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Abstract 
Recent analyses of avian leks have come to conflicting conclusions concerning the role of male set-
tlement on female traffic hotspots. This issue was reexamined in the sage grouse, Centrocercus uropha-
sianus, using data on prenesting movements of radio-tagged females and the dispersion of lekking 
males collected during a 10-year field study. As expected with hotspot settlement, leks were prefer-
entially located in areas through which females traveled between wintering and nesting ranges be-
fore mating. In addition, the distribution of males among leks was related proximately to variation 
in numbers of females visiting each lek during the mating period and ultimately to numbers that 
nested within a 2-km radius, within which nesting hens were preferentially attracted. The results 
show both that hotspot settlement can explain certain coarse scale features of male dispersion, and 
that female behavior during different stages of the prenesting period may influence particular com-
ponents of male dispersion to differing extents. 
 
During the past decade there have been numerous attempts to explain why males of lek-
breeding birds cluster their mating territories at specific nonresource-based sites (Höglund 
& Alatalo 1995). The question is interesting because the evolution of lekking has been dif-
ficult to accommodate within the paradigm that male mating strategies are shaped by the 
spatial and temporal distribution of receptive females (Davies 1991). Despite considerable 
research, however, the role of female behavior in the evolution of leks remains a conten-
tious issue (Clutton-Brock et al. 1993). 

Females could cause males to form leks in at least three ways. Males might cluster their 
mating territories because (1) range overlap generates hotspots with locally high female 
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encounter rates (Bradbury & Gibson 1983; Bradbury et al. 1986), (2) females are preferen-
tially attracted to larger groups of males (Bradbury 1981), or (3) highly skewed mating 
within leks generates opportunities for less successful males to acquire matings either 
through close proximity to a successful individual (hotshot or spatial spillover effect: 
Beehler & Foster 1988; Höglund & Robertson 1990; Gibson et al. 1991) or via inheritance of 
his territory or social status (temporal spillover: Gibson et al. 1991; McDonald & Potts 
1994). Field studies have shown that clustering of lek territories may be driven both by 
mating skew within leks (Gibson et al. 1991; Gibson 1992; Rintamäki et al. 1995) and by 
female attraction to larger or more densely packed groups of males (Alatalo et al. 1992; 
Lank & Smith 1992; Höglund et al. 1993; Hovi et al. 1995). Although these processes explain 
why males join leks, they do not account for broader-scale features of male dispersion, 
such as where leks are located or how males are distributed among them. The hotspot 
hypothesis provides a potential explanation for these features but has not gained wide 
acceptance, principally because even the most supportive studies showed that female 
ranging behavior was a relatively weak predictor of male dispersion (Pruett-Jones 1985; 
Bradbury et al. 1989a; Schroeder & White 1993). It has also received only limited support 
from studies of lekking ungulates (Apollonio 1989; Balmford et al. 1992). 

In contrast, recent studies of the lek-breeding ochre-bellied flycatcher, Mionectes oleagi-
neus, suggest that female traffic may influence male settlement much more precisely than 
was previously suspected. Westcott (1995) found that male display territories in this spe-
cies are located along well-defined traffic routes used by females when traveling between 
foraging areas. In addition, leks of M. oleagineus and two sympatric manakins were clumped 
in space and tended to covary in size over time, as would be expected if males of each 
species settled on conspecific female traffic routes whose locations and usage were similar 
as a result of interspecific diet overlap (Westcott 1994). Unlike previous studies, which 
measured only static female locations, Westcott measured the paths of moving females and 
found that these, and not locations where females spent time, predicted male locations. 
This difference may explain why he found more compelling support for a hotspot mecha-
nism. One purpose of this study was to reexamine the issue of hotspot settlement in sage 
grouse, Centrocercus urophasianus, in light of this suggestion. 

