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Zero. The single-point faults of this type of bearings include, 
e.g., inner-race fault, outer-race fault, ball fault, and cage 
fault. The theoretical characteristic frequencies of the four 
types of single-point bearing faults in vibration measure 
ments are given below: 

f = 0.5 N, f(1+ Dise) (69) 

f = 0.5. Nef (1- Die (70) 

f = f(Z)-(...) (71) 
f = 0.5. f(1– Dise) (72) 

where f. f. f. and f are the characteristic frequencies of 
inner-race bearing fault, outer-race bearing fault, bearing ball 
fault, and bearing cage fault, respectively; f. is the rotating 
frequency of the bearing; and N is the number of balls in the 
bearing. These characteristic frequencies of the single-point 
bearing faults in vibration measurements depend on the bear 
ing geometry and the rotating frequency. The excitations at 
these frequencies can be used for bearing fault detection. 
0140. To use permanent-magnet synchronous generator 
stator current signals for bearing fault detection, the influence 
of bearing faults on the stator current signals needs to be 
modeled. Similar to electric machines, due to the radial rotor 
movement and the shaft torque variation generated by a wind 
turbine bearing fault, both the frequency and the amplitude of 
the permanent-magnet synchronous generator stator current 
signals are modulated by the characteristic frequency f. of 
the bearing fault in vibration measurements, where f-stands 
for f. f. f, or f... Thus, the characteristic frequencies f. of 
the bearing fault in a current signal due to the modulation of 
its fundamental frequency f. by f can be expressed as fol 
lows: 

filf+k.f. (73) 

where k takes the same values as that in equation (68). In 
addition, the harmonics of the stator current signals are also 
modulated by f Because the harmonics may have much 
lower magnitudes than the fundamental component, the exci 
tations generated at the frequencies caused by the current 
harmonics modulation can be much smaller than those gen 
erated at the frequencies f,given by equation (73). Based on 
equations (69) to (73), it is also a challenge to use current 
spectrum analysis directly for bearing fault detection due to 
the nonstationary current fundamental frequency f. and rotat 
ing frequency f. of the wind turbine. 

Experimental Results 
0.141. The following describes experimental results of 
applying synchronous sampling and impulse detection for 
detecting bearing faults. 

Experimental Setup 

0.142 Experiments were conducted in which a 160-W 
Southwest Windpower Air Breeze direct-drive permanent 
magnet synchronous generator wind turbine was used. The 
permanent-magnet synchronous generator has six pole pairs 
(p=6). The test wind turbine was operated in a wind tunnel, 
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which uses a variable-speed fan to generate controllable wind 
flows with the speed from 0 to 10 m/s. One phase stator 
current of the permanent-magnet synchronous generator was 
recorded by a Fluke 80i-1 10s AC/DC current clamp. The 
measured current signals were digitalized by a National 
Instrument data acquisition system with a sampling rate of 10 
kHz. The current samples were acquired by the LabView 
Software operating on a computer, which implements the 
synchronous sampling and impulse detection process for 
detecting mechanical faults of the wind turbine. 

Rotor Eccentricity 
0143 FIG. 12 is a diagram showing emulation of a rotor 
eccentricity in a test wind turbine. As shown in FIG. 12, a 
wind turbine 670 uses two bearings 672 to support a rotor 674 
and a shaft 676. To emulate a rotor eccentricity, one bearing 
678 was removed to increase the degree of freedom of the 
rotor 674 in the vertical direction, as represented by the dash 
line arrow 680. Experiments were performed for the wind 
turbine with two bearings (healthy case) and one bearing 
(rotor eccentricity case) operated with a nonstationary shaft 
rotating frequency in the range of 6 Hz to 13 Hz. The length 
of the data record was 100s in each case. 
0144. The synchronous sampling process was applied to 
calculate the power spectral densities of the stator current 
signals of the wind turbine 670 in the healthy condition and 
with the rotor eccentricity. In the synchronous sampling, L. 
was chosen to be 32; T was chosen to be 1/1920 second in the 
power spectral density analysis; and the MATLAB function 
“filtfilt(b,a) was used to implement the forward-backward 
filter for phase estimation of the current signal, where b=ones 
(1, 10)/10 and a-1. The function “ones' generated a 1x10 
array with all elements being one. According to equation (61), 
the fundamental frequency f of the synchronously sampled 
stator current signal was 60 Hz in both cases. 
(0145 Referring to FIGS. 13A and 13B, graphs 690 and 
700 show the power spectral density spectra of the synchro 
nously sampled Stator current signals for (a) the healthy case, 
and (b) the rotor eccentricity case, respectively. In these 
examples, 50 Hz, and 70 HZ are two characteristic frequencies 
of the rotor eccentricity corresponding to k=1 in equation 
(68). Referring to FIG. 13A, the graph 690 shows the power 
spectral density of synchronously sampled Stator current for 
the healthy case, in which small excitations 692 caused by the 
inevitable Small blade imbalance and aerodynamic asymme 
try are observed at 50 Hz and 70 Hz. Referring to FIG. 13B, 
the graph 700 shows the power spectral density of synchro 
nously sampled stator current for the case with the emulated 
rotor eccentricity fault caused by the loss of one bearing. In 
the graph 700, the magnitudes of the excitations 694 at 50Hz 
and 70 Hz, increased significantly when compared to those in 
FIG.13A. In addition, there are excitations at 30 and 90 HZin 
both cases. These frequencies correspond to k=2 in equation 
(68). These excitations are not chosen for emulated rotor 
eccentricity detection of the test wind turbine because the 
effects of yaw error and tower shadow of a three-blade wind 
turbine may also generate excitations at these frequencies, 
and the amplitudes of these excitations do not increase sig 
nificantly compared to those at 50 Hz, and 70 Hz in the case of 
the emulated rotor eccentricity fault. 
0146 The impulse detection process was then applied to 
identify the excitations in the power spectral density of the 
synchronously sampled Stator current signal for detection of 
the emulated rotor eccentricity. The length of the moving 
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window was chosen to be 101. A 3rd-order median filter was 
used to calculate the threshold T. 
0147 Referring to FIGS. 14A and 14B, graphs 710 and 
720 showing the locally normalized power spectral density 
spectra i.e., R(f) of the synchronously sampled Stator cur 
rent signals and the threshold generated by the impulse detec 
tion process for (a) the healthy case, and (b) the emulated 
rotor eccentricity case, respectively. Referring to FIG. 14A, 
the graph 710 shows that in the healthy case, the amplitudes of 
the excitations at 50 Hz, and 70 Hz are below the threshold 
712. Referring to FIG. 14B, the graph 720 shows that the 
impulse detection process successfully extracted the fault 
signatures, which are the excitations 722 at the fault charac 
teristic frequencies of 50 Hz and 70 Hz, for the emulated rotor 
eccentricity detection. 
0148 Referring to FIG. 15, a graph 726 shows the power 
spectral density spectrum of the original uniformly sampled 
stator current signal for the emulated rotor eccentricity case. 
Due to the varying shaft rotating frequency of the wind tur 
bine, the fault characteristic frequencies vary and overlap the 
varying fundamental frequency f of the original uniformly 
sampled Stator current signal in the current power spectral 
density spectrum. As a result, the fault characteristic frequen 
cies cannot be detected by simply using the power spectral 
density spectrum analysis for the original uniformly sampled 
stator current signal. 
0149 Referring to FIG. 16, graphs 730 and 732 show the 
spectrograms of the original uniformly sampled Stator current 
signal generated by using the short-time Fourier transform for 
(a) the healthy case, and (b) the emulated rotor eccentricity 
case, respectively. The fundamental frequency of the nonsta 
tionary current signal is in the range form 40 Hz to 80 Hz. 
From the graphs 730 and 732, it is difficult to identify any 
excitations caused by the emulated rotor eccentricity fault 
around the fundamental frequency due to low amplitudes of 
these excitations. 
0150. The phase-based synchronous sampling process can 
be implemented using a relatively low memory space for 
storing data, has a relatively low computational cost and has 
low or no truncation error, and can synchronously resample a 
signal with a frequency close to its original sampling fre 
quency. The synchronous sampling process is a novel, com 
putationally-efficient, and wide-band digital synchronous 
sampling approach that is Suitable for online detection of 
wind turbine faults, e.g., the faults having high characteristic 
frequencies in the current signals. 

