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Simple Summary: The rumen makes up a large portion of the digestive tract of beef cattle and is
responsible for the absorption of nutrients and microbial by-products. The rumen papillae interact
with feed, microbial populations, and fermentation products important to cattle nutrition. Variation
in the animal’s ability to take up and utilize these nutrients affects feed efficiency. This study was
performed to identify genes involved in feed efficiency that are expressed in two unrelated and
physically distant populations of Angus and Hereford crossbred steers. A total of 83 genes were
identified that may be useful indicators of feed efficiency in cattle. Differentially expressed genes
were involved in a protein turnover pathway and a stomach lining turnover pathway. The use of
meta-analysis for the two populations of cattle with different sire lines, management and handling
techniques, and feed ingredients should allow the identification of genes that are involved in feed
efficiency across cattle populations rather than those identified in a single population.

Abstract: In cattle, the rumen is an important site for the absorption of feed by-products released
by bacterial fermentation, and variation in ruminal function plays a role in cattle feed efficiency.
Studies evaluating gene expression in the rumen tissue have been performed prior to this. However,
validating the expression of genes identified in additional cattle populations has been challenging. The
purpose of this study was to perform a meta-analysis of the ruminal transcriptome of two unrelated
populations of animals to identify genes that are involved in feed efficiency across populations. RNA-
seq data from animals with high and low residual feed intake (RFI) from a United States population
of cattle (eight high and eight low RFI) and a Canadian population of cattle (nine high and nine low
RFI) were analyzed for differences in gene expression. A total of 83 differentially expressed genes
were identified. Some of these genes have been previously identified in other feed efficiency studies.
These genes included ATP6AP1, BAG6, RHOG, and YPEL3. Differentially expressed genes involved
in the Notch signaling pathway and in protein turnover were also identified. This study, combining
two unrelated populations of cattle in a meta-analysis, produced several candidate genes for feed
efficiency that may be more robust indicators of feed efficiency than those identified from single
populations of animals.

Keywords: beef cattle; gene expression; notch signaling; rumen; transcriptome; meta-analysis

1. Introduction

The feed that enters the rumen is first utilized by microbial communities. These
microbes break down the feed into fermentation products that can be transported into the
rumen tissue or get passed on through the gut. Variation in microbial populations of the
rumen have been shown to affect the feed efficiency of beef cattle [1–3]. However, feed
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efficient cattle may also have variation in their ability to transport or utilize the microbial by-
products. Currently, there is only one study evaluating the rumen papillae transcriptome
of beef cattle with variation in residual feed intake (RFI), a measure of feed efficiency [4].
Other studies evaluating the transcriptome of rumen papillae tissue with feed intake and
gain [5] or evaluating specific candidate genes [6] exist, but it is challenging to compare
studies based on different methodologies or phenotypes.

There are few examples of transcriptome meta-analyses with two or more unrelated
populations or cohorts of beef cattle [7,8]. These types of studies should provide the
identification of genes that underly the phenotype of interest as they account for some of
the potentially confounding issues that may influence gene expression in single population
studies, such as season, management, and sire lines. Genes that are identified in multi-
population studies may produce more robust biological markers for feed efficiency. The
purpose of this study was to identify differentially expressed genes in the rumen tissue of a
Canadian and a United States population of Angus and Hereford crossbred beef cattle with
variation in RFI.

2. Materials and Methods
2.1. Cattle Populations

The animal studies were both approved by Institutional Animal Care and Use Com-
mittees for livestock research at their respective universities. Details regarding the animals
and sample collection from the Canadian population of Hereford × Angus animals can
be found in [4]. The data from the Canadian population of animals used in this study
was downloaded from the publicly available NCBI Gene expression omnibus database
using the series accession number GSE76501. Rumen tissue was collected from the most
efficient (n = 9; RFI = −1.4 to −2.33 kg/day) and least efficient steers (n = 9; RFI = 1.32 to
3.23 kg/day) [4].