Bradbury et al. (1989a, b) examined male dispersion and its relationship to female pre-
nesting behavior in populations of sage grouse in eastern California. Studies of radio-
tagged females showed that in early spring, individuals moved from overlapping winter-
ing areas to dispersed nesting ranges and then around 10 days later visited a lek, often 
close to the nest, to mate. The sequence of temporal changes in male and female dispersion 
suggested that females selected nest sites independently of the locations of displaying 
males, and that males moved among leks in response to, and in anticipation of, the chang-
ing distribution of females. To investigate the hotspot hypothesis, pooled data on day- and 
night-time female locations from late winter until the onset of incubation were used to 
predict where males would display. These predictions were then compared to the actual 
distribution of lekking males over a range of grid sizes. At spatial scales fine enough to 
specify lek locations, there was little relationship between predicted and actual male dis-
tributions, but at coarser scales (using grid cells sufficiently large to include more than one 
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lek) the fit was better. Bradbury et al. (1989a) proposed that the nesting dispersion of fe-
males determines lek sizes by influencing numbers of hens attracted to each lek. Other 
factors were invoked to account for lek locations (meadow habitats favored by displaying 
males) and the tight clustering of lek territories. 

In the present study, I used an extended data set to reexamine the role of hotspot settle-
ment in sage grouse in more detail than was previously possible. In addition to incorpo-
rating measures of female dispersal trajectories, I considered the possibility that particular 
times during the female prenesting period may be more relevant than others for determin-
ing where a female will mate. I focused on two components of male dispersion, lek location 
and the distribution of males across leks, rather than treating the spatial distribution of 
displaying males as a single dependent variable. I also included tests of the notion that 
females favor larger leks. In contrast to our earlier work, the results provide evidence that 
lek locations are related to female traffic. They also provide specific support for our previ-
ous suggestion that nesting densities influence lek size. Finally, I reconsider the hotspot 
hypothesis in light of this and other recent studies. 
 
Methods 
 
I studied a population of sage grouse resident in Long Valley, Mono County, California 
from 1984 to 1993. Details of the study area, population, and general methods have been 
published previously (Bradbury et al. 1989a, b; Gibson et al. 1991). Analyses presented here 
deal with the following variables. 
 
Lek Location 
Before the study began, eight leks (1, 2, 3, 4, 5, 8, 9, 10A) were located from records pro-
vided by the California Department of Fish and Game. An aerial survey conducted during 
the peak mating period in 1984 revealed no additional leks. All eight sites remained active 
throughout the study. In 1985, a new lek (13) was found, which became inactive as birds 
began using a second site nearby (lek 14) between 1987 and 1989. Some other leks were 
transiently active in particular years but were not sampled sufficiently often to be included 
in the long-term data set. 
 
Lek Counts 
Peak daily counts of each sex were collected on a regular basis from mid-March to late 
April in 8 years between 1984 and 1993 (1990 and 1992 were not sampled). These data were 
used to estimate long-term mean numbers of males and females attending each lek during 
the mating period, to analyze trends in male numbers over time, and to estimate lek size 
when analyzing whether individual females choose between leks. When possible, observ-
ers classified males as adults (> 1 year old) or yearlings (< 1 year) based on tail length and 
shape (Patterson 1952). 

Long-term mean numbers of males and females at each lek were computed from peak 
daily counts taken during the first 2 weeks of mating in each sampled year. This period 
included 84.8 ± 8.2% of observed matings (range = 76.3 – 100%, N = 9 lek years) at a subset 
of leks studied intensively throughout a breeding season. Because of annual variation in 
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study emphasis, not all leks were sampled each year (x̄ ± sd years per lek = 4.4 ± 2.6, range 
= 2 – 8). This might lead to bias if leks varied annually in their relative popularity with 
either sex, or if there were large annual variations in numbers of birds across all leks. To 
check these possibilities, I analyzed data from a subset of the three largest leks (2, 4, and 8) 
that were counted in the same 7 years. Numbers of both sexes varied significantly between 
leks within years (Friedman tests; for both males and females: χ2 = 10.571, df = 2, P = 0.0051) 
but not between years within leks (males: χ2 = 5.714, df = 6; females: χ2 = 8.87, df = 6). As an 
additional check, I compared mean counts per lek pooled over all sampled years with val-
ues computed after scaling annual values as a percentage of the count at lek 2, which was 
attended by the largest numbers of both sexes in every year. The two measures were highly 
correlated (males: Kendall’s τ = 0.889, P = 0.0008, N = 9 leks; females: τ = 1.0, P = 0.0002, N = 9). 
Together, these analyses suggest that neither potential source of error is appreciable. 