Bearing Cage Fault 
0151. The following describes an experiment for testing 
bearing cage faults. In this test, the test bearing 
(7C55MP4017) was initially a new bearing and pretreated by 
removing the lubrication oil to accelerate its degradation. The 
parameters of the test bearing were N=8, D-33 mm, and 
D=8 mm. The wind turbine with the pretreated bearing was 
operated with varying shafting rotating speed in the wind 
tunnel continuously for about 25 hours. The permanent-mag 
net synchronous generator stator current signal was recorded 
every 20 minutes. The length of each record was 100 s. The 
wind turbine stopped rotating at the end of the experiment due 
to the damage of the cage of the test bearing. FIG. 17 show 
photographs 740 and 742 of the test bearing before and after 
the experiment, respectively. 
0152 Referring to FIGS. 18A and 18B, graphs 750 and 
752 show the power spectral densities of the synchronously 
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sampled Stator current signals for(a) the healthy bearing case, 
and (b) the faulty bearing case, respectively, where L was 
chosen to be 32; T was 1/1920 second; and the same forward 
backward filter used for the rotor eccentricity detection was 
used for the bearing fault detection. The frequency f of the 
synchronously sampled stator current signal was 60 Hz, and f. 
was 10 HZaccording to equation (62) for both cases. Accord 
ing to equations (72) and (73), the characteristic frequencies 
f. of the bearing cage fault in the synchronously sampled 
stator current signal were approximately 60+k-3.8 Hz. As 
shown in FIG. 18B, excitations 754 appear at the fixed fre 
quencies of 56.1 Hz and 63.9 HZ in the power spectral density 
of the synchronously sampled current signal in the faulty 
bearing case. These two fault characteristic frequencies are 
close to the calculated theoretical values of 60+3.8 Hz, when 
k=-1. Moreover, there are excitations 756 at 53.9HZ and 66.1 
HZ in FIG. 18B, which were generated by the modulation 
between the bearing cage fault frequencies and the shaft 
rotating frequency f. 
0153. The impulse detection process was applied to 
extract the excitations in the power spectral density of the 
synchronously sampled Stator current signal for bearing cage 
fault detection. The length of the moving window was chosen 
to be 101. A 3rd-order median filter was used for threshold 
calculation. 
0154) Referring to FIG. 19, a graph 760 shows the locally 
normalized power spectral density i.e., R(f) of the synchro 
nously sampled Stator current signal and the threshold gener 
ated by the impulse detection process for the faulty bearing 
case. The threshold 762 was calculated to be 0.19. The 
impulses 764 appear at 56.1 Hz and 63.9 Hz, which are the 
signatures of the bearing cage fault in the test wind turbine. 
0155 The impulse detection process was also applied to 
extract a signature of the bearing cage fault from the power 
spectral densities of the synchronously sampled current sig 
nals during the entire 25-hour experiment. 
0156 Referring to FIG. 20, a graph 770 shows amplitudes 
of the locally normalized power spectral densities of the 
synchronously sampled Stator current records at a bearing 
cage fault characteristic frequency of 63.9 Hz, which is 
rounded up to 64 Hz in the caption of the vertical axis of FIG. 
20, during the 25-hour experiment. The signature is the 
amplitude at 63.9 HZ (i.e., one of the bearing cage fault 
characteristic frequencies) of the locally normalized power 
spectral density of each synchronously sampled current 
record. The graph 770 shows that the signature of the bearing 
cage fault firstly appeared at the 2.5" hour, and then disap 
peared, and then continuously appeared from the 5" hour to 
the 8" hour of the experiment. This result indicates a signifi 
cant degradation of the bearing cage and maintenance should 
be taken immediately after the 5" hour of the experiment. 
From the 8" hour until the end of the experiment, the wearing 
of the broken cage mitigated the amplitude of the excitation at 
63.9 Hz. As a result, the excitations at 63.9 HZof some current 
records were occasionally below the threshold and could not 
be detected. Since there was no maintenance taken during the 
experiment, the bearing was damaged and the wind turbine 
stopped at the 25" hour of the experiment by the protection 
system. This result demonstrates that the fault detection 
method described above, which includes the synchronous 
sampling and impulse detection processes, is effective for 
online monitoring the wind turbine health condition, detect 
ing the wind turbine fault, and determining when mainte 
nance is require. 
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0157. A current-based online fault detection method has 
been described. The fault detection process includes a novel 
computationally efficient, high-resolution, wide-band, Syn 
chronous sampling process and an impulse detection process, 
and can be used to detect faults in variable-speed direct-drive 
wind turbines. The fault detection process converts the vari 
able characteristic frequencies of wind turbine faults in the 
generator current signals to constant values via the synchro 
nous sampling process, which in Some implementations does 
not require additional hardware to implement. The impulse 
detection process extracts wind turbine fault signatures from 
the power spectral density spectra of the synchronously 
sampled generator current signals. This method has a high 
resolution in the frequency domain and, therefore, is effective 
in extracting the frequency-domain signatures of a wind tur 
bine fault from current signals which may have a low signal 
to-noise ratio. This method also has a low computational cost, 
needs low memory space, and has a high accuracy and a high 
frequency bandwidth for fault detection. The method has 
been validated by experimental studies for detecting a rotor 
eccentricity fault and a bearing cage fault of a direct-drive 
wind turbine operating with variable shaft rotating frequen 
cies in a wind tunnel. 