The United States population of Angus × Hereford steers with high and low RFI were
selected from a larger population of 59 animals. Initial body weights at the start of the study
were 461 ± 4.5 kg and initial ages were 379 ± 1.5 days. Animals were fed a high corn finish-
ing diet of 84.8% whole shelled corn, 5.1% alfalfa hay, 6.7% alfalfa haylage, 3.4% protein and
micronutrient supplement (11.4% CP, 2.0 Mcal NEm/kg, 1.34 Mcal NEg/kg). Individual
feed intakes were measured using the GrowSafe system (model 4000E, GrowSafe Systems
Ltd., Airdrie, AB, Canada). Feed intake was monitored for 57 d. Residual feed intake is
the difference between the actual and expected feed intake and was calculated by actual
dry matter feed intake regressed on average daily gain (ADG) and metabolic midweight
(MBW) to determine expected dry matter intake (DMI). Average daily gain was calculated
from initial and final steer body weights. At the end of the trial period for the United
States population, the most efficient (n = 8, low RFI = −0.93 to −1.93) and least efficient
(n = 8/year, high RFI = 0.89–1.98) steers were selected for harvest. Residual feed intake for
both studies was calculated according to Kong et al. [4], using the following model:

Yj = β0 + β1MBWj + β2 ADGj + ej (1)

where Yj is the standardized DMI of the jth animal, β0 is the regression intercept, β1 is
the regression coefficient on MBW, β2 is the regression coefficient on ADG, and ej is the
uncontrolled error of the jth animal.

2.2. Sample Preparation

Sample preparation of the rumen tissue from the Canadian population of animals was
previously described in Kong et al. [4]. Briefly, papillae were collected from the central
region of the ventral sac at slaughter and immediately frozen in liquid nitrogen. RNA was
isolated with mirVana kit (Ambion, Austin, TX, USA) according to the manufacturer’s
instructions. Samples were evaluated on the Agilent 2100 Bioanalyzer and a RIN of >7 was
required for sequencing.
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For the United States population of animal samples, rumen papillae tissue from the
ventral portion of the cranial sac was rinsed with PBS and flash frozen at the time of harvest.
Tissues were stored at −80 ◦C until RNA isolation. Total RNA was isolated from the
rumen tissue using the RNeasy Mini Plus kit and QiaShredder columns (Qiagen, Valencia,
CA, USA). Briefly, 800 µL of RLT (lysis) buffer with β-mercaptoethanol were added to
30–50 mg of rumen papillae tissue and homogenized for 40 s using an Omni Prep 6-station
homogenizer (Omni International, Kennesaw, GA, USA). The homogenate was centrifuged
in a QiaShredder column at 17,000× g for 3 min at room temperature. The RNeasy Mini
Plus kit manufacturer’s protocol was then followed, and the total RNA was eluted in 50 µL
of RNase free water. Total RNA was quantified with a NanoDrop One spectrophotometer
(ThermoFisher Scientific, Waltham, MA, USA) and evaluated for quality using an Agilent
2200 TapeStation using RNA ScreenTape and reagents. All RIN values were >8.0.

2.3. RNA-Sequencing

Sequencing information for the Canadian population of animal samples was previ-
ously described by Kong et al. [4]. Briefly, 18 libraries were generated using the TruSeq
RNA Sample Preparation v2 kit (Illumina, San Diego, CA, USA). Libraries were pooled
and sequenced on the Illumina HiSeq 2000 system.

For the United States population, each RNA sample (250 ng) from the 16 steers
was prepared for RNA sequencing with the Illumina TruSeq stranded mRNA library
preparation kit following the manufacturer’s protocol (Illumina Inc., San Diego, CA, USA).
The libraries were quantified with RT-qPCR using the NEBNext Library Quant Kit (New
England Biolabs, Inc., Beverly, MA, USA) on a CFX384 thermal cycler (Bio-Rad, Hercules,
CA, USA). The size and quality of the library were evaluated with an Agilent Bioanalyzer
DNA 1000 kit (Santa Clara, CA, USA). The libraries were diluted to 4 nM with Illumina
RSB. Libraries were paired-end sequenced with 150 cycle high output sequencing kits on
an Illumina NextSeq 500 instrument.