In 1993, more precise measures of male and female numbers were collected at seven 
leks to examine how female numbers scale with lek size. The sample included six long-
term leks (1, 2, 3, 4, 5, 8) plus a transient lek (2A) located between leks 2 and 3. Each lek 
was counted at 10-min intervals from first light until all birds had left (up to 4 h later) on 
four mornings. As far as possible, males were classified as adults or yearlings as described 
above. Leks 2, 2A, 3, and 4 were counted simultaneously on April 13, 16, 19, and 21, and 
leks 1, 5, and 8 were counted on April 14, 15, 17, and 22. The sample period includes the 
first 10 days of mating in that year. I combined the two sets of leks, because preliminary 
analyses using Friedman tests indicated no systematic effects of date on counts within each 
set. The number of hens attracted to a lek each day was estimated by the peak count, which 
appears to be a reliable measure (peak count = 0.158 + 0.914 × number of individuals; r = 0.993, 
P < 0.0001, N = 7 days at lek 8 in 1991), because hens arrive relatively synchronously soon 
after the onset of display. Mean numbers of females per male for a given day were com-
puted as the mean of this ratio across all scans when females were present. Daily lek size 
was measured as the mean count over all scans when males were present on a given day 
(see Results). 
 
Behavior of Individual Females 
Between 1984 and 1993, 84 females were captured and fitted with poncho-mounted radio 
transmitters. Sixty-eight birds were spot-lighted at various times of year and 16 were cannon-
netted at leks during spring. Information on ranges before and/or during nesting dispersal 
was obtained for a subset of individuals radio-tracked at 1- to 3-day intervals during the 
springs of 1984–1986, 1991, and 1993 (see Bradbury et al. 1989a; Gibson & Bachman 1992). 
When a hen was tracked in more than 1 year, only the year with most complete data was 
included in the analysis. Predispersal ranges were measured during a 10-day period before 
the day each individual dispersed from its winter range if known (N = 17 birds) or else 
prior to 10 days before the first mating of the year, a period when virtually all hens were 
still in their winter ranges (N = 9). Measurement of dispersal dates is described by Brad-
bury et al. (1989a). Twenty-two birds were tracked in sufficient detail to provide infor-
mation on the trajectory followed from winter range to nesting area prior to visiting a lek. 
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For these individuals, the dispersal trajectory was estimated by interpolating between suc-
cessive daily tracking locations over the period from winter range departure to the first 
point in the nesting range. Although not based on continuous tracking, this method should 
be relatively accurate because females move very little during the day and undertake long-
range flights primarily at dawn (Gibson & Bachman 1992). Nest locations were also ob-
tained for 24 hens whose nests were found and for a further 10 birds that localized their 
ranges as if nesting but whose nest was not found because of its inaccessibility, early aban-
donment, death of the female, or radio failure. For the latter cases, I used the medians of 
the X and Y coordinates of the presumed nesting range to estimate nest location. Finally, I 
determined the lek visited for a subset of nesting females that were radio-tracked to a lek 
(N = 6), observed at a lek that was monitored for other reasons (N = 6) or cannon-netted at 
a lek (N = 9) during the mating period. All of these cases involved post-dispersal lek visits. 
I assumed that the lek at which the female was seen or captured was the site at which she 
mated because all closely tracked hens that nested visited a lek approximately 10 days 
post-dispersal, and none visited more than one lek at this stage of the breeding cycle. Fe-
males occasionally visited additional leks before or during the dispersal period. 

Two sets of population dispersion measures were extracted from these data. First, to 
analyze lek location, I imposed a 1-km grid on the study area; for each cell I counted the 
numbers of females (a) that were located within it during the 10 days prior to dispersal, (b) 
that were located within it during the day in the dispersal period, (c) whose dispersal tra-
jectory passed through it, and (d) that nested within it. Each measure was then compared 
to the spatial distribution of lek sites (see Results). The intent of the analysis was to see 
how accurately lek sites could be predicted from female traffic measures. The grid size was 
chosen because it was both fine enough to specify major lek sites in a single cell and coarse 
enough to provide robust estimates of female traffic. 

