University of Nebraska - Lincoln [DigitalCommons@University of Nebraska - Lincoln](https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Publications, Agencies and Staff of the U.S.](https://digitalcommons.unl.edu/usdeptcommercepub?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages) [Department of Commerce](https://digitalcommons.unl.edu/usdeptcommercepub?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages)

[U.S. Department of Commerce](https://digitalcommons.unl.edu/usdeptcommerce?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages)

2017

Droughts, floods, and hydrology

Michael Wehner *Lawrence Berkeley National Laboratory*, MFWehner@lbl.gov

Jeff Arnold *U.S. Army Corps of Engineers*, jeffrey.r.arnold@usace.army.mil

Thomas Knutson *NOAA Geophysical Fluid Dynamics Lab*, Tom.Knutson@noaa.gov

Kenneth Kunkel *North Carolina State University*, ken_kunkel@ncsu.edu

Allegra LeGrande *NASA Goddard Institute for Space Studies*

Follow this and additional works at: [https://digitalcommons.unl.edu/usdeptcommercepub](https://digitalcommons.unl.edu/usdeptcommercepub?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages)

Wehner, Michael; Arnold, Jeff; Knutson, Thomas; Kunkel, Kenneth; and LeGrande, Allegra, "Droughts, floods, and hydrology" (2017). *Publications, Agencies and Staff of the U.S. Department of Commerce*. 585. [https://digitalcommons.unl.edu/usdeptcommercepub/585](https://digitalcommons.unl.edu/usdeptcommercepub/585?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F585&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Droughts, floods, and hydrology

Michael Wehner, Lawrence Berkeley National Laboratory Jeff Arnold, U.S. Army Corps of Engineers Thomas Knutson, NOAA Geophysical Fluid Dynamics Lab Kenneth Kunkel, North Carolina State University Allegra LeGrande, NASA Goddard Institute for Space Studies

Citation: In: *Climate Science Special Report: A Sustained Assessment Activity of the U.S. Global Change Research Program* [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA (2017), pp. 336-374.

Comments: U.S. Government work

Abstract

1. Recent droughts and associated heat waves have reached record intensity in some regions of the United States; however, by geographical scale and duration, the Dust Bowl era of the 1930s remains the benchmark drought and extreme heat event in the historical record (*very high confidence*). While by some measures, drought has decreased over much of the continental United States in association with long-term increases in precipitation, neither the precipitation increases nor inferred drought decreases have been confidently attributed to anthropogenic forcing.

2. The human effect on recent major U.S. droughts is complicated. Little evidence is found for a human influence on observed precipitation deficits, but much evidence is found for a human influence on surface soil moisture deficits due to increased evapotranspiration caused by higher temperatures. (*High confidence*)

3. Future decreases in surface (top 10 cm) soil moisture from anthropogenic forcing over most of the United States are *likely* as the climate warms under the higher emissions scenarios. (*Medium confidence*)

4. Substantial reductions in western U.S. winter and spring snowpack are projected as the climate warms. Earlier spring melt and reduced snow water equivalent have been formally attributed to human induced warming (*high confidence*) and will *very likely* be exacerbated as the climate continues to warm (*very high confidence*). Under higher emissions scenarios, and assuming no change to current water resources management, chronic, long-duration hydrological drought is increasingly possible by the end of this century (*very high confidence*).

5. Detectable changes in some classes of flood frequency have occurred in parts of the United States and are a mix of increases and decreases. Extreme precipitation, one of the controlling factors in flood statistics, is observed to have generally increased and is projected to continue to do so across the United States in a warming atmosphere. However, formal attribution approaches have not established a significant connection of increased riverine flooding to human-induced climate change, and the timing of any emergence of a future detectable anthropogenic change in flooding is unclear. (*Medium confidence*)

6. The incidence of large forest fires in the western United States and Alaska has increased since the early 1980s (*high confidence*) and is projected to further increase in those regions as the climate warms, with profound changes to certain ecosystems (*medium confidence*).

8. Droughts, Floods, and Wildfires

KEY FINDINGS

- 1. Recent droughts and associated heat waves have reached record intensity in some regions of the United States; however, by geographical scale and duration, the Dust Bowl era of the 1930s remains the benchmark drought and extreme heat event in the historical record (*very high confidence*). While by some measures, drought has decreased over much of the 7 continental United States in association with long-term increases in precipitation, neither the 8 precipitation increases nor inferred drought decreases have been confidently attributed to 9 anthropogenic forcing.
- 10 2. The human effect on recent major U.S. droughts is complicated. Little evidence is found for a human influence on observed precipitation deficits, but much evidence is found for a human influence on surface soil moisture deficits due to increased evapotranspiration caused by
- higher temperatures. (*High confidence*)
- 3. Future decreases in surface (top 10 cm) soil moisture from anthropogenic forcing over most of the United States are *likely* as the climate warms under the higher emissions scenarios. (*Medium confidence*)
- 4. Substantial reductions in western U.S. winter and spring snowpack are projected as the climate warms. Earlier spring melt and reduced snow water equivalent have been formally attributed to human induced warming (*high confidence*) and will *very likely* be exacerbated as the climate continues to warm (*very high confidence*). Under higher emissions scenarios, and assuming no change to current water resources management, chronic, long-duration hydrological drought is increasingly possible by the end of this century (*very high confidence*).
- 5. Detectable changes in some classes of flood frequency have occurred in parts of the United States and are a mix of increases and decreases. Extreme precipitation, one of the controlling factors in flood statistics, is observed to have generally increased and is projected to continue to do so across the United States in a warming atmosphere. However, formal attribution approaches have not established a significant connection of increased riverine flooding to human-induced climate change, and the timing of any emergence of a future detectable anthropogenic change in flooding is unclear. (*Medium confidence*)
- 6. The incidence of large forest fires in the western United States and Alaska has increased since the early 1980s (*high confidence*) and is projected to further increase in those regions as the climate warms, with profound changes to certain ecosystems (*medium confidence*).
-

8.1. Drought

The word "drought" brings to mind abnormally dry conditions. However, the meaning of "dry" can be ambiguous and lead to confusion in how drought is actually defined. Three different classes of droughts are defined by NOAA and describe a useful hierarchal set of water deficit characterization, each with different impacts. "Meteorological drought" describes conditions of precipitation deficit. "Agricultural drought" describes conditions of soil moisture deficit. "Hydrological drought" describes conditions of deficit in runoff (NOAA 2008). Clearly these three characterizations of drought are related but are also different descriptions of water shortages with different target audiences and different timescales. In particular, agricultural drought is of concern to producers of food while hydrological drought is of concern to water system managers. Soil moisture is a function of both precipitation and evapotranspiration. Because potential evapotranspiration increases with temperature, anthropogenic climate change generally results in drier soils and often less runoff in the long term. In fact, under the RCP8.5 scenario (see Ch. 4: Projections for a description of the RCP scenarios) at the end of the 21st century, no region of the planet is projected to experience significantly higher levels of annual average surface soil moisture due to the sensitivity of evapotranspiration to temperature, even though much higher precipitation is projected in some regions (Collins et al. 2013). Seasonal and annual total runoff, on the other hand, are projected to either increase or decrease, depending on location and season under the same conditions (Collins et al. 2013), illustrating the complex relationships between the various components of the hydrological system. Meteorological drought can occur on a range of timescales, in addition to seasonal or annual timescales. "Flash 22 droughts" can result from just a few weeks of dry weather (Mo and Lettenmaier 2015), and the paleoclimate record contains droughts of several decades. Hence, it is vital to describe precisely the definition of drought in any public discussion to avoid confusion due to this complexity. As the climate changes, conditions currently considered "abnormally" dry may become relatively "normal" in those regions undergoing aridification, or extremely unlikely in those regions becoming wetter. Hence, the reference conditions defining drought may need to be modified from those currently used in practice.