2.4. Data Analysis

Data from each of the two populations was processed using a single pipeline. The
quality of the raw paired-end sequence reads in individual fastq files was assessed using
FastQC (Version 0.11.5; www.bioinformatics.babraham.ac.uk/projects/fastqc) (accessed on
15 April 2022), and reads were trimmed to remove adapter sequences and low-quality bases
using the Trimmomatic software (Version 0.35) [9]. The remaining reads were mapped
to the ARS-UCD1.2 genome assembly (NCBI Refseq Accession GCF_002263795.1) using
Hisat2 (Version 2.1.0) [10]. The NCBI annotation for ARS-UCD1.2 (Release 106) was used
to guide the alignment. Stringtie (Version 1.3.3) [11] was used to determine read counts
for each of the 34,624 annotated genes in the ARS-UCD1.2 genome assembly. The raw
sequencing data for the U.S. population can be accessed at the NCBI Sequence Read Archive
(SRA) database with accession number PRJNA762307.

Meta-analysis of gene expression was conducted by combining p-values from per-
study differential analyses. For each study, data were analyzed using the DESeq2 pack-
age [12] with the following generalized linear model (GLM):

Y = RFI Group. (2)

In this model, a negative binomial link function is used to consider the explanatory
variable RFI Group (Low vs. High).

Per-study raw p-values for each gene were combined using Fisher’s method [13]. This
approach combines p-values from each experiment into one test statistic:

X = −2 ∑S
s=1 ln

(
pgs

)
, (3)

where pgs denotes the nominal p-value obtained from gene g in experiment s, and S is
the number of experiments being combined. Under the null hypothesis, the test statistic

www.bioinformatics.babraham.ac.uk/projects/fastqc
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X follows a χ2 distribution with 2S degrees of freedom. This statistical test provides a
meta-p-value for each gene, and classical procedures for multiple testing correction can
then be applied to control the false discovery rate. The Benjamini–Hochberg method [14]
was used to correct for multiple testing. Genes with adjusted meta-p ≤ 0.05 were consid-
ered statistically significant. This meta-analysis procedure was implemented using the
metaRNASeq package in R (Version 1.0.7).

One critical underlying assumption for the use of the Fisher test statistic, defined in
Equation (3), is that p-values for genes in each of the individual studies are uniformly
distributed under the null hypothesis. However, in most RNA-Seq data, a peak in p-values
close to 1 is observed due to the discretization of p-values for very low read counts. As
proposed by Rau et al. [15], the HTSFilter package in R (Version 1.34.0; [16]) was used to
filter weakly expressed genes in each of the studies. Using this approach for gene filtering, it
is possible that genes could be filtered from one study, but not the other. As a final filtering
step, genes with adjusted meta-p ≤ 0.05 that were filtered from one study were removed.

Principal component analysis (PCA) was performed using the PCAtools package in
R (Version 2.6.0). PCA analysis was performed on normalized gene expression values,
generated by DESeq2, removing the lower 10% of genes based on variance.

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, Ver-
sion 6.8) [17] was used to identify significantly enriched biological process, molecular
function, and cellular component gene ontology terms (GO terms) in the differentially
expressed genes. Pathway analysis was performed using the iPathwayGuide software
(Version 2201; https://advaitabio.com) (accessed on 20 April 2022).

3. Results

An average of 97.6 million reads per library (n = 18) was generated for the Canadian
population of beef cattle and an average of 42.6 million reads per library was obtained from
the United States population of beef cattle (n = 16). Averages of 84.56% and 75.39% of the
reads aligned to the ARS_UCD1.2 bovine genome assembly, for the U.S. and Canadian
populations, respectively. A total of 14,194 genes were expressed in at least one study. PCA
on normalized gene expression values from data across both studies showed that the study
(U.S. vs. Canadian study) accounted for the greatest variation (59.64%, PC1; Figure 1). PCA
performed on each study individually showed the separation of samples by RFI phenotype
(Figure 2).
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with high and low residual feed intake from a combination of a Canadian population and a United
States population.
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States population.