Second, to examine relationships between numbers of females per lek and local female 
densities, I extracted the same density measures within circles of a given radius centered 
on each lek. Because the actual drawing area of any lek was unknown, each measure was 
computed for increasing radial distances between 1 and 10 km in 1-km increments repre-
senting progressively larger hypothesized drawing areas. For each radius, two sets of den-
sity measures were extracted, raw counts of numbers of females (“traffic density”) and 
counts in which each female’s contribution was divided by the number of leks that claimed 
her within the same drawing radius (“hotspot density”). The latter measure incorporates 
the devaluation of a female due to sharing of her mating probability between lek sites, a 
feature of hotspot settlement models proposed by Bradbury et al. (1986). Each measure 
was then correlated with numbers of hens attending the lek. 

The nest location data from which the preceding dispersion measures were computed 
include some hens that were trapped at leks by cannon-netting during the mating period. 
Because females that nest near leks preferentially visit nearby leks (see Results), the inclu-
sion of birds trapped at leks risks inflating nesting density estimates for the leks where 
they were captured. Only one of 12 cannon-netted females nested within a short distance 
(2 km) of the lek where she was captured, however, and omission of cannon-netted birds 
did not alter the patterns reported in the Results. This concern does not apply to other 



G I B S O N ,  A N I M A L  B E H A V I O U R  5 2  (1 9 96 )  

6 

measures of female traffic, which were only measurable for birds trapped off leks before 
mating started. 

To investigate female choice between leks of different sizes, I analyzed data for a subset 
of individuals for which I knew both the lek visited for mating and the set of leks available 
within the prenesting range. The set of leks within each female’s range was defined as 
those within a minimum convex polygon drawn around locations collected from 10 days 
before she left her winter range until 14 days afterward (14 days is the mean interval be-
tween departing the wintering area and the last lek visit: R. Gibson, unpublished data). For 
each female, I computed sizes of all within-range leks as the mean of peak daily male 
counts up to the last lek visit, when she was presumed to mate. The size rank of the lek 
visited for mating was then recorded and summed across all females. For comparison, I 
computed numbers of visits to leks of each size rank that would have been recorded if each 
female had picked a lek at random from those within her range. For every female, each 
within-range lek was assigned a probability of being visited that was computed in different 
ways according to how her visit was detected. For hens that were radio-tracked to a lek 
(an unbiased method), each lek was assigned 1 divided by the number of within-range 
leks. For a hen whose visit was recorded because she attended an observed site, each lek 
observed on the day of her visit was assigned 1 divided by the number of observed leks, 
and unwatched leks were assigned 0. For cannon-netted hens, each lek at which females 
were netted was assigned the number cannon-netted at that lek divided by the number 
cannon-netted at all within range leks, and other leks were assigned 0. Probabilities of de-
tected visits were then summed for leks of each size rank across females. A similar proce-
dure was used to estimate expected visits to each lek by hens that nested within 2 km of a 
lek (see Results: Female lek attendance and local densities), except that for each bird I con-
sidered all leks within the study area as potentially visited sites. 
 
Statistical Analysis 
Where appropriate, parametric methods were used. Nonparametric tests were substituted 
where data could not be satisfactorily normalized by transformation. The analysis of lek 
location uses a randomization procedure described in the Results. Descriptive statistics are 
given as mean ± sd. 
 
Results 
 
Lek Location 
Lek locations showed a clear association with areas through which females traveled be-
tween wintering and nesting ranges. Figure 1 plots locations of long-term lek sites relative 
to topographic features (Fig. 1a) and to the dispersion of females before, during, and after 
nesting dispersal (Fig. 1b–d, respectively). Females dispersed to nesting ranges from a 
common wintering area in the south of Long Valley using two primary routes along which 
the leks are aligned. To test the apparent association between dispersal traffic and lek lo-
cation, I imposed a 1-km grid on the study area and computed the mean number of females 
per cell for all cells in which leks were located (N = 10). This number was then compared 
with the distribution of values obtained in 104 trials of a randomization test that picked 
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the same numbers of cells at random and without replacement from all suitable habitat 
(cells > 50% occupied by sagebrush-dominated plant communities or meadow, N = 414). 
This procedure confirmed that leks were located in areas of above-average dispersal traffic 
(P = 0.0002; Fig. 1c), although not necessarily at points where it was highest: a comparison 
between lek cells and all cells through which at least one female traveled during dispersal 
showed no association between the numbers of females and lek location (P = 0.957). Further 
tests revealed that lek locations showed only weak tendencies to be associated with the 
daytime distributions of females during the 10 days before nesting dispersal (Fig 1b: P = 
0.0687) and during dispersal (P = 0.0885), and that they were not located in areas of above 
average nest density (P = 1.0; Fig. 1d). 
 