Gear Fault Detection 

0158 Gearbox faults constitute a significant portion of all 
faults and downtime in wind turbines. Gearbox fault detec 
tion using the electrical signals acquired from generatorter 
minals has significant advantages over traditional vibration 
based techniques in terms of cost, implementation and 
reliability. The following describes the principle of using the 
stator current signals of a generator for fault detection of a 
multi-stage gearbox connected to the generator. Based on the 
analysis, the characteristic frequencies of gearbox faults in 
the frequency spectra of the generator stator currents are 
identified. A process for detecting gear fault in the gearbox is 
provided. The process includes an adaptive signal resampling 
process to convert the varying fault characteristic frequencies 
in the stator current signals to constant values for the gearbox 
running in varying speed conditions, a frequency spectrum 
statistical analysis-based process to extract the fault features 
from the frequency spectra of the resampled Stator current 
signals, and a fault detection process to detect the faults based 
on the fault features extracted. Experimental results on a 
two-stage gearbox connected to an electric generator are pro 
vided to show the effectiveness of the analysis and method for 
detection of a variety of gear faults in the gearbox. 
0159. The common gear faults include, e.g., tooth break 
age, crack, and Surface wear, which may be caused by factors 
Such as fatigue, cyclic bending stresses beyond the physical 
limits of the materials, heavy wear accumulated over time, 
and Sudden shock overload transmitted from the rotor. A gear 
fault may lead to performance degradation of the wind turbine 
drivetrain and may cause a catastrophic failure of the gearbox 
or even failures of other components in the wind turbine 
drivetrain. Thus, it is useful to detect gear faults in time and 
repair the faulted gearbox in a timely manner to reduce the 
downtime and prevent catastrophic damages of the wind tur 
bine. 
0160 The characteristic frequencies of the faults in a gear 
box may be present in current signals even when the gearbox 
is in a healthy condition (e.g., due to inherent gear eccentrici 
ties). The faults may change the magnitudes or distributions 
of the characteristic frequency components. The following 
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describes a current-based method for detection of gear faults 
in variable-speed wind turbine gearboxes. The principle of 
using current signals measured from the stator terminals of an 
electric machine connected to a multistage gearbox for the 
fault detection of the gearbox is analyzed. Based on the analy 
sis, the characteristic frequencies of gear faults in the fre 
quency spectra of the current signals are identified. The fault 
characteristic frequencies depend on the shaft rotating fre 
quencies of the gearbox, which may vary in wind turbine 
applications. 

0161 The fault detection process includes an adaptive 
signal resampling process for signal conditioning, a fault 
feature extraction process, and a fault detection process. The 
adaptive signal resampling process converts the varying char 
acteristic frequencies of gearbox faults to constant values in 
the frequency spectra of the current signals. Then, in the 
feature extraction process, a frequency analysis technique, 
such as the Fast Fourier transform (FFT), can be applied to the 
resampled current signals to generate their frequency spectra, 
from which the amplitudes of the fault characteristic fre 
quency components can be extracted. The fault features, 
called the normalized power differences (NPDs), are then 
generated by using statistical analysis on the extracted ampli 
tudes of the fault characteristic frequency components. The 
fault detector is then developed to detect the gear faults by 
comparing the standard deviation (STD) of the normalized 
power differences against a pre-determined threshold. 
Experimental studies are carried out on an emulated wind 
turbine drivetrain that includes a two-stage gearbox con 
nected with an electric generator to validate the analysis and 
fault detection method for various gear faults in the gearbox 
operating with time-varying shaft speeds. 

Characteristic Frequencies of Gear Faults in 
Frequency Spectra of Machine Stator Currents 

0162. In some implementations, a multistage gearbox is 
used in the drivetrain of an indirect drive wind turbine to 
transmit the power captured from wind by the wind turbine 
rotor blades from a low-speed turbine rotor to a high-speed 
generator. The generator then converts the captured wind 
power into electricity. 

0163. Due to the torsional vibrations induced by transmis 
sion errors in the gears and the stiffness variation of the gear 
teeth contact, the rotation of a gearbox adds the rotational and 
meshing frequency components into the torque signature of 
the output shaft. The characteristic frequencies of torsional 
vibrations caused by the gearbox rotation include the shaft 
rotating frequencies f(n=1,2,..., N), where N is the number 
of shafts in the gearbox, and the gear meshing frequencies 
fe (p=1,2,..., P), where P is the number of gear pairs 
meshing together. 

0164. The torsional vibrations in a gearbox may affect the 
stator currents of the electric machine connected to the gear 
box. Since the shaft of the electric machine is connected to the 
output shaft of the gearbox, the torsional vibrations in the 
gearbox may cause oscillations of the air-gap torque of the 
electric machine. As a result, the air-gap torque T may include 
a constant component To and some oscillatory components at 
the frequencies off, and f, due to the torsional vibrations 
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where T, andTe are the amplitudes, and p, and pare 
the respective phases of the oscillatory components, respec 
tively. 

0.165. The oscillations of the air-gap torque (i.e., the tor 
sional vibrations of the gearbox) will modulate the frequency 
and amplitude of the stator current signals of the electric 
machine connected to the gearbox. The fundamental fre 
quency f of the modulated electric machine stator current 
signal can be expressed as: 

P 

XT () sin for fast-dit also p=l 

where f is the fundamental frequency of the stator current 
when there is no torsional vibration; A, and A are the 
amplitudes, and p, and p, are the respective phases of the 
oscillatory components caused by the torsional vibrations at 
the gearbox shaft rotating frequencies f, and gear meshing 
frequencies f, in the stator current fundamental fre 
quency signal f(t), respectively. 

0166 The amplitude I of the fundamental frequency 
component of the modulated electric machine stator current 
signal can be expressed as: 

where I is the amplitude of the fundamental frequency com 
ponent of the stator current signal when there is no torsional 
vibration: A', and A's are the amplitudes, and (p', and 
(p', are the respective phases of the oscillatory compo 
nents caused by the torsional vibrations at the gearbox shaft 
rotating frequencies f, and gear meshing frequencies f, 
in the amplitude signal I(t), respectively. 
0.167 According to equations (75) and (76), the funda 
mental component of the modulated Stator current, C(t), can 
be expressed as 

0168 By expanding equation (77), the characteristic fre 
quencies of the gearbox vibrations in the electric machine 
stator current, f. , can be expressed as follows: 
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W P (78) 

fgarho = f; tX, k, x f, tX in x freship 
=l p=l 

where k, (n=1,2,..., N) and j (p=1,2,..., P) are non 
negative integers, and at least one of the k, or j is positive. 
The expression (78) indicates that the characteristic frequen 
cies of the gearbox vibrations appear as sidebands across the 
fundamental frequency of the stator current signals of the 
electric machine connected to the gearbox. These sidebands 
will also appear around harmonics, which can be derived in a 
similar way. 
0169. The torsional vibrations caused by gearbox rotation 
may exist regardless whether the gearbox is in the healthy or 
faulty condition. A fault in the gearbox may change the ampli 
tudes of the torsional vibrations of the gearbox, which sub 
sequently may cause changes in the air-gap torque and the 
sidebands across the fundamental and harmonics of the elec 
tric machine stator currents. As a result, the fault may change 
the amplitudes of the vibrating frequency components in 
equation (77). 