8.1.1. Historical Context

The United States has experienced all three types of droughts in the past, always driven, at least in some part, by natural variations in seasonal and/or annual precipitation amounts. As the climate changes, we can expect that human activities will alter the effect of these natural variations. The "Dust Bowl" drought of the 1930s is still the most significant meteorological and agricultural drought experienced in the United States in terms of its geographic and temporal extent. However, even though it happened prior to most of the current global warming, human activities exacerbated the dryness of the soil by the farming practices of the time (Bennet et al. 1936). Tree ring archives reveal that such droughts (in the agricultural sense) have occurred occasionally over the last 1,000 years (Cook et al. 2004)*.* Climate model simulations suggest that

- droughts lasting several years to decades occur naturally in the southwestern United States
- (Coats et al. 2015). The Intergovernmental Panel on Climate Change Fifth Assessment Report
- (IPCC AR5; Bindoff et al. 2013) concluded "there is low confidence in detection and attribution
- of changes in (meteorological) drought over global land areas since the mid-20th century, owing
- to observational uncertainties and difficulties in distinguishing decadal-scale variability in
- drought from long-term trends." As they noted, this was a weaker attribution statement than in
- the Fourth Assessment Report (Hegerl et al. 2007), which had concluded "that an increased risk
- of drought was *more likely than not* due to anthropogenic forcing during the second half of the
- 20th century." The weaker statement in AR5 reflected additional studies with conflicting
- conclusions on global drought trends (e.g., Sheffield et al. 2012; Dai 2013). Western North
- America was noted as a region where determining if observed recent droughts were unusual
- compared to natural variability was particularly difficult. This was due to evidence from
- paleoclimate proxies of cases of central U.S. droughts during the past 1,000 years that were
- longer and more intense than historical U.S. droughts (Masson-Delmotte et al. 2013). Drought is,
- of course, directly connected to seasonal precipitation totals. Figure 7.1 shows detectable
- observed recent changes in seasonal precipitation. In fact, the increases in observed summer and
- fall precipitation are at odds with the projections in Figure 7.5. As a consequence of this
- increased precipitation, drought statistics over the entire CONUS have declined (Andreadis and
- Lettenmaier 2006; Mo and Lettenmaier 2015). Furthermore, there is no detectable change in
- meteorological drought at the global scale (Sheffield et al. 2012). However, a number of
- 21 individual event attribution studies suggest that if a drought occurs, anthropogenic temperature
- increases can exacerbate soil moisture deficits (e.g., Seager et al. 2015; Trenberth et al. 2014).
- Future projections of the anthropogenic contribution to changes in drought risk and severity must
- be considered in the context of the significant role of natural variability.

8.1.2. Recent Major U.S. Droughts

METEOROLOGICAL AND AGRICULTURAL DROUGHT

- The United States has suffered a number of very significant droughts of all types since 2011.
- Each of these droughts was a result of different persistent, large-scale meteorological patterns of
- mostly natural origins, with varying degrees of attributable human influence. Table 8.1
- summarizes available attribution statements for recent extreme U.S. droughts. Statements about
- meteorological drought are decidedly mixed, revealing the complexities in interpreting the low
- tail of the distribution of precipitation. Statements about agricultural drought consistently
- maintain a human influence if only surface soil moisture measures are considered. The single
- agricultural drought attribution study at root depth comes to the opposite conclusion (Cheng et
- al. 2016). In all cases, these attribution statements are examples of attribution without detection
- (see Appendix C). The absence of moisture during the 2011 Texas/Oklahoma drought and heat
- wave was found to be an event whose likelihood was enhanced by the La Niña state of the ocean,
- but the human interference in the climate system still doubled the chances of reaching such high

temperatures (Hoerling et al. 2013). This study illustrates that the effect of human-induced

- climate change is combined with natural variations and can compound or inhibit the realized
- severity of any given extreme weather event.

[INSERT TABLE 8.1 HERE]

The Great Plains/Midwest drought of 2012 was the most severe summer meteorological drought in the observational record for that region (Hoerling et al. 2014). An unfortunate string of three different patterns of large-scale meteorology from May through August 2012 precluded the normal frequency of summer thunderstorms, and was not predicted by the NOAA seasonal forecasts (Hoerling et al. 2014). Little influence of the global sea surface temperature (SST) pattern on meteorological drought frequency has been found in model simulations (Hoerling et al. 2014). No evidence of a human contribution to the 2012 precipitation deficit in the Great Plains and Midwest is found in numerous studies (Rupp et al. 2013; Hoerling et al. 2014; Angélil et al. 2017). However, an alternative view is that the 2012 central U.S. drought can be classified as a "heat wave flash drought" (Mo and Lettenmaier 2016), a type of rapidly evolving drought that has decreased in frequency over the past century (Mo and Lettenmaier 2015). Also, an increase in the chances of the unusually high temperatures seen in the United States in 2012, partly associated with resultant dry summer soil moisture anomalies, was attributed to the human interference with the climate system (Diffenbaugh and Scherer 2013), indicating the strong feedback between lower soil moisture and higher surface air temperatures during periods of low precipitation. One study found that most, but not all, of the 2012 surface moisture deficit in the Great Plains was attributable to the precipitation deficit (Livneh and Hoerling 2016). That study also noted that Great Plains root depth and deeper soil moisture was higher than normal in 2012 despite the surface drying, due to wet conditions in prior years, indicating the long timescales

- relevant below the surface (Livneh and Hoerling 2016).
- The recent California drought, which began in 2011, is unusual in different respects. In this case,
- the precipitation deficit from 2011 to 2014 was a result of the "ridiculously resilient ridge" of
- high pressure. This very stable high pressure system steered storms towards the north, away from
- the highly engineered California water resource system (Swain et al. 2014; Seager et al. 2014,
- 2015). The ridge itself was due to a slow-moving high sea surface temperature (SST) anomaly,
- referred to as "The Blob"—which was caused by a persistent ridge that weakened the normal
- 31 cooling mechanisms for that region of the upper ocean (Bond et al. 2015). Atmospheric
- 32 modeling studies showed that the ridge that caused the Blob was favored by a pattern of
- 33 persistent tropical SST anomalies that were warm in the western equatorial Pacific and
- 34 simultaneously cool in the far eastern equatorial Pacific (Hartman 2015; Seager et al. 2014). It
- 35 was also favored by reduced arctic sea ice and from feedbacks with "The Blob" SST anomalies
- 36 (Lee et al. 2015). These studies also suggest that internal variability likely played a prominent
- 37 role in the persistence of the 2013–2014 ridge off the west coast of North America. A principal
- attribution question regarding the precipitation deficit concerns the causes of this SST anomaly.
- 1 Observational records are not long enough and the anomaly was unusual enough that similarly
- 2 long-lived patterns have not been often seen before. Hence, attribution statements, such as that
- 3 about an increasing anthropogenic influence on the frequency of geopotential height anomalies
- 4 similar to 2012–2014 (e.g., Swain et al. 2014), are without associated detection (Ch. 3: Detection
- 5 and Attribution). A secondary attribution question concerns the anthropogenic precipitation
- 6 response in the presence of this SST anomaly. In attribution studies with a prescribed 2013 SST
- 7 anomaly, a consistent increase in the human influence on the chances of very dry California
- 8 conditions was found (Angélil et al. 2017).
- 9 Anthropogenic climate change did increase the risk of the high temperatures in California in the
- 10 winters of 2013–2014 and 2014–2015, especially the latter (Seager et al. 2015; Diffenbaugh et
- 11 al. 2015; Wang and Schubert 2014), further exacerbating the soil moisture deficit and the
- 12 associated stress on irrigation systems. This raises the question, as yet unanswered, of whether
- 13 droughts in the western United States are shifting from precipitation control (Mao et al. 2015) to
- 14 temperature control. There is some evidence to support a relationship between mild winter and/or
- 15 warm spring temperatures and drought occurrence (Mote et al. 2016), but long-term warming
- 16 trends in the tropical and North Pacific do not appear to have led to trends toward less
- 17 precipitation over California (Funk et al. 2014). An anthropogenic contribution to commonly
- 18 used measures of agricultural drought, including the Palmer Drought Severity Index (PDSI), was
- 19 found in California (Diffenbaugh et al. 2015; Williams et al. 2015) and is consistent with
- 20 previous projections of changes in PDSI (Dai 2013; Wehner et al. 2011; Walsh et al. 2014) and
- 21 with an attribution study (Brown et al. 2008). Due to its simplicity, the PDSI has been criticized
- 22 as being overly sensitive to higher temperatures and thus may exaggerate the human contribution
- 23 to soil dryness (Milly and Dunne 2016). In fact, this study also finds that formulations of
- 24 potential evaporation used in more complicated hydrologic models are similarly biased, 25 undermining confidence in the magnitude but not the sign of projected surface soil moisture
- 26 changes in a warmer climate. Seager et al. (2015) analyzed climate model output directly,
- 27 finding that precipitation minus evaporation in the southwestern United States is projected to
- 28 experience significant decreases in surface water availability, leading to surface runoff decreases
- 29 in California, Nevada, Texas, and the Colorado River headwaters even in the near term.
- 30 However, the criticisms of PDSI also apply to most of the CMIP5 land surface model
- 31 evapotranspiration formulations. Analysis of soil moisture in the CMIP5 models at deeper levels
- 32 is complicated by the wide variety in sophistication of their component land models. A pair of
- 33 studies reveals less sensitivity at depth to surface air temperature increases than at near surface
- 34 levels (Cook et al. 2015; Cheng et al. 2016). Berg et al. (2017) adjust for the differences in land
- 35 component model vertical treatments, finding projected change in vertically integrated soil
- 36 moisture down to 3 meters depth is mixed, with projected decreases in the Southwest and in the
- 37 south central United States, but increases over the northern plains. Nonetheless, the warming
- 38 trend has led to declines in a number of indicators, including Sierra snow water equivalent, that
- 39 are relevant to hydrological drought (Mao et al. 2015). Attribution of the California drought and
- 40 heat wave remains an interesting and controversial research topic.
- In summary, there has not yet been a formal identification of a human influence on past changes
- in United States meteorological drought through the analysis of precipitation trends. Some, but
- not all, U.S. meteorological drought event attribution studies, largely in the "without detection"
- class, exhibit a human influence. Attribution of a human influence on past changes in U.S.
- agricultural drought are limited both by availability of soil moisture observations and a lack of
- sub-surface modeling studies. While a human influence on surface soil moisture trends has been
- identified with *medium confidence*, its relevance to agriculture may be exaggerated.