 
 

Figure 1. Positions of leks (open circles) in relation to (a) topographic features (leks are 
identified by numbers, sagebrush is shown in white, meadows by horizontal shading, 
water by stippling and forested areas in black), (b) the static distribution of females during 
the 10 days before nesting dispersal (the intensity of the texture indicates relative numbers 
of radio-tracked females using each 1-km grid cell, range 1–8), (c) the distribution of fe-
male trajectories during nesting dispersal (conventions as in Fig. 1b, range = 1–6 females 
per cell), and (d) the distribution of nests (inverted triangles). 
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Figure 1. Continued. 
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Figure 1. Continued. 
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Figure 1. Continued. 
 

Lek sites were also associated with meadows. Although meadows occupied only 9.1% 
of the combined area of sagebrush and meadow habitats, six of the 10 lek sites were in 
meadows (Fig. 1a: one-tailed binomial probability = 0.00009). Meadows occupied a larger 
proportion of the area used by dispersing females (16.7% of cells used by at least one fe-
male), but after taking this into account there were still more leks in meadows than ex-
pected by chance (one-tailed binomial probability = 0.0025). Meadows did not appear to 
be the primary factor determining lek location, however. Not only were several leks lo-
cated in sagebrush far from meadows, but lek location also remained significantly associ-
ated with female dispersal traffic after controlling for the presence of meadows by limiting 
the analysis to sagebrush-dominated habitats (randomization test: P = 0.0003). 
 
Lek Size 
 
Female attendance and male numbers 
As we found previously (Bradbury et al. 1989a), numbers of males per lek covaried posi-
tively with numbers of females that visited during the mating peak (r = 0.896, P < 0.001, N = 9, 
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log-transformed values; Fig. 2). This association could have arisen because males settle ac-
cording to numbers of females that visit a lek because females prefer sites with more males, 
or for both reasons. The following analyses explore these possibilities. 
 

 
 

Figure 2. The relationship between mean peak male and female counts between leks dur-
ing the first 14 days of mating. Values are long-term means over all sampled years. Lek 
identity is indicated next to each point. 

 
Male responses to female numbers. There was evidence that males responded numeri-
cally to female availability on at least two time scales: over periods of a few minutes within 
morning display sessions and seasonally. As an illustration of short-term changes in male 
numbers within mornings, Figure 3 plots changes in male numbers across successive 10-
min scans in relation to changes in female numbers in 1993. As the 95% confidence inter-
vals show, male numbers increased significantly when females arrived, remained stable 
when females were present and their numbers remained constant, and declined both when 
females left the lek and when none were present. Although this pattern could have arisen 
if females arrived and departed in mixed-sex groups, this was rare: rather, male numbers 
changed after female arrivals or departures due to local movements between the lek and 
surrounding sagebrush habitat. The same trends were found within adult and yearling 
males when analyzed separately. For adults, however, the only significant effects were de-
clines when females left the lek or were absent. Sample sizes for yearlings, which com-
prised only 16.1 ± 3.7% of males on leks during the 1993 breeding peak, were too small for 
statistical tests. 
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Figure 3. Changes in male numbers between successive 10-min scans in relation to 
changes in female numbers and female presence over the same period. Separate mean 
values were computed for each day at each of seven leks studied in 1993 and then pooled 
to yield the plotted mean. Sample sizes (lek-days) are indicated beside each point. 

 
To investigate how males responded seasonally to the availability of females at partic-

ular leks, I examined seasonal trends in peak daily counts during the mating period in 
relation to the mean number of females per male per day at sites that were counted daily 
throughout the breeding season. The rationale is that males attempting to maximize op-
portunities to court females should seek sites with higher female availability. 