As part of the meta-analysis procedure, differential gene expression analysis was
first conducted for each study (USA and Canadian studies) individually using DESeq2
(Table S1A,B). The HTSFilter package was used to filter lowly expressed genes in each of
the studies, resulting in distributions of raw p-values that appear to satisfy the uniformity
assumption under the null hypothesis that is required for Fisher’s method (Figure 3). Raw
p-values from these analyses were combined using Fisher’s method to identify differentially
expressed genes (DEG) for low RFI versus high RFI animals (Table S1C). A total of 83 DEG
were identified (PFDR < 0.05; Table 1).
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Table 1. Genes identified as differentially expressed between low versus high RFI beef cattle in a
meta-analysis of two unrelated populations of steers.

Gene Symbol PNominal PFDR Consistent LFC 1

LOC789569 6.71 × 10−9 9.52 × 10−5 N

LOC101904916 5.48 × 10−8 0.000389 Y

TECR 1.44 × 10−7 0.000680 Y

ATP6AP1 2.96 × 10−7 0.000788 N

PAMR1 3.11 × 10−7 0.000788 N

EGLN3 7.51 × 10−7 0.00120 N

LOC100848775 7.60 × 10−7 0.00120 N

LYPD3 5.98 × 10−7 0.00120 N

KAT2B 2.46 × 10−6 0.00234 Y

KLK13 2.22 × 10−6 0.00234 N

PLP2 2.43 × 10−6 0.00234 N

HTRA1 2.76 × 10−6 0.00245 N

RHOG 3.97 × 10−6 0.00313 N

TUBA4A 3.81 × 10−6 0.00313 Y

CD52 7.06 × 10−6 0.00501 Y

SH3BGRL3 7.81 × 10−6 0.00528 N

SESN3 1.02 × 10−5 0.00636 Y

ZDHHC5 1.07 × 10−5 0.00636 Y

ZNF750 1.07 × 10−5 0.00636 N

RPS15 1.85 × 10−5 0.0101 Y

ODF2L 2.70 × 10−5 0.0137 Y

SH3GLB2 2.81 × 10−5 0.0138 Y

HGS 3.63 × 10−5 0.0172 Y

MYL12A 4.15 × 10−5 0.0190 Y

ZDHHC3 4.57 × 10−5 0.0203 N

ASB3 4.79 × 10−5 0.0205 Y

MYADM 4.90 × 10−5 0.0205 Y

LOC104976804 5.56 × 10−5 0.0219 Y

LYPD2 5.45 × 10−5 0.0219 N

ASB2 5.90 × 10−5 0.0220 N

CBX2 5.75 × 10−5 0.0220 N

VARS 6.67 × 10−5 0.0237 Y

GLULP 7.17 × 10−5 0.0242 Y

RC3H1 7.02 × 10−5 0.0242 Y

HSPB1 7.77 × 10−5 0.0251 N

ZNF146 7.65 × 10−5 0.0251 N

LY6G6C 8.04 × 10−5 0.0254 N

CYP1B1 9.02 × 10−5 0.0272 N
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Table 1. Cont.