Gear Fault Detection Method 

0170 As described by equation (78), the characteristic 
frequencies of a gearbox fault in the frequency spectrum of a 
stator current signal of the electric machine connected to the 
gearbox are related to the gearbox shaft rotating frequencies. 
When the shaft rotating frequencies of the gearbox vary with 
time, both the characteristic frequencies of the gearbox fault 
in the stator current signal and the current signal itself (i.e., the 
frequency components of the current signal) become nonsta 
tionary. It is difficult to identify the nonstationary fault char 
acteristic frequencies from the nonstationary stator current 
signal using conventional spectrum analysis methods, such as 
FFT. However, if the varying shaft rotating frequencies of the 
gearbox are converted to constant values, the characteristic 
frequencies of the gearbox fault will become constant, and the 
classical FFT will generate a stationary frequency spectrum 
of the stator current signal, from which the constant charac 
teristic frequencies of the gearbox fault can be identified for 
fault detection of the gearbox rotating with varying frequen 
C1GS. 

Principles of Adaptive Signal Resampling 

0171 FIG. 21 is a diagram showing a fault detection pro 
cess 780 that includes sensing and data acquisition 782, signal 
conditioning 784, fault feature extraction 786, and fault 
detection 788. Define S2, as the normalized frequency of a 
shaft rotating frequency f. of the gearbox, and f as the 
sampling rate of the original stator current signal. The rela 
tionship among S2, f, and f is as follows: 

(), (t) f(t) (79) 
27 fisF 

0172 The sampling ratefs can be fixed during data acqui 
sition. This makes the normalized frequency vary with time if 
f is time-varying. In this document, S2, is expected to be 
constant to facilitate fault detection. To make the right-hand 
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side of equation (79) constant, the prospective sampling rate 
fs should be made proportional to the shaft rotating fre 
quency f. 

focf.(t) 

0173 Accordingly, the prospective sampling interval Ts 
of the current signal needs to be proportional to the reciprocal 
of the shaft rotating frequency which is defined as T.: 

(80) 

TsocT(t) (81) 

0.174 Suppose that the shaft rotating frequency changes 
linearly between any two consecutive samples of the original 
stator current signal with a constant sampling interval. In the 
discrete-time system, the time interval T(n) between these 
two samples can be calculated as the reciprocal of the average 
shaft rotating frequency between the two samples. Therefore, 
the relationship between T(n) and f(n) will be the follow 
1ng: 

TSF(n) oc T(n) (82) n) ca 1 (n) = - SF if (n) + f.(n + 1) 

0.175 For a stator current signal (i.e., time series) with N 
samples, there are a total of (N-1) time intervals of two 
consecutive sample pairs. To satisfy equation (82), the pro 
spective sampling interval Ts(n) is calculated according to 
the ratio of the time interval T(n) to the total time of the time 
series as follows: 

(N-1)T(n) (N-1)f(k) + f(k+1) (83) 
Tse (n) = = - 

XE. T.(k) X f(k) + f(k+1) 
k=1 k=1 

(0176). In equation (83), both the terms (N-1) and X, Y, 
T(k) have fixed values. Hence, the proportional relationship 
between Ts and T in equation (82) is satisfied, and so is 
equation (80). Therefore, by adaptively resampling the origi 
nal stator current signal (e.g., via interpolation) using a vary 
ing sampling interval Ts(n) calculated from equation (83), 
the objective of a constant S.2, can be achieved for the resa 
mpled current signal to facilitate the Subsequent fault detec 
tion. 
0177. In the adaptive resampling process, the varying 
sampling interval T(n) is adaptive to the shaft rotating fre 
quency f(n). However, errors are brought into the resampled 
current signals in each interpolation step from two sources. 
One error source is the interpolation itself. The other error 
Source arises from the assumption that the shaft rotating fre 
quency changes linearly between two consecutive samples, 
which is not always true in a real-world system. Therefore, a 
single-step interpolation may not be sufficient to convert S.2, to 
a constant value. An iterative interpolation process may be 
required to continuously resample the current signal until 2, 
is sufficiently constant. This can be evaluated by a criterion 
designed for the specific application. 

Adaptive Resampling Process 

0.178 FIG. 22 shows a flow diagram of an exemplary 
adaptive resampling process 790, which includes the follow 
ing steps. 
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0179 (1) Collect the acquired nonstationary electric 
machine stator current signal with a constant sampling rate 
c(n), where n=1,2,3,..., N and N is the number of the stator 
current samples. 
0180 (2) Calculate the instantaneous amplitudes A(n) of 
the current samples using the Hilbert transform, 

where H(...) denotes the Hilbert transform of the signal (792). 
0181 (3) Normalize the stator current samples with 
respect to their instantaneous amplitudes A(n), and the result 
is s(n) (794). 

The normalization of the current samples removes the depen 
dence of the method on the load condition of the gearbox. The 
instantaneous amplitudes of the current samples calculated 
from the Hilbert transform can also be used for the calculation 
of the instantaneous load of the electric machine. 
0182 (4) Estimate the rotating frequency f(n) of the elec 

tric machine shaft (i.e., gearbox output shaft) from the nor 
malized current samples S(n) by using a phase-locked loop 
(PLL) method (796). 
0183 (5) Define L,(n) the indexes of the samples f(n) 
and s(n), where I=0,1,2,... is the iteration number of the 
recursive resampling process. Initially, i=0, Lo(n)-n, fo(n) 
=f(n), and S,(n)=S(n). 
0184 (6) Calculate the sampling interval between two 
consecutive current samples s,(n-1) and s,(n) as T(n)=2|f, 
(n-1)+f(n)', where i=0,1,2,. . . . and n=2,3, . . . , N. 
Therefore, the total sampling time of the current signal is 
X, YT,(n). 
0185 (7) Calculate the indexes of the objective samples 
f(n)ands, (n) in the (i+1)th iteration based on the ratio of 
the sampling interval between two consecutive samples to the 
total sampling time of the signal in the ith iteration, as fol 
lows: 

Li+1(1) = 1 (86) 

(N-1). If (n) + f. (n + 1) 
X. If...; (k) + f. (k+1) 

Lil (n + 1) = Li (n) + 

for 2 s. n < (N - 1)(798). 