RUNOFF AND HYDROLOGICAL DROUGHT

- Several studies focused on the Colorado River basin in the United States that used more
- sophisticated runoff models driven by the CMIP3 models (Christensen and Lettenmaier 2007;
- McCabe and Wolock 2007; Barnett and Pierce 2009; Barnett et al. 2008; Hoerling et al. 2009)
- showed that annual runoff reductions in a warmer western Unites States climate occur through a
- combination of evapotranspiration increases and precipitation decreases, with the overall
- reduction in river flow exacerbated by human water demands on the basin's supply. Reduced
- U.S. snowfall accumulations in much warmer future climates are virtually certain as frozen
- precipitation is replaced by rain regardless of the projected changes in total precipitation amounts
- discussed in Chapter 7: Precipitation Change (Figure 7.6). The profound change in the hydrology
- of snowmelt-driven flows in the western United States is well documented. Earlier spring runoff
- (Stewart et al. 2005) reduced the fraction of precipitation falling as snow (Knowles et al. 2006)
- and the snowpack water content at the end of winter (Mote 2003; Mote et al. 2005), consistent
- with warmer temperatures. Formal detection and attribution (Ch. 3: Detection and Attribution) of
- the observed shift towards earlier snowmelt driven flows in the western United States reveals
- that the shift is detectably different from natural variability and attributable to anthropogenic
- climate change (Hidalgo et al 2009). Similarly, observed declines in the snow water equivalent in
- the region have been formally attributed to anthropogenic climate change (Pierce et al. 2008) as
- have temperature, river flow, and snow pack (Barnett et al. 2008; Bonfils et al. 2008). As a
- 27 harbinger of things to come, the unusually low western U.S. snowpack of 2015 may become the
- norm (Mote et al. 2016).
- In the northwestern United States, long-term trends in streamflow have seen declines, with the
- strongest trends in drought years (Luce and Holden 2009) that are attributed to a decline in
- winter precipitation (Luce et al. 2013). These reductions in precipitation are linked to decreased
- westerly wind speeds in winter over the region. Furthermore, the trends in westerlies are
- consistent with CMIP5-projected wind speed changes due to a decreasing meridional
- temperature and pressure gradients rather than low-frequency climate variability modes. Such
- precipitation changes have been a primary source of change in hydrological drought in the
- Northwest over the last 60 years (Kormos et al. 2016) and are in addition to changes in snowpack
- properties.
- We conclude with *high confidence* that these observed in changes temperature controlled aspects
- of western U.S. hydrology are *likely* a consequence of human changes to the climate system.

8.1.3. Projections of Future Droughts

The future changes in seasonal precipitation shown in Chapter 7: Precipitation Change (Figure

- 7.6) indicate that the southwestern United States may experience chronic future precipitation
- deficits, particularly in the spring. In much warmer climates, expansion of the tropics and
- subtropics, traceable to changes in the Hadley circulation, cause shifts in seasonal precipitation
- that are particularly evident in such arid and semi-arid regions and increase the risk of
- meteorological drought. However, uncertainty in the magnitude and timing of future
- southwestern drying is high. We note that the weighted and downscaled projections of Figure 7.6
- exhibit significantly less drying and are assessed to be less significant in comparison to natural
- variations than the original unweighted CMIP5 projections (Walsh et al. 2014).

Western U.S. hydrological drought is currently controlled by the frequency and intensity of

extreme precipitation events, particularly atmospheric rivers, as these events represent the source