Table 1 summarizes the data and illustrates two points. First, seasonal trends in male 
numbers varied both between different leks in the same year (for example, in 1985 male 
numbers declined at lek 4 but tended to increase at lek 8) and between different years at 
the same lek (e.g., males declined at lek 4 in both 1984 and 1985 but increased in 1991). This 
result suggests that local factors associated with a particular lek and year affect the balance 
between recruitment and loss. Second, this variability is related to female availability, as 
indicated by a positive relationship (τ = 0.491, P = 0.05, N = 11 lek-years) between mean 
females per male per day and the Pearson correlation between male number and date over 
the same period. In short, male numbers declined at leks where female availability was 
low and increased where it was high (Fig. 4). 
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Table 1. Seasonal trends in male numbers and female availability 
in 11 lek-years 
Lek Year Seasonal trend r (N) Mean females/male/day 
2 1988 0.143 (42) 0.129 
4 1984 –0.612 (28)*** 0.028 
 1985 –0.633 (24)*** 0.104 
 1986 0.203 (32) 0.259 
 1987 0.347 (24) 0.263 
 1989 0.156 (24) 0.184 
 1991 0.536 (17)* 0.438 
8 1985 0.288 (28) 0.164 
 1986 0.540 (23)** 0.235 
 1987 –0.179 (24) 0.288 
 1991 0.411 (14) 0.766 

N = number of days. * = P < 0.05, ** = P < 0.01, *** = P < 0.001. Seasonal 
trends vary between samples (ANCOVA: lek-year versus date interaction: 
P < 0.0005). 

 

 
 

Figure 4. Examples of (a) a seasonal decline in male numbers at a lek with few females 
per male and (b) an increase when there were relatively more females. Males are shown 
by filled symbols and females by open symbols. Arrowheads mark the onset of mating. 
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This adjustment appeared to result from settlement by yearling males. In a subset of 7 
lek-years for which there were sufficient data to analyze adults and yearlings separately, 
seasonal trends in yearling numbers tended to covary positively with mean numbers of 
female per male (τ = 0.619, P = 0.07), whereas those of adults did not (τ = –0.048). 
 
Female responses to male numbers. I first examined whether females were preferentially 
attracted to larger leks by examining how peak hen numbers and mean females per male 
scaled with mean numbers of males across seven leks sampled intensively in 1993 (Fig. 5). 
Peak female counts covaried closely with mean male numbers (both log-transformed: r = 0.958, 
P = 0.0007, N = 7). The slope of the regression, however, barely exceeds one female per male 
added (untransformed data: Y = –0.110 + 1.089X; 95% confidence interval for slope = 1.041 
– 1.137) and the relationship shows no hint of the upward curvature expected if larger leks 
attract relatively more females. Consistent with this interpretation, numbers of females per 
male did not significantly increase with male numbers (males log-transformed: r = 0.417, 
P = 0.352, N = 7). 
 

 
 

Figure 5. (a) Peak females per day and (b) mean females per male per day plotted against 
mean male counts for seven leks in 1993. Values are means across four days during peak 
mating. 
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One weakness of the preceding approach is the assumption that lek sizes remain static 
relative to the time over which hens choose a lek. This is problematic, because male num-
bers can change rapidly in response to numbers of visiting females (Fig. 3). Such behavior 
could inflate estimated lek size above the value assessed by a female prior to her arrival, 
making detection of a preference for larger leks difficult. Although the previous analysis 
used mean rather than peak numbers of males to minimize this problem, it is still possible 
that the sizes of larger leks measured in this way were disproportionately inflated. I there-
fore undertook a second analysis that is less vulnerable to this criticism. 

Numbers of marked hens that visited leks of different size rank within their ranges were 
compared with a null expectation that all within-range leks were equally likely to be vis-
ited. Data were available for nine birds whose ranges were mapped in detail and all leks 
counted. Four individuals visited the largest lek in their ranges, three visited the second 
largest, and one each visited the third- and fourth-ranked leks. None visited a fifth-ranked 
lek. Although this bias might appear to support choice for larger leks, it is produced by an 
observational emphasis on these sites. Given the distribution of observation time between 
the leks, and assuming that hens choose a lek at random within their ranges (see Methods), 
4.03 visits are predicted to the largest lek and 4.97 to the remainder, which is statistically 
indistinguishable from the observations (goodness-of-fit χ2 ≈ 0, df = 1, P ≈ 1). Thus, this 
analysis also fails to show that females prefer larger leks. 