0186 (8) Interpolate the samples f(n)ands,(n) using the 
cubic spline interpolation method based on the updated 
indexes L., (n) to obtain the objective samples f(n) and 
s, (n), respectively (800). 
0187 (9) Repeat (6) to (8) until CR, X, IL (n)-L (n) 
lsCR, where CR, is a predetermined Small threshold. It 
means no significant improvement can be made by further 
resampling the signal (802). Then stop the recursion. 
0188 (10) Obtain the final resampled normalized current 
signal 

s(2) (n) = sili (n), 
() indicates text missing or illegiblewhen filed 

(0189 where n=1,2,3,..., N (804). 
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0190. By using the process described above, the varying 
shaft frequencies of the gearbox are converted to constant 
values. Consequently, the varying fundamental frequency of 
the stator current signal and the varying characteristic fre 
quencies of the gearbox fault become constant values in the 
frequency spectrum of s(n). 
0191 Alternative Resampling Process 
0.192 Instead using the adaptive resampling process 
shown in FIG. 22, it is also possible to use the resampling 
process described in connection with FIGS. 7-9, using equa 
tions (47) to (60). 
0193 Fault Feature Extraction Process 
0194 Since the characteristic frequencies of gearbox 
faults become constant in the resampled normalized current 
signals, the FFT can be applied to generate the frequency 
spectra, Such as the power spectral density, of the resampled 
normalized current signals. Then the magnitudes of the fault 
characteristic frequency components can be extracted from 
the power spectral density spectra of the resampled normal 
ized current signals. 
0.195 The powers of the six vibrating frequency compo 
nents (i.e., the sidebands), 

M(2) (C) = 1 ... N), 
() indicates text missing or illegiblewhen filed 

0.196 across the fundamental frequency described by 
equation (78) in the power spectral density spectrum of the 
resampled normalized current signal are first normalized 
using equation (87) below: 

p Mis-f (87) 
M = X 

0197) Then the summation M, of the normalized powers of 
each pair of the frequency components at fit?, is calculated 
for the resampled normalized current signal by equation (88) 
below: 

Finally, a fault feature is defined in equation (89) below using 
the normalized power differences (NPDs) of the N pairs of 
vibrating (i.e., fault characteristic) frequency components 
between the current time step and the baseline case when the 
gearbox is new or in the healthy condition for gear fault 
detection. 

iiaseline 

where i-1, 2, . . . , N. M. are the mean normalized 
powers at the current time step and in the baseline case, 
respectively. If the gearbox is in the healthy condition, all of 
the normalized power difference values will be close to zero. 

(89) 

Fault Detection Process 

0198 Gear faults may change the amplitudes of different 
characteristic frequency components in gearbox vibration 
signals differently, and Subsequently change the amplitudes 
of different characteristic frequency components in the elec 
tric machine stator current signals differently. As a result, the 
absolute values of the normalized power differences defined 
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by equation (89) at different fault charactersitc frequencies 
ftf. (i-1,2,....) in the current signals may no longer be close 
to zero. Therefore, the gear faults can be detected by investi 
gating the variations of the normalized power differences at 
different fault characteristic frequencies. In this document, 
the standard deviation defined in equation (90) below is used 
to quantify the changes of the normalized power differences. 

(90) 
1 rs2 

STD = N IX, (NPD; - NPD) 

(0199 where NPD is the mean value of normalized power 
differences. For a faulty case, the standard deviation of the 
normalized power differences is larger than Zero. For a 
healthy case, the standard deviation of the normalized power 
differences is close to Zero. In some implementations, a small 
threshold O is established to consider the measurement noise. 

If the standard deviation of the normalized power differences 
is greater than O, it indicates the occurrence of a fault in the 
gearbox. Otherwise, if the standard deviation of the normal 
ized power differences is equal to or Smaller than O, the gears 
in the gearbox are considered healthy. The value of O for a 
specific wind turbine can be determined from the measure 
ments when the wind turbine is in the healthy condition, e.g., 
during the period of the field test after the wind turbine was 
installed. In this case, multiple standard deviations of the 
normalized power differences can be calculated from mul 
tiple sets of measurements. Then the average value of the 
standard deviations can be used as the threshold O. 

Experimental System 

0200. To validate the method for detection of gear faults in 
wind turbine gearboxes, an emulated wind turbine drivetrain 
that includes a two-stage gearbox connected with an electric 
machine is studied. The experimental system includes a 
300-W electric generator used in an Extractor wind turbine 
driven by an adjustable-speed induction motor drive through 
two back-to-back connected Siemens gearboxes, which are 
two-stage helical gearboxes with a total gear ratio of 10.57. 
One gearbox (i.e., the speed reducer) reduces the shaft speed 
of the induction motor. The induction motor drive and speed 
reducer are used to emulate the dynamics of the rotor of a 
wind turbine. The second gearbox (i.e., the test gearbox) is 
used to emulate the gearbox in a wind turbine. 
0201 FIG. 23 is a diagram of a two-stage gearbox 810 
connected to an electric machine 818, in which the internal 
mechanical structure of the gearbox 810 is shown. The char 
acteristic frequencies of the gearbox vibrations include the 
input shaft 812 rotating frequency f. the pinion shaft 814 
rotating frequency f, the output shaft 816 rotating frequency 
f, and the gear meshing frequencies and fell and fe'Z, 
Z, Z and Z are the tooth numbers of the four gears in the 
gearbox. Based on equation (78), the characteristic frequen 
cies related to gearbox vibrations in an electric machine stator 
current signal can be predicated as follows: 
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3 2 (91) 

fgarho = f; tX knx f. EX in x freship 
=l p=l 

0202 The test gears are mounted at the input shaft of the 
test gearbox and pretreated artificially to generate various 
faults which are commonly observed in industrial systems. 
FIGS. 24A to 24D show the various types of faults, including 
(a) one-tooth breakage 820, (b) two-teeth breakage 822, (c) 
gear crack 824, and (d) gear Surface wear at various degrees 
(5%, 20% and 60%), respectively. 

Experimental Results 

0203 The fault detection method is applied for detection 
of the gear faults in the test gearbox operated in varying-speed 
conditions, where the rotating speed of the electric machine 
input shaft (i.e., the output shaft of the gearbox) is randomly 
varied in the range of 297 to 891 rpm. Each speed condition 
lasts for 8 seconds. The period of 8 seconds is chosen to 
simulate the wind turbine operation in the natural environ 
ment. 