- of nearly half of the annual water supply and snowpack for the western coastal states (Dettinger
- 2011; Guan et al. 2013). Climate projections indicate greater frequency of atmospheric rivers in
- the future (e.g., Dettinger 2011; Warner et al. 2015; Gao et al. 2015; see further discussion in Ch.
- 9: Extreme Storms). Sequences of these extreme storms have played a critical role in ending
- recent hydrological droughts along the U.S. West Coast (Dettinger 2013). However, as winter
- temperatures increase, the fraction of precipitation falling as snow will decrease, potentially
- disrupting western U.S. water management practices.
- Significant U.S. seasonal precipitation deficits are not confidently projected outside of the
- Southwest. However, future higher temperatures will *likely* lead to greater frequencies and
- magnitudes of agricultural droughts throughout the continental United States as the resulting
- increases in evapotranspiration outpace projected precipitation increases (Collins et al. 2013).
- Figure 8.1 shows the weighted multimodel projection of the percent change in near-surface soil
- moisture at the end of the 21st century under the RCP8.5 scenario, indicating widespread drying
- over the entire continental United States. Previous National Climate Assessments (Karl et al.
- 2009; Walsh et al. 2014) have discussed the implication of these future drier conditions in the
- context of the Palmer Drought Severity Index (PDSI), finding that the future normal condition
- would be considered drought at the present time, and that the incidence of "extreme drought"
- (PDSI < −4) would be significantly increased. However, as described below, the PDSI may
- overestimate future soil moisture drying.
- This projection is made "without attribution" (Ch. 4: Projections), but confidence that future
- soils will generally be drier at the surface is *medium*, as the mechanisms leading to increased
- evapotranspiration in a warmer climate are elementary scientific facts. However, the land surface
- component models in the CMIP5 climate models vary greatly in their sophistication, causing the
- projected magnitude of both the average soil moisture decrease and the increased risk for
- agricultural drought to be less certain. The weighted projected seasonal decreases in surface soil
- moisture are generally towards drier conditions, even in regions and seasons where precipitation
- is projected to experience large increases (Figure 7.6) due to increases in the evapotranspiration
- associated with higher temperature. Drying is assessed to be large relative to natural variations in
- much of the CONUS region in the summer. Significant spring and fall drying is also projected in
- the mountainous western states, with potential implications for forest and wildfire risk. Also, the
- combination of significant summer and fall drying in the midwestern states has potential
- agricultural implications. The largest percent changes are projected in the southwestern United
- States and are consistent in magnitude with an earlier study of the Colorado River Basin using
- 11 more sophisticated macroscale hydrological models (Christensen and Lettenmaier 2007).
- In this assessment, we limit the direct CMIP5 weighted multimodel projection of soil moisture
- shown in Figure 8.1 to the surface (defined as the top 10 cm of the soil), as the land surface
- component sub-models vary greatly in their representation of the total depth of the soil. A more
- relevant projection to agricultural drought would be the soil moisture at the root depth of typical
- U.S. crops. Cook et al. (2015) find that future drying at a depth of 30 cm will be less than at 2
- cm, but still significant and comparable to a modified PDSI formulation. Few of the CMIP5 land
- models have detailed ecological representations of evapotranspiration processes, causing the
- simulation of the soil moisture budget to be less constrained than reality (Williams and Torn
- 20 2015). Over the western United States, unrealistically low elevations in the CMIP5 models due
- to resolution constraints present a further challenge in interpreting evapotranspiration changes.
- Nonetheless, Figure 8.1 shows a projected drying of surface soil moisture across nearly all of the
- coterminous United States in all seasons, even in regions and seasons where precipitation is
- projected to increase, consistent with increased evapotranspiration due to elevated temperatures
- (Cook et al. 2015).
- Widespread reductions in mean snowfall across North America are projected by the CMIP5
- models (O'Gorman 2014). Together with earlier snowmelt at altitudes high enough for snow,
- disruptions in western U.S. water delivery systems are expected to lead to more frequent
- hydrological drought conditions (Barnett et al. 2008; Pierce et al. 2008; Barnett and Pierce 2009;
- Cayan et al. 2010; Das et al. 2011). Due to resolution constraints, the elevation of mountains as
- represented in the CMIP5 models is too low to adequately represent the effects of future
- temperature on snowpacks. However, increased model resolution has been demonstrated to have
- important impacts on future projections of snowpack water content in warmer climates and is
- enabled by recent advances in high performance computing (Kapnick and Delworth 2013).
- Figure 8.2 and Table 8.2 show a projection of changes in western U.S. mountain winter
- (December, January, and February) hydrology obtained from a different high-resolution
- atmospheric model at the middle and end of the 21st century under the RCP8.5 scenario. These
- projections indicate dramatic reductions in all aspects of snow (Rhoades et al. 2017) and are
- similar to previous statistically downscaled projections (Cayan et al. 2013; Klos et al. 2014).
- 1 Table 8.2 reveals that the reductions in snow water equivalent accelerate in the latter half of this
- 2 century under this emissions scenario and with substantial variations across the western United
- 3 States. Changes in snow residence time, an alternative measure of snowpack relevant to the
- 4 timing of runoff. is also shown to be sensitive to elevation, with widespread reductions across
- 5 this region (Luce et al. 2014). Given the larger projected increases in temperature at high
- 6 altitudes compared to adjacent lower altitudes (Pierce and Cayan 2013) and the resulting changes
- 7 in both snowpack depth and melt timing in very warm future scenarios such as RCP8.5, and
- 8 assuming no change to water resource management practices, several important western U.S .
- 9 snowpack reservoirs effectively disappear by 2100 in this dynamical projection, resulting in
- 10 chronic, long-lasting hydrological drought. This dramatic statement is also supported by two
- 11 climate model studies: a multimodel statistical downscaling of the CMIPS RCP8.5 ensemble that
- 12 finds large areal reductions in snow dominated regions of the western United States by mid-
- 13 century and complete elinunation of snow-donunated regions in certain watersheds (Klos et al.
- 14 2014), and a large ensemble simulation of a global climate model (Fyfe et al. 2017).
- 15 As earlier spring melt and reduced snow water equivalent has been formally attributed to human
- 16 induced wanning, substantial reductions in westem U.S . winter and spring snowpack are
- 17 projected (with attribution) to be *very likely* as the climate warms as the climate continues to
- 18 warm *(very high confidence)*. Under higher emissions scenarios and assuming no change to
- 19 current water-resources management, chronic, long-duration hydrological drought is increasingly
- 20 possible by the end of this century *(very high confidence)*.

21 **[INSERT FIGURES 8.1 AND 8.2 HERE]**

22 8.2. Floods

- 23 Hooding damage in the United States can come from flash floods of smaller rivers and creeks,
- 24 prolonged flooding along major rivers, urban flooding unassociated with proxinuty to a
- 25 riverway, coastal flooding from storm surge which may be exacerbated by sea level rise, and the
- 26 confluence of coastal stonns and inland riverine flooding from the same precipitation event (Ch.
- 27 12: Sea Level Rise). Flash flooding is associated with extreme precipitation somewhere along the
- 28 river which may occur upstream of the regions at risk. Flooding of major rivers in the United
- 29 States with substantial winter snow accumulations usually occurs in the late winter or spring and
- 30 can result from an unusually heavy seasonal snowfall followed by a "rain on snow" event or
- 31 from a rapid onset of higher temperatures that leads to rapid snow melting within the river basin.
- 32 In the westem coastal states, most flooding occurs in conjunction widl extreme precipitation
- 33 events referred to as "atmospheric rivers" (see Ch. 9: Extreme Storms) (Ralph and Dettinger
- 34 2011; Neiman et al. 2011), with mountain snowpack being vulnerable to these typically warmer-
- 35 than-normal storms and their potential for rain on existing snow cover (Guan et al. 2016).
- 36 Hurricanes and tropical stonns are an important driver of flooding events in the eastern United
- 37 States. Changes in streamflow rates depend on many factors, both human and natural , in
- 38 addition to climate change. Deforestation, urbanization, dams, floodwater management activities,
- and changes in agricultural practices can all play a role in past and future changes in flood
- statistics. Projection of future changes is thus a complex multivariate problem (Walsh et al.
- 2014).

The IPCC AR5 (Bindoff et al. 2013) did not attribute changes in flooding to anthropogenic influence nor report detectable changes in flooding magnitude, duration or frequency. Trends in extreme high values of streamflow are mixed across the United States (Walsh et al. 2014; Archfield et al. 2016; EPA 2016). Analysis of 200 U.S. stream gauges indicates areas of both increasing and decreasing flooding magnitude (Hirsch and Ryberg 2012) but does not provide robust evidence that these trends are attributable to human influences. Significant increases in flood frequency have been detected in about one-third of stream gauge stations examined for the central United States, with a much stronger signal of frequency change than is found for changes in flood magnitude in these gauges (Mallakpour and Villarini 2015). This apparent disparity with ubiquitous increases in observed extreme precipitation (Figure 7.2) can be partly explained by the seasonality of the two phenomena. Extreme precipitation events in the eastern half of the CONUS are larger in the summer and fall when soil moisture and seasonal streamflow levels are low and less favorable for flooding (Wehner 2013). By contrast, high streamflow events are often larger in the spring and winter when soil moisture is high and snowmelt and frozen ground can enhance runoff (Frei et al. 2015). Furthermore, floods may be poorly explained by daily

- precipitation characteristics alone; the relevant mechanisms are more complex, involving
- processes that are seasonally and geographically variable, including the seasonal cycles of soil
- moisture content and snowfall/snowmelt (Berghuijs et al. 2016).

Recent analysis of annual maximum streamflow shows statistically significant trends in the

upper Mississippi River valley (increasing) and in the Northwest (decreasing) (McCabe and Wolock 2014). In fact, across the midwestern United States, statistically significant increases in

- flooding are well documented (Groisman et al. 2001; Novotny and Stefan 2007; Tomer and
- Schilling 2009; Ryberg et al. 2014; Villarini and Strong 2014; Slater et al. 2015; Mallakpour and
- Villarini 2015, 2016). These increases in flood risk and severity are not attributed to 20th century
- changes in agricultural practices (Tomer and Schilling 2009; Frans et al. 2013) but instead are
- attributed mostly to the observed increases in precipitation shown in Figures 7.1 through 7.4
- (Novotny and Stefan 2007; Wang and Hejazi 2011; Frans et al. 2013; Mallakpour and Villarini
- 2015). Trends in maximum streamflow in the northeastern United States are less dramatic and
- less spatially coherent (McCabe and Wolock 2014; Frei et al. 2015), although one study found
- mostly increasing trends (Armstrong et al. 2014) in that region, consistent with the increasing
- trends in observed extreme precipitation in the region (Ch. 6: Temperature Change; Walsh et al.
- 2014; Frei et al. 2015).
- The nature of the proxy archives complicates the reconstruction of past flood events in a gridded
- fashion as has been done with droughts. However, reconstructions of past river outflows do exist.
- For instance, it has been suggested that the mid-20th century river allocations for the Colorado
- River were made during one of the wettest periods of the past five centuries (Woodhouse et al.
- 2 2006). For the eastern United States, the Mississippi River has undergone century-scale
- variability in flood frequency—perhaps linked to the moisture availability in the central United
- States and the temperature structure of the Atlantic Ocean (Munoz et al*.* 2015).