Gene Symbol PNominal PFDR Consistent LFC 1

PSMB5 9.26 × 10−5 0.0274 Y

ALPK1 9.87 × 10−5 0.0277 Y

DNM2 9.94 × 10−5 0.0277 N

PSMB6 9.56 × 10−5 0.0277 Y

B3GNT3 0.000119 0.0294 N

C1QBP 0.000117 0.0294 Y

NBEAL1 0.000120 0.0294 Y

SH3GL1 0.000110 0.0294 Y

IL1RN 0.000130 0.0312 N

TUBB 0.000135 0.0314 Y

SLC35D1 0.000149 0.0328 N

TMEM54 0.000152 0.0331 N

LOC104971374 0.000171 0.0357 N

CCDC66 0.000178 0.0367 N

MAN2B1 0.000189 0.0382 N

NDUFA9 0.000194 0.0382 Y

CFL1 0.000197 0.0383 Y

PIBF1 0.000199 0.0383 N

C7H5orf46 0.000208 0.0384 N

LOC100848030 0.000206 0.0384 N

YPEL3 0.000204 0.0384 N

MTERF2 0.000216 0.0392 N

FRK 0.000219 0.0394 Y

ATR 0.000239 0.0409 N

REXO5 0.000238 0.0409 N

RUVBL1 0.000251 0.0425 Y

LOC104973218 0.000257 0.0425 N

PRR5 0.000258 0.0425 Y

DNAJB1 0.000265 0.0432 N

MTAP 0.000274 0.0438 N

MAPK1 0.000278 0.0439 Y

TMSB10 0.000298 0.0461 N

UACA 0.000298 0.0461 Y

ARAF 0.000305 0.0465 N

DCUN1D4 0.000317 0.0465 Y

GABARAP 0.000315 0.0465 N

MALL 0.000318 0.0465 N

RGS5 0.000316 0.0465 Y

FAM107B 0.000335 0.0476 Y

LOC100139345 0.000345 0.0476 N

PNPT1 0.000346 0.0476 N
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Table 1. Cont.

Gene Symbol PNominal PFDR Consistent LFC 1

RWDD3 0.000334 0.0476 N

SNX15 0.000341 0.0476 N

ELF5 0.000354 0.0483 Y

S100A11 0.000360 0.0486 Y
1 Log2 FC (LFC) is considered consistent if the sign of the LFC is the same for both studies.

The robustness of results was assessed by examining the results of the per-study
differential expression analyses. Genes were considered robust if they were found to be
DEG in both or neither of the individual studies. This is the two-study equivalent to the
jackknife sensitivity test described in [8]. There were 12 and 119 DEG identified in the
U.S. and Canadian studies, respectively (Table S1A,B). Twenty of the DEG from the meta-
analysis were robust enough to pass the jackknife sensitivity test. The robust DEG, LYPD2,
ASB2, VARS, CYP1B1, ALPK1, B3GNT3, C1QBP, IL1RN, TUBB, NDUFA9, C7H5orf46, FRK,
REXO5, LOC104973218, ARAF, FAM107B, LOC100139345, RWDD3, SNX15, and S100A11,
were not significant in either of the individual studies. The DEG KAT2B was the only gene
with the same direction of expression that was significant at PADJ ≤ 0.1 in both populations
of animals. Figure S1 is a Venn diagram of the genes identified in each of the analyses.

Gene function analysis was performed using DAVID (Figure 4). The three biological
processes identified were cell–cell adhesion and negative regulation of interleukin-12 pro-
duction (Fisher PADJ < 0.05). Molecular functions included protein serine/threonine kinase
activity, cadherin binding involved in cell–cell adhesion, and GTPase activity (p < 0.05).
Pathway analysis was performed iPathway Guide (Figure 5, Table 2). iPathway Guide
identified 19 pathways over-represented in the list of DEG (Fisher PADJ < 0.05).
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Figure 5. Pathways identified by iPathway Guide as over-expressed from the list of differentially
expressed genes from the rumen tissue of two populations of steers with high and low RFI. Renal
cell carcinoma (yellow) is shown, using negative log of the accumulation and over-representation
p-values, along with the other most significant pathways. Pathways in red are significant based on
the combined uncorrected p-values, whereas the ones in black are non-significant (where applicable).

Table 2. Top pathways and their associated p-values identified by iPathway Guide as over-expressed
from the list of differentially expressed genes from the rumen tissue of two populations of steers with
high and low RFI.