In short, males distributed themselves between leks in proportion to female availability. 
There was no compelling evidence that females favored leks based on the numbers of 
males present, although sample sizes testing this hypothesis were small. The next section 
considers alternative explanations for variation in numbers of females per lek. 
 
Female lek attendance and local densities 
I found evidence that numbers of females visiting a lek were related to numbers that nested 
nearby, but not to levels of female traffic earlier in the prenesting period. 

Figure 6 plots Kendall rank correlations between hens per lek and numbers nesting 
nearby as a function of drawing area radius, within which nest density was computed. 
Correlations peak at 2 km for both traffic and hotspot density estimates and decline as the 
drawing area is progressively enlarged (for both density estimates: τ = –0.600, P = 0.016, N 
= 10). If tests at each drawing area size are treated as independent hypotheses, the correla-
tion at 2 km between visiting females and nests is significant for the traffic density estimate 
(P < 0.05) and marginally nonsignificant for hotspot density (P = 0.055), which tended to 
have lower correlations with visiting females at all drawing area sizes. Forty-one percent 
of all nests were located within 2 km of a lek. There were no significant relationships be-
tween females per lek and measures of female density during or prior to nesting dispersal. 
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Figure 6. The correlation (Kendall’s τ) between females per lek and numbers of nearby 
nests as a function of the distance from the lek within which nests were counted. Filled 
symbols show values for actual numbers of nests (“traffic density”) and open symbols 
values for numbers of nests devalued by sharing among leks (“hotspot density”). 

 
These data suggest that leks selectively recruit hens that nest within a 2-km radius, 

which was confirmed by an analysis of individual behavior patterns. Of nine hens that 
nested within 2 km of a lek and whose lek visits were observed, six visited a lek within 2 
km of their nest and only three went further. The proportion traveling less than 2 km is 
significantly higher than expected with random choice between all leks in the study area 
(goodness-of-fit χ2 = 3.874, df = 1, P < 0.05; expected values per lek were corrected for ob-
servation and capture bias as described in the Methods). There were insufficient data to 
determine whether this was because hens nesting near leks preferred close leks, because 
they visited closer leks due to their availability, or for both reasons. The success of nesting 
but not prenesting traffic measures in predicting numbers of hens per lek, however, im-
plies a preference for closer leks. 
 
Discussion 
 
The data provide two lines of evidence consistent with hotspot settlement. First, males 
place leks in open areas within habitats through which females travel between wintering 
and nesting areas in the premating period. Second, males distribute between leks in pro-
portion to numbers of hens that visit, which apparently vary as a consequence of spatial 
variation in nesting densities and a propensity for females to favor a lek near the nest. 

The finding that leks are placed within female dispersal corridors confirms Westcott’s 
suggestion that males may be more responsive to patterns of female movement than to 
their static distributions. It also makes sense in light of the coincidental timing of long-
range movements by females and male display activity, the visual conspicuousness of dis-
playing males at long range even in low light (personal observation), and because females 
often return to mate at a lek along the path between their winter and nesting ranges. The 
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correspondence of lek locations with female traffic routes is similar to that found in the 
ochre-bellied flycatcher (Westcott 1995). In Westcott’s study, however, female travel routes 
were narrow and followed topographic features. By contrast, the major dispersal corridors 
used by female sage grouse in Long Valley were broad, not closely constrained by topog-
raphy and represented direct routes between the major wintering area and nesting habitat 
in outlying areas. 

The conclusion that a patchy dispersion of nesting females accounts for the stable par-
titioning of males among leks confirms a previous suggestion of Bradbury et al. (1989a). 
Bergerud & Gratson (1988) also proposed that nesting densities affect lek size in grouse on 
the basis of correlations between lek size and the amount of adjacent nesting habitat 
(sharp-tailed grouse, Tympanuchus phasianellus: Pepper 1972) and declines in lek size fol-
lowing destruction of adjacent nesting habitats (sage grouse: Wallestad 1975). The analyses 
presented here, however, appear to provide the most detailed evidence to date on the way 
in which this linkage arises. 