The complex mix of processes complicates the formal attribution of observed flooding trends to

- anthropogenic climate change and suggests that additional scientific rigor is needed in flood
- attribution studies (Merz et al. 2012). As noted above, precipitation increases have been found to
- strongly influence changes in flood statistics. However, in U.S. regions, no formal attribution of
- precipitation changes to anthropogenic forcing has been made so far, so indirect attribution of
- flooding changes is not possible. Hence, no formal attribution of observed flooding changes to
- anthropogenic forcing has been claimed (Mallakpour and Villarini 2015).
- A projection study based on coupling an ensemble of regional climate model output to a
- hydrology model (Najafi and Moradkhani 2015) finds that the magnitude of future very extreme
- runoff (which can lead to flooding) is decreased in most of the summer months in Washington
- State, Oregon, Idaho, and western Montana but substantially increases in the other seasons.
- Projected weighted increases in extreme runoff from the coast to the Cascade Mountains are
- particularly large in that study during the fall and winter which are not evident in the weighted
- seasonal averaged CMIP5 runoff projections (Collins et al. 2013). For the West Coast of the
- United States, extremely heavy precipitation from intense atmospheric river storms is an
- important factor in flood frequency and severity (Dettinger 2011; Dettinger et al. 2011).
- Projections indicate greater frequency of heavy atmospheric rivers in the future (e.g., Dettinger et
- al. 2011; Warner et al. 2015; Gao et al. 2015; see further discussion in Ch. 9: Extreme Storms).
- Translating these increases in atmospheric river frequency to their impact on flood frequency
- requires a detailed representation of western states topography in the global projection models
- and/or via dynamic downscaling to regional models and is a rapidly developing science. In a
- report prepared for the Federal Insurance and Mitigation Administration of the Federal
- Emergency Management Agency, a regression-based approach of scaling river gauge data based
- on seven commonly used climate change indices from the CMIP3 database (Tebaldi et al. 2006)
- found that at the end of the 21st century the 1% annual chance floodplain area would increase in
- area by about 30%, with larger changes in the Northeast and Great Lakes regions and smaller
- changes in central part of the country and the Gulf Coast (AECOM 2013).
- Urban flooding results from heavy precipitation events that overwhelm the existing sewer
- infrastructure's ability to convey the resulting stormwater. Future increases in daily and sub-
- daily extreme precipitation rates will require significant upgrades to many communities' storm
- sewer systems, as will sea level rise in coastal cities and towns (SFPUC 2016; Winters et al.
- 2015).
- No studies have formally attributed (see Ch. 3: Detection and Attribution) long-term changes in
- observed flooding of major rivers in the United States to anthropogenic forcing. We conclude
- that there is *medium confidence* that detectable (though not attributable to anthropogenic forcing
- changes) increases in flood statistics have occurred in parts of the central United States. Key
- Finding 3 of Chapter 7: Precipitation Change states that the frequency and intensity of heavy
- precipitation events are projected to continue to increase over the 21st century with *high*
- *confidence*. Given the connection between extreme precipitation and flooding, and the
- complexities of other relevant factors, we concur with the IPCC Special Report on Extremes
- (SREX) assessment of "medium confidence (based on physical reasoning) that projected
- increases in heavy rainfall would contribute to increases in local flooding in some catchments or
- regions" (IPCC 2012).
- Existing studies of individual extreme flooding events are confined to changes in the locally
- responsible precipitation event and have not included detailed analyses of the events' hydrology.
- Gochis et al. (2015) describes the massive floods of 2013 along the Colorado front range,
- estimating that the streamflow amounts ranged from 50- to 500-year return values across the
- region. Hoerling et al. (2014) analyzed the 2013 northeastern Colorado heavy multiday
- precipitation event and resulting flood, finding little evidence of an anthropogenic influence on
- its occurrence. However, Pall et al. (2017) challenge their event attribution methodology with a
- more constrained study and find that the thermodynamic response of precipitation in this event
- due to anthropogenic forcing was substantially increased. The Pall et al. (2017) approach does
- not rule out that the likelihood of the extremely rare large-scale meteorological pattern
- responsible for the flood may have changed.

8.3 Wildfires

- A global phenomenon with natural (lightning) and human-caused ignition sources, wildfire
- represents a critical ecosystem process. Recent decades have seen a profound increase in forest
- fire activity over the western United States and Alaska (Westerling et al. 2006; Running 2006;
- 25 Higuera et al 2015; Abatzouglou and Williams 2016). The frequency of large wildfires is
- influenced by a complex combination of natural and human factors. Temperature, soil moisture,
- relative humidity, wind speed, and vegetation (fuel density) are important aspects of the
- relationship between fire frequency and ecosystems. Forest management and fire suppression
- practices can also alter this relationship from what it was in the preindustrial era. Changes in
- these control parameters can interact with each other in complex ways with the potential for
- tipping points—in both fire frequency and in ecosystem properties—that may be crossed as the
- climate warms.
- 33 Figure 8.3 shows that the number of large fires has increased over the period 1984–2011, with
- 34 high statistical significance in 7 out of 10 western U.S. regions across a large variety of
- 35 vegetation, elevation, and climatic types (Dennison et al. 2014). State-level fire data over the
- 36 20th century (Littell et al. 2009) indicates that area burned in the western United States decreased
- 37 from 1916 to about 1940, was at low levels until the 1970s, then increased into the more recent
- 38 period. Modeled increases in temperatures and vapor pressure deficits due to anthropogenic

1 climate change has increased forest fire activity in the western United States by increasing the 2 aridity of forest fuels during the fire season (Abatzouglou and Williams 2016). Increases in these 3 relevant climatic drivers were found to be responsible for over half the observed increase in 4 western U.S. forest fuel aridity from 1979 to 2015 and doubled the forest fire area over the 5 period 1984-2015 (Abatzouglou and Williams 2016). Littell et a1. (2009, 2010, 2016) find that 6 two climatic mechanisms affect fire in the western United States: increased fuel flammability 7 driven by wanner, drier conditions and increased fuel availability driven by antecedent moisture. 8 Littell et a1. (2016) find a clear link between increased drought and increased fire risk. Yoon et 9 al. (2015) assessed the 2014 fire season, finding an increased risk of fire in California. While fire 10 suppression practices can also lead to a significant increase in fire risk in lower-elevation and 11 drier forest types, this is less important in higher-elevation and moister forests (Harvey 2016; 12 Stephens et al. 2013; Schoennagel et al. 2004). Increases in future forest fire extent, frequency, 13 and intensity depend strongly on local ecosystem properties and will vary greatly across the 14 United States. Westerling et al. (20 11) project substantial increases in forest fire frequency in the 15 Greater Yellowstone ecosystem by mid-century under the older SRES A2 emissions scenario, 16 and further state that years without large fires in the region will become extremely rare. Stavros 17 et al. (20 14) project increases in very large fires (greater than 50,000 acres) across the western 18 United States by mid-century lmder both the RCP4.5 and RCP8.5 emissions scenarios. Likewise, 19 Prestemon et al. (2016) project significant increases in lightning-ignited wildfire in the Southeast 20 by mid-century but with substantial differences between ecoregions. However, other factors, 21 related to climate change such as water scarcity or insect infestations may act to stifle future 22 forest fire activity by reducing growth or otherwise killing trees leading to fuel reduction (Littell

23 et al. 2010).