Pathway #DEG 1 P Genes

Renal Cell Carcinoma 3 0.004 ARAF, EGLN3, MAPK1
Salmonella Infection 6 0.007 DNM2, MAPK1, MYL12A, RHOG, TUBA4A, TUBB

p53 Signaling Pathway 2 0.012 ATR, SESN3
Phagosome 4 0.012 ATP6AP1, HGS, TUBA4A, TUBB

Prion Disease 6 0.014 MAPK1, NDUFA9, PSMB5, PSMB6, TUBA4A, TUBB
Parkinson Disease 5 0.016 NDUFA9, PSMB5, PSMB6, TUBA4A, TUBB
Alzheimer Disease 5 0.017 ARAF, MAPK1, NDUFA9, PSMB5, PSMB6, TUBA4A, TUBB

Gap Junction 3 0.019 MAPK1, TUBA4A, TUBB
Pathways of

Neurodegeneration—Multiple
Diseases

7 0.019 ARAF, MAPK1, NDUFA9, PSMB5, PSMB6, TUBA4A, TUBB

Huntington Disease 5 0.022 NDUFA9, PSMB5, PSMB6, TUBA4A, TUBB
Bladder Cancer 2 0.023 ARAF, MAPK1, NDUFA9, PSMB5, PSMB6, TUBA4A, TUBB
Axon Guidance 3 0.028 CFL1, MAPK1, MYL12A

Serotonergic Synapse 2 0.029 ARAF, MAPK1
Regulation of Actin Cytoskeleton 4 0.031 ARAF, CFL1, MAPK1, MYL12A

Fc Gamma R-mediated Phagocytosis 3 0.039 CFL1, DNM2, MAPK1
Human T-cell Leukemia Virus 1

Infection 3 0.041 ATR, KAT2B, MAPK1

Amyotrophic Lateral Sclerosis 5 0.041 NDUFA9, PSMB5, PSMB6, TUBA4A, TUBB
Bacterial Invasion of Epithelial Cells 2 0.045 DNM2, RHOG

Parathyroid Hormone Synthesis,
Secretion and Action 2 0.047 ARAF, MAPK1

1 #DEG: Number of DEG identified in each pathway.

4. Discussion

This study is the first to integrate RNA-sequencing data from the rumen tissue of two
populations of animals from different countries with RFI phenotypes in a meta-analysis.
RNA-Seq experiments, especially those performed in livestock, are routinely performed on
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a small number of biological replicates due to the cost of library preparation and sequencing.
The limited power in these studies coupled with both technical and biological variability
between studies can lead to issues with reproducibility and cross-validation. Integrating
data across multiple experiments may enable the extraction of deeper biological insights
compared to that achieved through single-study analysis.

A study by Rau et al. [15] compared procedures for combining RNA-Seq data from
multiple related studies, including p-value combination techniques and a negative binomial
generalized linear model (GLM) with fixed study effect. The GLM with fixed study
effect performed well when inter-study variability was low but was outperformed by
p-value combination for moderate to large inter-study variability. PCA analysis of the
combined USA and Canadian populations (Figure 1) indicated a moderate level of inter-
study variability, with PC1 explaining 59.64% of the variation. For this reason, we chose to
utilize Fisher p-value combination in our meta-analysis.

As previously stated, an underlying assumption of Fisher’s method is that p-values
are uniformly distributed under the null hypothesis. We note that this was not the case
for either the U.S. or Canadian studies (Figure 3A,C), as we see peaks of p-values near 1,
which results from the discretization of p-values for lowly expressed genes. To remove
lowly expressed genes, contributing to these peaks, we used the approach proposed by
Rau et al. [16]. Removing genes with the HTSFilter package resulted in distributions of
raw p-values that appear to satisfy the uniformity assumption under the null hypothesis
(Figure 3B,D).

The purpose of this study was to identify genes differentially expressed in the rumen of
beef cattle associated with RFI that will be robust across the cattle industry for identification
or selection of more feed efficient animals. Some of the genes identified were previously
reported as differentially expressed in the Canadian population of animals [4]. These genes
included ATP6AP1, RHOG, S100A11, PSMB6, UACA, YPEL3, ZDHHC5, and TMEM54
among others. Discrepancies between the DEG found in the Canadian population in this
study and those reported in [4] were due to differences in technical protocol, including
mapping software (Tophat2 vs. Hisat2) and genome build (UMD3.1 vs. ARS-UCD1.2). This
is the first report of the RNA-sequencing data from the United States population of cattle.
Thus, no prior differentially expressed genes have been published.