One incompletely resolved issue is the nature of the settlement process that matches 
male to female numbers across leks. Short-term adjustments within mornings redistribute 
males between a lek and its immediate surroundings, but are unlikely to explain variation 
between leks. Late season settlement by yearling males provides a more likely explanation. 
Not only are yearlings known to visit multiple leks (Emmons & Braun 1984), but those that 
attend a lek late in the season typically return to the same site the following year (R. Gib-
son, unpublished data). In addition, some adult males that have failed to mate move to 
another lek in the following season (Gibson 1992). Relocation of adults could contribute to 
the match between male and female numbers, although it must be less important than set-
tlement by yearlings, because only 8–12% of adults move each year (R. Gibson, unpub-
lished data). 

Another unresolved issue is how males assess potential lek sites. There are at least three 
potential cues. First, the siting of several leks adjacent to areas in which females roost, feed 
or loaf during the dispersal period suggests that female presence in such areas could pro-
vide initial cues, both when leks are first established and to naive males choosing between 
established leks for the first time. Because densities of hens at this time are not well corre-
lated with numbers that later visit to mate, reliance on such cues should produce initial 
distributions of males that are poorly matched to later mating opportunities. This hypoth-
esis may explain both why male numbers sometimes adjust substantially to female avail-
ability later in the season (Fig. 4), and why early season leks are occasionally abandoned 
once mating begins at other sites (Bradbury et al. 1989b). A second class of cue is provided 
by relative numbers of hens that visit during the mating period, as demonstrated here. 
Finally, because successful males and their immediate neighbors show high levels of fidel-
ity to leks across years (Gibson 1992), locations of established males provide cues to sites 
that females are likely to return to later (Gibson et al. 1991). The extent to which males use 
each source of information remains to be determined. 

Although this paper has emphasized the effects of female dispersion on the spatial dis-
tribution of lekking males, other factors also affect lek location and size. The presence of 
open areas favored by displaying males influences lek location, as indicated by the prefer-
ence for meadows. Another factor is harassment by predators, which can cause leks to shift 
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substantial distances (Ellis 1987) and depress male attendance (Bradbury et al. 1989b). In 
addition, it is not yet clear why leks are characteristically spaced so evenly through avail-
able habitat. The absence of persistent interstitial leks implies that birds in such sites relo-
cate to larger leks nearby. Theoretical discussions of this pattern have invoked attraction 
of females to larger leks (Bradbury 1981). I found no support for this effect at the level of 
existing lek spacing, but the power of these analyses is low, and this effect might still play 
a role at a more local scale. In addition, both attraction of females to larger female groups 
(as occurs within leks: Gibson et al. 1991) or of males to other males (as suggested by the 
conspecific cueing hypothesis: Shields et al. 1987; Stamps 1988) could be involved. This 
issue could be resolved by comparing the dynamics of adjacent leks that are unusually 
close together with others that are more widely spaced. 

Together with Westcott’s recent studies, this paper provides new support for the prop-
osition that female dispersion and movements may influence male dispersion in lekking 
birds. Do these new results suggest, however, that hotspot processes play a more central 
role in avian lek evolution than has been suggested recently (Gibson 1992; Clutton-Brock 
et al. 1993)? 

Hotspot settlement models predict that males will cluster with increases in female range 
size and decreases in female density, and that males will settle on local peaks of female 
traffic (Bradbury et al. 1986). The former two points are borne out by comparative data on 
grouse (Bradbury et al. 1986) and the latter by Théry’s (1992) study of six sympatric man-
akin species. This evidence on its own is not compelling, however, because high mobility 
and low population density present special problems for the sexes in finding mating part-
ners, which could lead to clumping via other mechanisms. The last prediction is supported 
with respect to lek position by data from lesser prairie chickens, T. pallidicinctus (Schroeder 
& White 1992), ochre-bellied flycatchers (Westcott 1995) and sage grouse (this study). Lek 
size is also affected, albeit indirectly, by local nest densities in sage grouse. Only Westcott’s 
study, however, has shown that female traffic can specify locations at which males display 
with any precision, and our studies of sage grouse provide evidence that other processes 
drive the clumping of male territories into classical leks (Gibson et al. 1991; Gibson 1992). 
In short, although current evidence suggests a modulating role of female traffic in locating 
avian leks and allocating males between them in some species, both the interspecific dis-
tribution of lekking and the clumping of male territories that is a defining feature of clas-
sical leks are likely to have other explanations. 
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