24 **[INSERT FIGURE 8.3 HERE]**

25 Historically , wildfires have been less frequent and of smaller extent in Alaska compared to the 26 rest of the globe (Flannigan et al. 2009; Hu et al. 2015). Shortened land snow cover seasons and 27 higher temperatures have made the Arctic more vulnerable to wildfire (Flannigan et al. 2009; Hu 28 et al. 2015; Young et al. 2016). Total area burned and the number of large fires (those with area 29 greater than 1,000 square km or 386 square miles) in Alaska exhibits significant interannual and 30 decadal scale variability from influences of atmospheric circulation patterns and controlled 31 burns, but have *likely* increased since 1959 (Kasischke and Turetsky 2006). The most recent 32 decade has seen an unusually large number of severe wildfire years in Alaska, for which the risk 33 of severe fires has *likely* increased by 33%- 50% as a result of anduopogenic climate change 34 (Partain et al. 2016) and is projected to increase by up to a factor of four by the end of the 35 century under the moderate RCP6.0 scenario (Young et al. 2016). Historically less flammable 36 tundra and cooler boreal forest regions could shift into historically unprecedented fue risk 37 regimes as a consequence of temperatures increasing above the minimum duesholds required for 38 burning. Alaska's fire season is also *likely* lengthening—a trend expected to continue (Flannigan

39 et al. 2009; Sanford et al. 2015). Thresholds in temperature and precipitation shape Arctic fire

CSSR 5OD: FINAL CLEARANCE **CONSTRUCTER SERVICES** Chapter 8

- regimes, and projected increases in future lightning activity imply increased vulnerability to
- future climate change (Flannigan et al. 2009; Young et al. 2016). Alaskan tundra and forest
- wildfires will *likely* increase under warmer and drier conditions (Sanford et al. 2015; French et
- al. 2015) and potentially result in a transition into a fire regime unprecedented in the last 10,000
- years (Kelly et al. 2013). Total area burned is projected to increase between 25% and 53% by the
- end of the century (Joly et al. 2012).

Boreal forests and tundra contain large stores of carbon, approximately 50% of the total global

- soil carbon (McGuire et al. 2009). Increased fire activity could deplete these stores, releasing
- 9 them to the atmosphere to serve as an additional source of atmospheric $CO₂$ and alter the carbon
- cycle if ecosystems change from higher to lower carbon densities (McGuire et al. 2009; Kelly et
- al. 2013). Additionally, increased fires in Alaska may also enhance the degradation of Alaska's
- permafrost, blackening the ground, reducing surface albedo, and removing protective vegetation.
- Both anthropogenic climate change and the legacy of land use/management have an influence on

U.S. wildfires and are subtly and inextricably intertwined. Forest management practices have

resulted in higher fuel densities in most of U.S. forests, except in the Alaskan bush and the

- higher mountainous regions of the western United States. Nonetheless, there is *medium*
- *confidence* for a human-caused climate change contribution to increased forest fire activity in
- Alaska in recent decades with a *likely* further increase as the climate continues to warm, and *low*
- *to medium confidence* for a detectable human climate change contribution in the western United
- States based on existing studies. Recent literature does not contain a complete robust detection
- and attribution analysis of forest fires including estimates of natural decadal and multidecadal
- variability, as described in Chapter 3: Detection and Attribution, nor separate the contributions to
- observed trends from climate change and forest management. These assessment statements about
- attribution to human-induced climate change are instead multistep attribution statements (Ch. 3:
- Detection and Attribution) based on plausible model-based estimates of anthropogenic
- contributions to observed trends. The modeled contributions, in turn, are based on climate
- variables that are closely linked to fire risk and that, in most cases, have a detectable human
- influence, such as surface air temperature and snow melt timing.
-

E.

1 TRACEABLE ACCOUNTS

2 Key Message 1

- 3 Recent droughts and associated heat waves have reached record intensity in some regions of the
- 4 United States; however, by geographical scale and duration, the Dust Bowl era of the 1930s
- 5 remains the benchmark drought and extreme heat event in the historical record *(Very high*
- *6 confidence).* While by some measures, drought has decreased over much of the continental
- 7 United States in association with long-term increases in precipitation, neither the precipitation
- 8 increases nor inferred drought decreases have been confidently attributed to anthropogenic
- 9 forcing.

10 Description of evidence base

- 11 Recent droughts are well characterized and described in the literature. The Dust Bowl is not as
- 12 well documented, but available observational records support the key finding. The last sentence
- 13 is an "absence of evidence" statement and does not imply "evidence of absence" of future
- 14 anthropogenic changes. The inferred decreases in some measures of U.S. drought or types of
- 15 drought (heat wavelflash droughts) are described in Andreadis and Lettenmaier (2006) and Mo
- 16 and Lettenmaier (2015).

17 Major uncertainties

- 18 Record breaking temperatures are well documented with low uncertainty (Meehl et al 2009). The
- 19 magnitude of the Dust Bowl relative to present times varies with location. Uncertainty in the key
- 20 finding is affected by the quality of pre-World War II observations but is relatively low.
- 21 Assessment of confidence based on evidence and agreement
- 22 Precipitation is well observed in the United States, leading to *very high confidence*.

23 Summary sentence or paragraph that integrates the above information

- 24 The key finding is a statement that recent U.S. droughts, while sometimes long and severe, are 25 not unprecedented in the historical record.
- 26

27 Key Message 2

- 28 The human effect on recent major U .S . droughts is complicated. Little evidence is found for a
- 29 human influence on observed precipitation deficits, but much evidence is found for a human
- 30 influence on surface soil moisture deficits due to increased evapotranspiration caused by higher
- 31 temperatures. *(High confidence)*

32

CSSR 50D: FINAL CLEARANCE **CONSTRUCTER SERVICES** Chapter 8

1 Description of evidence base

- 2 Observational records of meteorological drought are not long enough to detect statistically
- 3 significant trends. Additionally, paleoclimatic evidence suggests that major droughts have
- 4 occurred throughout the distant past. Surface soil moisture is not well observed throughout the
- 5 CONUS , but numerous event attribution studies attribute enhanced reduction of surface soil
- 6 moisture during dry periods to andrropogenic wanning and enhanced evapotranspiration.
- 7 Sophisticated land surface models have been demonstrated to reproduce the available
- 8 observations and have allowed for century scale reconstructions.

9 Major uncertainties

- 10 Uncertainties stem from the length of precipitation observations and the lack of surface moisture
- 11 observations.

12 Assessment of confidence based on evidence and agreement

- 13 Confidence is *high* for widespread future surface soil moisture deficits, as litde change is
- 14 projected for future summer and fall average precipitation. In the absence of increased
- 15 precipitation (and in some cases with it), evapotranspiration increases due to increased
- 16 temperatures will lead to less soil moisture overall, especially near the surface.

17 Summary sentence or paragraph that integrates the above information

- 18 The precipitation deficit portion of the key finding is a conservative statement reflecting the
- 19 conflicting and limited event attribution literature on meteorological drought. The soil moisture
- 20 portion of the key finding is limited to the surface and not the more relevant root depth and is
- 21 supported by the studies cited in this chapter.
- 22

23 Key Message 3

- 24 Future decreases in surface (top 10 cm) soil moisture from andrropogenic forcing over most of
- 25 the United States are *likely* as the climate wanns under the higher emissions scenarios. *(Medium*
- 26 *confidence)*

27 Description of evidence base

- 28 First principles establish that evaporation is at least linearly dependent on temperatures and
- 29 accounts for much of the surface moisture decrease as temperature increases. Plant transpiration
- 30 for many non-desert species controls plant temperature and responds to increased temperature by
- 31 opening stomata to release more water vapor. This water comes from the soil at root depth as the
- 32 plant exhausts its stored water supply *(very high confidence)*. Furthermore, nearly all CMIP5
- 33 models exhibit U.S . surface soil moisture drying at the end of the century under RCP8.5 , and the

multimodel average exhibits no significant annual soil moisture increases anywhere on the planet

(Collins et al 2013).