The variation in gene expression values attributed to the study effect (Figure 1) under-
scores the importance of including animals from more than one study to obtain biologically
relevant data for complex traits. Validation of transcriptomic or proteomic data is likely to
produce poor reproducibility from study to study due to the large amount of biological
variation from sources that include breed, management, and environmental factors. Inte-
gration of data across multiple studies, via meta-analysis, can help identify more robust
differentially expressed genes.

Genes passing the jackknife sensitivity analysis, i.e., genes that were differentially
expressed in both or neither of the individual study analyses, can be considered highly
robust, as they are not dependent on just one study. Twenty of the DEG passed the
jackknife tests. Genes being driven by a single study in the meta-analysis (i.e., those failing
the jackknife test) represent potential false-positives or those whose differential expression
is driven by differences in environment or management. The addition of more studies to
the meta-analysis should efficiently remove those that are false findings by increasing the
number of large p-values in the multiplication performed in Fisher’s method, which will
increase the meta p-value.

There were 37 of the 83 DEG that were concordant in their direction of expression in
both populations of animals. Among these genes were PRR5, SESN3, PSMB5, and PSMB6
involved in TORC2 signaling and proteasomal ubiquitin-independent protein catabolic
biological processes. Protein turnover via mTOR and ubiquitin-proteosome pathways
have been previously identified as mechanisms involved in RFI in the rumen tissue of beef
cattle [18]. That these genes were identified in this study and displayed the same direction
of expression, with PRR5, PSMB5, and PSMB6 up-regulated and SESN3 down-regulated
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among the more feed efficient animals in both populations, suggests that these genes may
warrant further investigation into their functional roles in feed efficiency.

The KAT2B gene is the only gene that was significant in both populations after cor-
rection for multiple testing at p < 0.1 and also displayed the same direction of expression
in both populations. The KAT2B protein plays a role in the Notch signaling pathway.
Notch cell signaling occurs intercellularly between cells and is involved in apoptosis, cell
differentiation, and promoting and suppressing cell proliferation [19]. Widely recognized
for its role in early development, Notch signaling is also involved in the self-renewal of
adult tissues [19]. A previous study [20] established a role for notch signaling in the foregut
of mammals. In adult mice, the gastric epithelium or mucosa continually turns over and
renews the cells exposed to the stomach. Kim and Shivdasani [20] showed that notch
activation converts stomach epithelial cells into stem or multipotential progenitors that
repopulate the mucosa with all major cell types. Over-expression or continued activation of
notch signaling can allow the formation of dysplastic adenomas from the de-differentiated
progenitors, and the under-expression of notch impairs epithelial proliferation. Further-
more, Obata et al. identified Notch signaling to be key to intestinal immune homeostasis in
mice [21]. The pathway was identified as being involved in maintenance of cell turnover
and the interaction of colonic epithelium with microbes [21]. A study conducted on lac-
tating Holstein cows showed intentional interruption of the Notch signaling pathway to
reduce intestinal barrier function resulted in decreased feed intake and milk yield [22].
While this pathway was not identified in the meta-analysis, the gene KAT2B, which is
associated with this pathway, was identified as a DEG in both populations, and its direction
of expression was the same in both. The gene KAT2B was down-regulated in the rumen of
more feed efficient animals, suggesting the reduced turnover of rumen mucosal or papillae
cells when compared to the animals that were less efficient. A recent transcriptome study
of the liver in Jersey and Holstein cattle selected for RFI was designed to identify genetic
variants from expressed genes in RNA-sequencing data. A polymorphism in KAT2B, a gene
involved in the Notch signaling pathway, was identified that segregated with the same
RFI phenotypes in both breeds of cattle [23]. The identification of KAT2B genetic variant
associated with RFI, along with the correlation of KAT2B expression with RFI in this study,
suggest that KAT2B may be of particular importance for feed efficiency in cattle.