0204 If the classic FFT is directly applied to the recorded 
stator current samples, no specific characteristic frequencies 
of the gearbox are observable in the power spectral density 
spectrum. 
(0205 Referring to FIG. 25, a graph 830 shows the power 
spectral density spectrum of the nonstationary stator current 
signal obtained directly from classical FFT analysis. From the 
graph 830, no fault signatures can be extracted from the 
nonstationary stator current signal caused by the varying shaft 
rotating frequencies using the classical FFT analysis. 
0206. In order to detect fault signatures, the adaptive sig 
nal resampling process described above is applied to the 
recorded stator current signals to facilitate the fault feature 
extraction under variable-speed conditions. 
0207 Referring to FIG. 26, a graph 840 includes a curve 
842 representing the shaft rotating speed of the electric 
machine, estimated by using a phase-locked loop (PLL) 
method, and a curve 844 representing the instantaneous load 
of the machine calculated by using the Hilbert transform. The 
curves 842 and 844 indicate the variation of the nonstationary 
operation condition of the system. Fluctuations around an 
average value are observed in the load curve, even in the 
periods of constant speeds. The load connected to the electric 
machine is purely resistive and, therefore, is proportional to 
the rotating speed. Since the speed fluctuations exist due to 
the torsional vibrations, even when the designated operating 
speed is constant, the load fluctuations are observed and 
amplified from the speed fluctuations. 
0208. The fault features are then extracted from the resa 
mpled normalized stator current signal by using the process 
described above. The classical FFT method is used to gener 
ate the power spectral density for the resampled normalized 
stator current signal in each case, as shown in FIGS. 27A to 
27G. The characteristic frequencies of the gearbox in the 
stator current described by equation (91), including the fun 
damental frequency and its sidebands, can be observed in 
FIGS. 27A to 27G, where only the sidebands at fif, fif, 
and fitf, are considered because their magnitudes are most 
significant among all sidebands described by equation (91). 
(0209 Referring to FIGS. 27A to 27G, graphs 850, 852, 
854,856, 858,860, and 862 show the power spectral density 
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spectra of the resampled normalized stator current signal 
showing the fundamental frequency component and its side 
bands for the test system in varying-speed conditions for (a) 
the healthy case, (b) one-tooth breakage, (c) two-teeth break 
age, (d) gear crack, (e) 5% surface wear, (f) 20% surface wear, 
and (g) 60% surface wear, respectively. 
0210. In FIG. 27A, the graph 850 shows that the sidebands 
caused by the torsional vibrations of the gearbox appearin the 
current power spectral density spectrum even when the gear 
box is in the healthy condition. Compared to FIG. 27A, the 
current power spectral density spectra in various gear fault 
cases in FIGS. 27B to 27G indicate that each gear fault has 
altered the magnitudes and the magnitude distribution of the 
sidebands across the fundamental frequency. However, dif 
ferent gear faults have changed the magnitude distribution of 
the sidebands differently. In most gear fault cases shown in 
FIGS. 27B to 27F, an increase of the magnitudes is observed 
at one or more pairs of the sidebands. Such changes in the 
magnitudes and magnitude distribution of the sidebands can 
be used as the indicators of the faults. However, compared to 
the healthy case in FIG. 27A, the changes of the magnitudes 
of the sidebands are not obvious in the 60% gear surface wear 
case shown in FIG. 27G. In this example, it may be difficult to 
detect the 60% gear surface wear by directly observing the 
magnitudes of the sidebands. 
0211. By using the resampled normalized stator current 
signals, the amplitudes of the fault characteristic frequency 
components, and consequently the fault features extracted, 
are independent of the variations of the load and shaft rotating 
speed (i.e., operating condition) of the gearbox. Therefore, it 
is effective to compare the magnitudes of the sidebands for 
fault detection even when the gearbox is operated in varying 
speed and load conditions. 
0212 Automatic fault detection is desired for wind tur 
bines. In this document, the normalized power differences 
defined in equations (87) to (89) are used as the statistical 
fault features to quantify the changes in the sidebands in 
various gear fault cases from the healthy case. The standard 
deviations of the normalized power differences are then cal 
culated to quantify the variations of the normalized power 
differences statistically for the detection of various gear 
faults. Table I below lists the standard deviations of the nor 
malized power differences for the six gear faults. The thresh 
old CI of the fault detector is determined using the historical 
data when the gearbox is in the healthy condition and the 
value is 0.10. All the standard deviations of the normalized 
power differences in Table I exceed the threshold. The results 
show that all of the gear faults are successfully detected by 
using the fault detection process described above. 

TABLE I 

THE STDS OF THENPDS FOR DIFFERENT GEAR FAULTS 

One-tooth Two-teeth Gear 59 20% 60% 
break break crack W(8. W(8. W(8. 

O.258 O.287 O.703 O465 O514 O.132 

0213. A current-based fault detection process, which 
includes an adaptive signal resampling process for signal 
conditioning, a fault feature extraction process, and a fault 
detection process has been described for gear fault detection 
of the gearboxes in variable-speed wind turbines. The adap 
tive signal resampling process converts the time-varying 
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characteristic frequencies of gearbox faults to constant values 
in the frequency spectra of the nonstationary current signals. 
The fault feature extraction process extracts the features of 
gearbox faults, e.g., normalized power differences, from the 
FFT-based power spectral densities of the adaptively resa 
mpled current signals. The fault detection process detects the 
gear faults by comparing the standard deviations of the nor 
malized power differences against a fault threshold. The cur 
rent-based fault detection process has been validated by 
experimental studies for detecting a variety of gear faults, 
including one-tooth breakage, two-teeth breakage, gear 
crack, 5% gear surface wear, 20% gear surface wear, and 60% 
gear Surface wear, in a two-stage gearbox used in an emulated 
wind turbine drivetrain operating with time-varying shaft 
speeds. 
0214. In certain implementations, a generic computing 
system can be used for the operations described in association 
with any of the computer-implement methods, controllers, or 
systems described previously, including calculations of one 
or more of equations (1) to (91). The generic computing 
system can include a processor, a memory, a storage device, 
and an input/output device, for example. Each of the proces 
Sor, memory, storage device, and/or input/output device can 
be interconnected using a system bus. The processor is 
capable of processing instructions for execution within the 
generic computing system. In one implementation, the pro 
cessor is a single-threaded processor. In another implemen 
tation, the processor is a multi-threaded processor. The pro 
cessor is capable of processing instructions stored in the 
memory or on the storage device to display graphical infor 
mation for a user interface on the input/output device. 
0215. The memory stores information within the generic 
computing system. In one implementation, the memory is a 
computer-readable medium. In one implementation, the 
memory is a volatile memory unit. In another implementa 
tion, the memory is a non-volatile memory unit. 
0216. The storage device is capable of providing mass 
storage for the generic computing system. In one implemen 
tation, the storage device is a computer-readable medium. In 
various different implementations, the storage device may be 
a floppy disk device, a hard disk device, an optical disk 
device, or a tape device. 
0217. The input/output device provides input/output 
operations for the generic computing system. In one imple 
mentation, the input/output device includes a keyboard and/ 
or pointing device. In another implementation, the input/ 
output device includes a display unit for displaying graphical 
user interfaces. 