Major uncertainties

While both evaporation and transpiration changes are of the same sign as temperature increases,

- the relative importance of each as a function of depth is less well quantified. The amount of
- transpiration varies considerably among plant species, and these are treated with widely varying
- of sophistication in the land surface components of contemporary climate models. Uncertainty in
- the sign of the anthropogenic change of root depth soil moisture is low in regions and seasons of
- 9 projected precipitation decreases (Ch. 7: Precipitation Changes). There is moderate to high
- uncertainty in the magnitude of the change in soil moisture at all depths and all regions and
- seasons. This key finding is a "projection without attribution" statement as such a drying is not
- 12 part of the observed record. Projections of summertime mean CONUS precipitation exhibit no
- significant change. However, recent summertime precipitation trends are positive, leading to
- reduced agricultural drought conditions overall (Andreadis and Lettenmaier 2006). While
- 15 statistically significant increases in precipitation have been identified over parts of the United
- 16 States, these trends have not been clearly attributed to anthropogenic forcing (Ch. 7:
- 17 Precipitation Change). Furthermore, North American summer temperature increases under
- 18 RCP8.5 at the end of the century are projected to be substantially more than the current observed
- 19 (and modeled) temperature increase. Because of the response of evapotranspiration to
- 20 temperature increases, the CMIP5 multimodel average projection is for drier surface soils even in
- 21 those high latitude regions (Alaska and Canada) that are confidently projected to experience
- 22 increases in precipitation. Hence, in the CONUS region, with little or no projected summertime
- 23 changes in precipitation, we conclude that surface soil moisture will likely decrease.

Assessment of confidence based on evidence and agreement

- CMIP5 and regional models support the surface soil moisture key finding. Confidence is
- assessed as "medium" as this key finding—despite the high level of agreement among model
- projections—because of difficulties in observing long-term changes in this metric and because,
- at present, there is no published evidence of detectable long-term decreases in surface soil
- moisture across the United States.

Summary sentence or paragraph that integrates the above information

- In the northern United States, surface soil moisture (top 10 cm) is *likely* to decrease as
- evaporation outpaces increases in precipitation. In the Southwest, the combination of
- temperature increases and precipitation decreases causes surface soil moisture decreases to be
- *very likely*. In this region, decreases in soil moisture at the root depth are *likely*.

Key Message 4

- Substantial reductions in western U.S. winter and spring snowpack are projected as the climate
- warms. Earlier spring melt and reduced snow water equivalent have been formally attributed to
- human induced warming (*high confidence*) and will *very likely* be exacerbated as the climate
- continues to warm (*very high confidence*). Under higher emissions scenarios, and assuming no
- change to current water resources management, chronic, long-duration hydrological drought is
- increasingly possible by the end of this century (*very high confidence*).

Description of evidence base

- First principles tell us that as temperatures rise, minimum snow levels also must rise. Certain
- changes in western U.S. hydrology have already been attributed to human causes in several
- papers following Barnett et al. (2008) and are cited in the text. The CMIP3/5 models project
- widespread warming with future increases in atmospheric GHG concentrations, although these
- are underestimated in the current generation of global climate models (GCMs) at the high
- altitudes of the western United States due to constraints on orographic representation at current
- GCM spatial resolutions.
- CMIP5 models were not designed or constructed for direct projection of locally relevant
- snowpack amounts. However, a high-resolution climate model, selected for its ability to simulate
- western U.S. snowpack amounts and extent, projects devastating changes in the hydrology of this
- region assuming constant water resource management practices (Rhoades et al 2017). This
- conclusion is also supported by a statistical downscaling result shown in Figure 3.1 of Walsh et
- al. 2014 and Cayan et al. 2013 and by the more recent statistical downscaling study of Klos et al.
- 2014.

Major uncertainties

- The major uncertainty is not so much "if" but rather "how much" as changes to precipitation
- phase (rain or snow) are sensitive to temperature increases that in turn depend on greenhouse gas
- (GHG) forcing changes. Also, changes to the lower-elevation catchments will be realized prior to
- those at higher elevations that, even at 25 km, is not adequately resolved. Uncertainty in the final
- statement also stems from the usage of one model but is tempered by similar findings from
- statistical downscaling studies. However, this simulation is a so-called "prescribed temperature"
- experiment with the usual uncertainties about climate sensitivity wired in by the usage of one
- particular ocean temperature change. Uncertainty in the equator-to-pole differential ocean
- warming rate is also a factor.

CSSR 50D: FINAL CLEARANCE **CONSTRUCTER SERVICES** Chapter 8

1 Assessment of confidence based on evidence and agreement

- 2 All CMIP5 models project large-scale western U.S. warming as GHG forcing increases.
- 3 Warming is underestimated in most of the western United States due to elevation deficiencies
- 4 that are a consequence of coarse model resolution.

5 Summary sentence or paragraph that integrates the above information

- 6 Warmer temperatures lead to less snow and more rain if total precipitation remains unchanged.
- 7 Projected winter/spring precipitation changes are a mix of increases in northern states and
- 8 decreases in the Southwest. In the northern Rocky Mountains, snowpack is projected to decrease
- 9 even with a projected precipitation increase due to this phase change effect. This will lead to, at
- 10 the very least, profound changes to the seasonal and sub-seasonal timing of the western U.S.
- 11 hydrological cycle even where annual precipitation remains nearly unchanged with a strong
- 12 potential for water shortages.
- 13

14 Key Message 5

- 15 Detectable changes in some classes of flood frequency have occurred in parts of the United
- 16 States and are a mix of increases and decreases. Extreme precipitation, one of the controlling
- 17 factors in flood statistics, is observed to have generally increased and is projected to continue to
- 18 do so across the United States in a warming atmosphere. However, formal attribution approaches
- 19 have not established a significant connection of increased riverine flooding to human-induced
- 20 climate change and the timing of any emergence of a future detectible anthropogenic change in
- 21 flooding is unclear. *(Medium confidence)*

22 Description of evidence base

- 23 Observed changes are a mix of increases and decreases and are documented by Walsh et al. 2014
- 24 and odler studies cited in the text. No attribution statements have been made.

25 Major uncertainties

26 Floods are highly variable both in space and time. The multivariate nature of floods complicates 27 detection and attribution.

28 Assessment of confidence based on evidence and agreement

- 29 Confidence is limited to *medium* due to bodl the lack of an attributable change in observed
- 30 flooding to date and the complicated multivariate nature of flooding. However, confidence is
- *31 high* in the projections of increased future extreme precipitation , the principal driver (among
- 32 several) of many floods. It is unclear when an observed long-term increase in U.S. riverine
- flooding will be attributed to anthropogenic climate change. Hence, confidence is *medium* in this
- part of the key message at this time.

Summary sentence or paragraph that integrates the above information

- The key finding is a relatively weak statement reflecting the lack of definitive detection and
- attribution of anthropogenic changes in U.S. flooding intensity, duration, and frequency.
-

Key Message 6

- The incidence of large forest fires in the western United States and Alaska has increased since
- the early 1980s (*high confidence*) and is projected to further increase in those regions as the
- climate warms with profound changes to certain ecosystems (*medium confidence*).

Description of evidence base

- Studies by Dennison et al. 2014 (western U.S.) and Kasischke and Turetsky 2006 (Alaska)
- document the observed increases in fire statistics. Projections of Westerling et al. (2011)
- (western U.S.) and Young et al. 2016 and others (Alaska) indicate increased fire risk. These
- observations and projections are consistent with drying due to warmer temperatures leading to
- increased flammability and longer fire seasons.

Major uncertainties

- Analyses of other regions of the United States, which also could be subject to increased fire risk
- do not seem to be readily available. Likewise, projections of the western U.S. fire risk are of
- limited areas. In terms of attribution, there is still some uncertainty on how well non-climatic
- confounding factors such as forestry management and fire suppression practices have
- 22 been accounted for, particularly for the western United States. Other climate change factors, such
- as increased water deficits and insect infestations could reduce fuel loads, tending towards
- reducing fire frequency and/or intensity.

Assessment of confidence based on evidence and agreement

- Confidence is *high* in the observations due to solid observational evidence. Confidence in
- projections would be higher if there were more available studies covering a broader area of the
- United States and a wider range of ecosystems.

Summary sentence or paragraph that integrates the above information

- Wildfires have increased over parts of the western United States and Alaska in recent decades
- and are projected to continue to increases as a result of climate change. As a result, shifts in
- certain ecosystem types may occur.