Two additional genes with roles in the Notch signaling pathway were also identified.
These were APH1B (p < 0.05) and BAG6, which displayed a trend toward significance
(p < 0.1). The APH1B gene encodes one of the four subunits of the γ-secretase complex.
APH1B plays an important role in the Notch signaling pathway because it stabilizes the
complex [24]. This study appears to be the first report of the involvement of APH1B in
feed efficiency in livestock. The BAG6 is involved in the Wnt/Hedgehog/Notch path-
way according to the PathCards pathway unification database. Both BAG6 and KAT2B
form complexes with p300, a histone acetyltransferase. KAT2B competes with E1A for
p300 binding. When KAT2B binds to p300, the complex activates transcription. BAG6
binds to the E1A/p300 complex and controls apoptosis in response to DNA damage. DNA
damage can occur because of intracellular metabolism, replication, or oxidative phosphory-
lation. Metabolic reactions can generate aldehydes or alkylating agents that cause DNA
adducts, and oxidative phosphorylation generates reactive oxygen species that can create
oxidative DNA damage. The upregulation of BAG6 among the more efficient animals
might suggest that they are better able to react to cellular damage.

The involvement of oxidative phosphorylation in feed efficiency has been reported in
many studies in swine, beef cattle and chickens [25–29]. The study presented here identi-
fied a gene involved in the electron transport chain, NDUFA9. This gene was nominally
significant and up-regulated among the feed efficient animals in both populations of steers.
Another study [30] identified two genes (UQCR10 and NDUFB4, p ≤ 0.07) involved in
oxidative phosphorylation up-regulated in the rumen tissue of bulls with high RFI. The
prior study by Kong et al. [4] used a weighted gene co-expression network analysis for
the Canadian steers to identify genes involved in oxidated phosphorylation that were
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up-regulated in the low RFI animals. Increased oxidative phosphorylation has also been
reported in the liver and muscle tissue of more efficient cattle [30,31]. It has been proposed
that the rumen tissue of more feed efficient animals has higher mitochondrial activity [4],
which could support the need for increased response to DNA damage.

The gene RHOG was also identified as differentially expressed in this study. The
expression of RHOG has been previously associated in the rumen tissue of beef cattle with
variation in body weight gain making it a compelling candidate for feed efficiency [32,33].
RHOG is located in a region of BTA15 that was associated with average daily gain (ADG) in
a GWAS on a large population of beef cattle from USMARC [32]. We have also previously
shown that RHOG expression was positively associated with ADG in two cohorts of beef
cattle [33]. RHOG is a small GTPase that functions as a molecular regulator involved in
signal transduction cascades and is part of a positive feedback loop for PI3K activation [34],
which is part of the Akt/mTOR signaling pathway. The Akt/mTOR signaling pathway is a
“master regulator” for protein synthesis [35]. Activated PI3K results in cell signaling for
protein synthesis. Previous work in pigs has shown that there is less protein degradation in
animals selected for low RFI and it was suggested that this may be a contributing factor to
the increased efficiency of these animals [36].

5. Conclusions

The meta-analysis of the rumen transcriptome of two unrelated and geographically
distant populations of Angus and Hereford crossbred steers in this study detected several
genes that may be involved in RFI. The identification of genes with a role in the Notch sig-
naling pathway (APH1B, BAG6, and KAT2B), protein turnover (PRR5, SESN3, PSMB5, and
PSMB6), and those that have been identified previously in other studies (RHOG, ATP6AP1,
and YPEL3) provides support for this pathway’s involvement in cattle feed efficiency.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12121514/s1, Supplementary Table S1—(A) US Population
(B) Canadian Population (C) Meta-analysis. Figure S1: Venn diagram illustrating the numbers of
differentially expressed genes identified in the United States population and Canadian populations
of steers, and those identified in the meta-analysis. Overlapping regions of the circles includes the
number of genes common to more than one analysis.
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