0218. The features described can be implemented in digi 
tal electronic circuitry, or in computer hardware, firmware, 
Software, or in combinations of them. The apparatus can be 
implemented in a computer program product tangibly 
embodied in an information carrier, e.g., in a machine-read 
able storage device or in a propagated signal, for execution by 
a programmable processor, and method steps can be per 
formed by a programmable processor executing a program of 
instructions to perform functions of the described implemen 
tations by operating on input data and generating output. The 
described features can be implemented advantageously in 
one or more computer programs that are executable on a 
programmable system including at least one programmable 
processor coupled to receive data and instructions from, and 
to transmit data and instructions to, a data storage system, at 
least one input device, and at least one output device. A 
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computer program is a set of instructions that can be used, 
directly or indirectly, in a computer to perform a certain 
activity or bring about a certain result. A computer program 
can be written in any form of programming language, includ 
ing compiled or interpreted languages, and it can be deployed 
in any form, including as a stand-alone program or as a 
module, component, Subroutine, or other unit Suitable for use 
in a computing environment. 
0219 Suitable processors for the execution of a program 
of instructions include, by way of example, both general and 
special purpose microprocessors, and the Sole processor or 
one of multiple processors of any kind of computer. Gener 
ally, a processor will receive instructions and data from a 
read-only memory or a random access memory or both. The 
essential elements of a computer area processor for executing 
instructions and one or more memories for storing instruc 
tions and data. Generally, a computer will also include, or be 
operatively coupled to communicate with, one or more mass 
storage devices for storing data files; Such devices include 
magnetic disks, such as internal hard disks and removable 
disks; magneto-optical disks; and optical disks. Storage 
devices Suitable for tangibly embodying computer program 
instructions and data include all forms of non-volatile 
memory, including by way of example semiconductor 
memory devices, such as EPROM, EEPROM, and flash 
memory devices; cloud-based memory devices and disks, 
magnetic disks such as internal hard disks and removable 
disks; magneto-optical disks; and CD-ROM and DVD-ROM 
disks. The processor and the memory can be supplemented 
by, or incorporated in, ASICs (application-specific integrated 
circuits). 
0220 To provide for interaction with a user, the features 
can be implemented on a computer having a display device 
such as a CRT (cathode ray tube) or LCD (liquid crystal 
display) monitor for displaying information to the user and a 
keyboard and a pointing device Such as a mouse or a trackball 
by which the user can provide input to the computer. 
0221) The features can be implemented in a computer 
system that includes a back-end component, such as a data 
server, or that includes a middleware component, such as an 
application server or an Internet server, or that includes a 
front-end component, such as a client computer having a 
graphical user interface or an Internet browser, or any com 
bination of them. The components of the system can be con 
nected by any form or medium of digital data communication 
Such as a communication network. Examples of communica 
tion networks include, e.g., a LAN, a WAN, and the comput 
ers and networks forming the Internet. 
0222. The computer system can include clients and serv 

ers. A client and server are generally remote from each other 
and typically interact through a network, Such as the 
described one. The relationship of client and server arises by 
virtue of computer programs running on the respective com 
puters and having a client-server relationship to each other. 
0223. A computer program (also known as a program, 
Software, Software application, Script, or code) can be written 
in any form of programming language, including compiled or 
interpreted languages, or declarative or procedural lan 
guages, and it can be deployed in any form, including as a 
standalone program or as a module, component, Subroutine, 
or other unit Suitable for use in a computing environment. A 
computer program does not necessarily correspond to a file in 
a file system. A program can be stored in a portion of a file that 
holds other programs or data (e.g., one or more scripts stored 
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in a markup language document), in a single file dedicated to 
the program in question, or in multiple coordinated files (e.g., 
files that store one or more modules, Sub programs, or por 
tions of code). A computer program can be deployed to be 
executed on one computer or on multiple computers that are 
located at one site or distributed across multiple sites and 
interconnected by a communication network. 
0224. The processes and logic flows described in this 
specification can be performed by one or more programmable 
processors executing one or more computer programs to per 
form functions by operating on input data and generating 
output. The processes and logic flows can also be performed 
by, and apparatus can also be implementedas, special purpose 
logic circuitry, e.g., an FPGA (field programmable gate array) 
or an ASIC (application specific integrated circuit). 
0225. Processors suitable for the execution of a computer 
program include, by way of example, both general and special 
purpose microprocessors, and any one or more processors of 
any kind of digital computer. Generally, a processor will 
receive instructions and data from a read only memory or a 
random access memory or both. The essential elements of a 
computer are a processor for performing instructions and one 
or more memory devices for storing instructions and data. 
Generally, a computer will also include, or be operatively 
coupled to receive data from or transfer data to, or both, one 
or more mass storage devices for storing data, e.g., magnetic, 
magneto optical disks, or optical disks. However, a computer 
need not have Such devices. 

0226 To provide for interaction with a user, embodiments 
of the subject matter described in this specification can be 
implemented on a computer having a display device, e.g., a 
CRT (cathode ray tube) or LCD (liquid crystal display) moni 
tor, for displaying information to the user and a keyboard and 
a pointing device, e.g., a mouse or a trackball, by which the 
user can provide input to the computer. Other kinds of devices 
can be used to provide for interaction with a user as well; for 
example, feedback provided to the user can be any form of 
sensory feedback, e.g., visual feedback, auditory feedback, or 
tactile feedback; and input from the user can be received in 
any form, including acoustic, speech, or tactile input. 
0227. While this specification contains many specific 
implementation details, these should not be construed as limi 
tations on the scope of any invention or of what may be 
claimed, but rather as descriptions of features that may be 
specific to particular embodiments of particular inventions. 
Certain features that are described in this specification in the 
context of separate embodiments can also be implemented in 
combination in a single embodiment. Conversely, various 
features that are described in the context of a single embodi 
ment can also be implemented in multiple embodiments sepa 
rately or in any suitable subcombination. Moreover, although 
features may be described above as acting in certain combi 
nations and even initially claimed as Such, one or more fea 
tures from a claimed combination can in some cases be 
excised from the combination, and the claimed combination 
may be directed to a subcombination or variation of a sub 
combination. 
0228. Similarly, while operations are depicted in the draw 
ings in a particular order, this should not be understood as 
requiring that such operations be performed in the particular 
order shown or in sequential order, or that all illustrated 
operations be performed, to achieve desirable results. In cer 
tain circumstances, multitasking and parallel processing may 
be advantageous. Moreover, the separation of various system 
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components in the embodiments described above should not 
be understood as requiring such separation in all embodi 
ments, and it should be understood that the described program 
components and systems can generally be integrated together 
in a single software product or packaged into multiple soft 
ware products. 
0229. A number of implementations have been described. 
Nevertheless, it will be understood that various modifications 
may be made without departing from the spirit and scope of 
the systems, devices, methods and techniques described here. 
For example, the current-based fault detection process 
described above can be used to detect faults in various types 
of turbine generators, such as a hydro turbine generator, a 
steam turbine generator, or a gas turbine generator. The cur 
rent-based gear fault detection process described above can 
be used to detect faults in gears of gearboxes connected to 
various types of turbine generators, such as the hydro turbine 
generator, the steam turbine generator, or the gas turbine 
generator. The current-based fault detection process 
described above can be used to detect additional types of 
faults other than those described above. 
0230 Various forms of the flows shown above may be 
used, with steps re-ordered, added, or removed. It will be 
appreciated that any appropriate time interval may be used to 
make the determinations described above, and that the deter 
minations may be made using any appropriate number of data 
points within the time interval. Accordingly, other implemen 
tations are within the scope of the following claims. 
What is claimed is: 
1. A method for detecting turbine generator faults, the 

method comprising: 
receiving a current signal from a turbine generator; 
synchronously sampling the current signal to obtain a first 

set of current signal samples that are evenly spaced in the 
phase domain, in which phase differences between adja 
cent current signal samples in the first set are Substan 
tially the same; 

generating a frequency spectrum of the first set of current 
signal samples: 

identifying one or more excitations in the frequency spec 
trum; and 

detectingafault in the turbine generator based on the one or 
more excitations in the frequency spectrum. 