 \mathbb{C}

1 **TABLES**

- 2 **Table 8.1:** A list of U.S. droughts for which attribution statements have been made. In the last
- 3 column, "+" indicates that an attributable human induced increase in frequency and/or magnitude
- 4 was found, "−" indicates that an attributable human induced decrease in frequency and/or
- 5 magnitude was found, "0" indicates no attributable human contribution was identified. As in
- 6 tables 6.2 and 7.1, several of the events were originally examined in the *Bulletin of the American*
- 7 *Meteorological Society*'s (*BAMS*) State of the Climate Reports and reexamined by Angélil et al.
- 8 (2017). In these cases, both attribution statements are listed with the original authors first.
- 9 Source: M. Wehner.
- 10

1

2

- Table 8.2: Projected changes in western U.S. mountain range winter (DJF) snow-related $\,1$
- $\overline{2}$ hydrology variables at the middle and end of this century. Projections are for the RCP8.5
- $\overline{3}$ scenario from a high-resolution version of the Community Atmospheric Model, CAM5 (Rhoades
- $\overline{4}$ et al. 2017).

5

6

$\,1\,$ **FIGURES**

$\overline{2}$

- $\overline{3}$
- Figure 8.1. Projected end of the 21st century weighted CMIP5 multimodel average percent $\overline{4}$
- 5 changes in near surface seasonal soil moisture (mrsos) under the RCP8.5 scenario. Stippling
- 6 indicates that changes are assessed to be large compared to natural variations. Hashing indicates
- $\overline{7}$ that changes are assessed to be small compared to natural variations. Blank regions (if any) are
- $\,8\,$ where projections are assessed to be inconclusive (Appendix B). (Figure source: NOAA NCEI /
- CICS-NC). 9
- $10\,$

 $\,1$

- $\overline{3}$ Figure 8.2. Projected changes in winter (DJF) snow water equivalent at the middle and end of
- $\overline{4}$ this century under the RCP8.5 scenario from a high-resolution version of the Community
- 5 Atmospheric Model, CAM5 (Rhoades et al. 2017). (Figure source: H. Krishnan, LBNL).

6

 \overline{c}

 $\,1$

 $\mathbf{2}$

- $\overline{3}$ Figure 8.3. Trends in the annual number of large fires in the western United States for a variety
- $\overline{4}$ of ecoregions. The black lines are fitted trend lines. Statistically significant at a 10% level for all
- 5 regions except the Snake Plain/Columbian Plateau, Basin and Range, and Mediterranean
- 6 California regions. (Figure source: Dennison et al. 2014).

REFERENCES

- Abatzoglou, J.T. and A.P. Williams, 2016: Impact of anthropogenic climate change on wildfire across western US forests. *Proceedings of the National Academy of Sciences,* **113,** 11770-
- 11775. http://dx.doi.org/10.1073/pnas.1607171113
- AECOM, 2013: The Impact of Climate Change and Population Growth on the National Flood Insurance Program Through 2100. 257 pp.
- http://www.acclimatise.uk.com/login/uploaded/resources/FEMA_NFIP_report.pdf
- Andreadis, K.M. and D.P. Lettenmaier, 2006: Trends in 20th century drought over the
- continental United States. *Geophysical Research Letters,* **33,** L10403.
- http://dx.doi.org/10.1029/2006GL025711
- Angélil, O., D. Stone, M. Wehner, C.J. Paciorek, H. Krishnan, and W. Collins, 2017: An
- independent assessment of anthropogenic attribution statements for recent extreme
- temperature and rainfall events. *Journal of Climate,* **30,** 5-16.
- http://dx.doi.org/10.1175/JCLI-D-16-0077.1
- Archfield, S.A., R.M. Hirsch, A. Viglione, and G. Blöschl. 2016. Fragmented patterns of flood change across the United States. Geophys. Rev. Let. **43**, 10,232-10,239
- Armstrong, W.H., M.J. Collins, and N.P. Snyder, 2014: Hydroclimatic flood trends in the
- northeastern United States and linkages with large-scale atmospheric circulation patterns.
- *Hydrological Sciences Journal,* **59,** 1636-1655.
- http://dx.doi.org/10.1080/02626667.2013.862339
- Barnett, T.P. and D.W. Pierce, 2009: Sustainable water deliveries from the Colorado River in a
- changing climate. *Proceedings of the National Academy of Sciences,* **106,** 7334-7338. http://dx.doi.org/10.1073/pnas.0812762106
- Barnett, T.P., D.W. Pierce, H.G. Hidalgo, C. Bonfils, B.D. Santer, T. Das, G. Bala, A.W. Wood,
- T. Nozawa, A.A. Mirin, D.R. Cayan, and M.D. Dettinger, 2008: Human-induced changes in
- the hydrology of the western United States. *Science,* **319,** 1080-1083.
- http://dx.doi.org/10.1126/science.1152538
- Bennet, H.H., F.H. Fowler, F.C. Harrington, R.C. Moore, J.C. Page, M.L. Cooke, H.A. Wallace,
- and R.G. Tugwell, 1936: *A Report of the Great Plains Area Drought Committee*. Hopkins
- Papers Box 13. Franklin D. Roosevelt Library, New Deal Network (FERI), Hyde Park, NY.
- http://newdeal.feri.org/hopkins/hop27.htm
- 32 Berg, A.*,* J. Sheffield*, and* P. C. D. Milly *(*2017*),* Divergent surface and total soil moisture
- 33 projections under global warming*,* Geophys. Res. Lett.*,* 44*,* 236*–*244*,*
- doi:10.1002/2016GL071921.

Berghuijs, W.R., R.A. Woods, C.J. Hutton, and M. Sivapalan, 2016: Dominant flood generating mechanisms across the United States. *Geophysical Research Letters,* **43,** 4382-4390. http://dx.doi.org/10.1002/2016GL068070 Bindoff, N.L., P.A. Stott, K.M. AchutaRao, M.R. Allen, N. Gillett, D. Gutzler, K. Hansingo, G. Hegerl, Y. Hu, S. Jain, I.I. Mokhov, J. Overland, J. Perlwitz, R. Sebbari, and X. Zhang, 2013: Detection and attribution of climate change: From global to regional. *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 867– 952. http://www.climatechange2013.org/report/full-report/ Bond, N.A., M.F. Cronin, H. Freeland, and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. *Geophysical Research Letters,* **42,** 3414-3420. http://dx.doi.org/10.1002/2015GL063306 Bonfils, C., B.D. Santer, D.W. Pierce, H.G. Hidalgo, G. Bala, T. Das, T.P. Barnett, D.R. Cayan, C. Doutriaux, A.W. Wood, A. Mirin, and T. Nozawa, 2008: Detection and attribution of temperature changes in the mountainous western United States. *Journal of Climate,* **21,** 6404-6424. http://dx.doi.org/10.1175/2008JCLI2397.1 Brown, P.M., E.K. Heyerdahl, S.G. Kitchen, and M.H. Weber, 2008: Climate effects on historical fires (1630–1900) in Utah. *International Journal of Wildland Fire,* **17,** 28-39. http://dx.doi.org/10.1071/WF07023 Cayan, D.R., T. Das, D.W. Pierce, T.P. Barnett, M. Tyree, and A. Gershunov, 2010: Future dryness in the southwest US and the hydrology of the early 21st century drought. *Proceedings of the National Academy of Sciences,* **107,** 21271-21276. http://dx.doi.org/10.1073/pnas.0912391107 Cayan, D., K. Kunkel, C. Castro, A. Gershunov, J. Barsugli, A. Ray, J. Overpeck, M. Anderson, J. Russell, B. Rajagopalan, I. Rangwala, and P. Duffy, 2013: Ch. 6: Future climate: Projected average. *Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment*. Garfin, G., A. Jardine, R. Merideth, M. Black, and S. LeRoy, Eds. Island Press, Washington, D.C., 153-196. http://swccar.org/sites/all/themes/files/SW-NCA-color-FINALweb.pdf Cheng, L., M. Hoerling, A. AghaKouchak, B. Livneh, X.-W. Quan, and J. Eischeid, 2016: How has human-induced climate change affected California drought risk? *Journal of Climate,* **29,** 111-120. http://dx.doi.org/10.1175/JCLI-D-15-0260.1

CSSR 5OD: FINAL CLEARANCE CSSR 5OD: Chapter 8

CSSR 5OD: FINAL CLEARANCE CSSR 5OD: Chapter 8