2. The method of claim 1 in which detecting a fault in the 
turbine generator comprises detecting an excitation at a char 
acteristic frequency that corresponds to a known type of tur 
bine generator fault. 

3. The method of claim 1, further comprising locally nor 
malizing the frequency spectrum of the current signal 
samples, using a median filter to calculate median locally 
normalized values of the frequency spectrum, and 

based on the median values, determining a threshold for 
detecting excitations in the frequency spectrum. 

4. The method of claim 1 in which synchronously sampling 
the current signal comprises: 

sampling the current signal according to a first set of Sam 
pling times to generate a second set of current signal 
Samples, 

determining instantaneous phases of the second set of cur 
rent signal samples or current signal samples derived 
from the second set of current signal samples, 

based on the instantaneous phases, calculating a second set 
of sampling times that correspond to phases of the cur 
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rent signal in which the phase intervals of adjacent 
samples are Substantially constant, and 

re-sampling the current signal according to the second set 
of sampling times to generate the first set of sampled 
current data. 

5. The method of claim 4 in which receiving a current 
signal from a turbine generator comprises receiving an analog 
or digital current signal from the turbine generator, and re 
sampling the current signal comprises re-sampling the analog 
or digital current signal according to the second set of Sam 
pling times. 

6. The method of claim 4 in which re-sampling the current 
signal comprises calculating interpolated current signal 
amplitudes according to the second set of Sampling times. 

7. The method of claim 1 in which synchronously sampling 
the current signal comprises: 

sampling the current signal according to a first set of Sam 
pling times to generate a second set of sampled current 
data, 

applying a forward-backward filter and a Hilbert transform 
to determine amplitudes of normalized current signal, 

determining instantaneous phases of the current signal 
based on the amplitudes of the normalized current sig 
nal, and 

re-sampling the current signal based on information 
derived from the instantaneous phases. 

8. The method of claim 1, comprising comparing the fre 
quency spectrum of the first set of current signal samples with 
a reference frequency spectrum, in which detecting a fault in 
the turbine generator comprises detecting a difference 
between the frequency spectrum of the first set of current 
signal samples and the reference frequency spectrum. 

9. The method of claim 1, further comprising, in response 
to detecting a fault in the turbine generator, generating and 
transmitting an alert that indicates a turbine generator fault is 
detected. 

10. The method of claim 1 in which receiving a current 
signal from a turbine generator comprises receiving a current 
signal from at least one of a wind turbine generator, a hydro 
turbine generator, a steam turbine generator, or a gas turbine 
generator. 

11. The method of claim 1 in which the current signal 
comprises a nonstationary periodic signal wherein the funda 
mental frequency of the current signal varies over time. 

12. The method of claim 11 in which the current signal 
comprises a nonstationary sinusoidal signal. 

13. The method of claim 1, further comprising normalizing 
amplitudes of the one or more excitations in the frequency 
spectrum, 

calculating normalized power differences between nor 
malized excitations determined at a current time and 
baseline normalized excitations, and 

calculating standard deviations of the normalized power 
differences, 

wherein detecting a fault in the turbine generator com 
prises detecting a fault in the turbine generator based on 
the standard deviations of the normalized power differ 
CCCS, 

14. The method of claim 13, further comprising comparing 
the standard deviations of the normalized power differences 
with a threshold; 

wherein detecting a fault in the turbine generator com 
prises detecting a fault in the turbine generator when the 
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standard deviations of the normalized power differences 
is greater than the threshold. 

15. The method of claim 13 in which detecting a fault in the 
turbine generator comprises detecting a gear fault in the tur 
bine generator. 

16. A controller configured to detect turbine generator 
faults, the controller having a processor that is configured to 
execute instructions to: 

receive a current signal from a turbine generator, 
synchronously sample the current signal to obtain a set of 

current samples that are evenly spaced in phase, in which 
phase differences between adjacent current samples in 
the set are substantially the same; 

generate a frequency spectrum of the current signal 
samples; 

identify one or more excitations in the frequency spectrum; 
and 

detect a fault in the turbine generator based on the one or 
more excitations in the frequency spectrum. 

17. The controller of claim 16 in which detecting a fault in 
the turbine generator comprises detectingafault in the turbine 
generator by detecting an excitation at a characteristic fre 
quency that corresponds to a known type of turbine generator 
fault. 

18. The controller of claim 16 in which the processor is 
further configured to execute instructions to locally normal 
ize the frequency spectrum of the current signal samples, use 
a median filter to calculate median locally normalized values 
of the frequency spectrum, and 

based on the median values, determine a threshold for 
detecting excitations in the frequency spectrum. 

Feb. 4, 2016 

19. The controller of claim 16 in which the processor is 
further configured to execute instructions to, in response to 
detecting a fault in the turbine generator, generate and trans 
mit an alert that indicates that a turbine generator fault is 
detected. 

20. The controller of claim 16 in which receiving a current 
signal from a turbine generator comprises receiving a current 
signal from at least one of a wind turbine generator, a hydro 
turbine generator, a steam turbine generator, or a gas turbine 
generator. 

21. A system for detecting turbine generator faults, the 
system comprising: 

at least one current sensor configured to sense a current 
signal from a turbine generator, and 

a processor that is configured to execute instructions to: 
receive the current signal from the at least one current 

Sensor, 
synchronously sample the current signal to obtain a set 

of current samples that are evenly spaced in phase, in 
which phase differences between adjacent current 
samples in the set are Substantially the same; 

generate a frequency spectrum of the current signal 
samples: 

identify one or more excitations in the frequency spec 
trum; and 

detect a fault in the turbine generator based on the one or 
more excitations in the frequency spectrum. 

22. The system of claim 21 in which the turbine generator 
comprises at least one of a wind turbine generator, a hydro 
turbine generator, a steam turbine generator, or a gas turbine 
generator. 


	DETECTING FAULTS IN TURBINE GENERATORS
	

	1499072189225344830-US20160033580A1

