Characterization of the folate salvage enzyme
\(p \)-aminobenzoylglutamate hydrolase in plants

Gale G. Bozzo

University of Florida, gbozzo@uoguelph.ca

Gilles J. C. Basset

University of Nebraska-Lincoln, gbasset@ufl.edu

Valeria Naponelli

University of Florida, valina3@libero.it

Alexandre Noiriel

University of Florida, noiriel@ufl.edu

Jesse F. Gregory III

University of Florida, jfgy@ufl.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub

Part of the Plant Sciences Commons

Bozzo, Gale G.; Basset, Gilles J. C.; Naponelli, Valeria; Noiriel, Alexandre; Gregory, Jesse F. III; and Hanson, Andrew D., "Characterization of the folate salvage enzyme \(p \)-aminobenzoylglutamate hydrolase in plants" (2008). *Agronomy & Horticulture -- Faculty Publications*. 587.
https://digitalcommons.unl.edu/agronomyfacpub/587

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
1. Introduction

Tetrahydrofolate (THF) and its one-carbon derivatives (collectively termed folates) are essential cofactors for one-carbon transfer reactions. Folate molecules consist of pterin 4, p-aminobenzoate (pABA 7), and glutamate 6 moieties, usually with a short, γ-linked polyglutamyl tail attached to the first glutamate (Figure 1a). Plants, fungi, and bacteria can synthesize folates but higher animals cannot and so need a dietary supply (Cossins, 2000; Scott et al., 2000).

Folates readily undergo spontaneous oxidative degradation in physiological conditions, yielding a pterin 4 and p-aminobenzoylglutamate 5 (pABAGlu) or its polyglutamates (Figure 1a) (Suh et al., 2001). There is evidence that this breakdown process is particularly active in plants and that, in vivo, plants can hydrolyze the resulting pABAGlu 5 moieties to pABA 7 and glutamate 6 (Figure 1b) (Orsomando et al., 2006). Acting in concert with a reductive reaction that recycles the pterin fragment to a folate synthesis precursor, pABAGlu 5 hydrolysis enables complete salvage of folate 1 breakdown.

Characterization of the folate salvage enzyme
p-aminobenzoylglutamate hydrolase in plants

Gale G. Bozzo, Gilles J.C. Basset, Valeria Naponelli, Alexandre Noiriel, Jesse F. Gregory III, and Andrew D. Hanson

1. Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
2. Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA

Abstract

Folates break down in vivo to give pterin and p-aminobenzoylglutamate (pABAGlu) fragments, the latter usually having a polyglutamyl tail. Pilot studies have shown that plants can hydrolyze pABAGlu and its polyglutamates to p-aminobenzoate, a folate biosynthesis precursor. The enzymatic basis of this hydrolysis was further investigated. pABAGlu hydrolase activity was found in all species and organs tested; activity levels implied that the proteins responsible are very rare. The activity was located in cytosol/vacuole and mitochondrial fractions of pea (Pisum sativum L.) leaves, and column chromatography of the activity from Arabidopsis tissues indicated at least three peaks. A major activity peak from Arabidopsis roots was purified 86-fold by a three-column procedure; activity loss during purification exceeded 95%. Size exclusion chromatography gave a molecular mass of ~200 kDa. Partially purified preparations showed a pH optimum near 7.5, a K_m value for pABAGlu of 370 μM, and activity against folic acid. Activity was relatively insensitive to thiol and serine reagents, but was strongly inhibited by 8-hydroxyquinoline-5-sulfonic acid and stimulated by Mn^{2+}, pointing to a metalloenzyme. The Arabidopsis genome was searched for proteins similar to Pseudomonas carboxypeptidase G, which contains zinc and is the only enzyme yet confirmed to attack pABAGlu. The sole significant matches were auxin conjugate hydrolase family members and the At4g17830 protein. None was found to have significant pABAGlu hydrolase activity, suggesting that this activity resides in hitherto unrecognized enzymes. The finding that Arabidopsis has folate-hydrolyzing activity points to an enzymatic component of folate degradation in plants.

Keywords: Arabidopsis thaliana, Crucifereae, Folate salvage, Enzyme isolation and characterization, p-Aminobenzoylglutamate hydrolase, Folate hydrolase
products (Figure 1c). Although pABAGlu hydrodrolase activity was detected in extracts of Arabidopsis and pea (Pisum sativum L.) leaves and of tomato (Lycopersicon esculentum Mill.) fruit, nothing further is known about this enzyme (Orsomando et al., 2006).

Nor, with one exception, is much known about pABAGlu-hydrolyzing enzymes from other organisms. The only well-characterized protein known to hydrolyze pABAGlu is carboxypeptidase G (CPG, EC 3.4.17.11), a di-zinc enzyme from Pseudomonas and other bacteria (McCullough et al., 1971; Albrecht et al., 1978; Sherwood et al., 1985). CPG also cleaves the pABA-glutamate bond in folates and folate analogs, releasing pteroate 3 and glutamate 6 fragments, and can remove the γ-glutamyl tail from polyglutamates by exopeptidase action. The Pseudomonas enzyme has been cloned (Minton et al., 1983). Other than CPG, there is genetic evidence that the Escherichia coli abgA and abgB gene products (which share weak sequence similarity with CPG) have PGH activity (Hussein et al., 1998; Carter et al., 2007). In addition, microorganisms and mammals are known to have an enzyme that releases pteroate from folate (Oe et al., 1983); this enzyme has neither been tested with pABAGlu 5 as substrate nor the encoding gene cloned.

After an initial survey of PGH activity in diverse plants, we determined the subcellular location of PGH activity in pea leaves and fractionated and characterized the activity from Arabidopsis leaves and roots. We also screened all Arabidopsis proteins with significant sequence similarity to CPG for PGH activity.

2. Results and discussion

2.1. Survey of pABAGlu hydrolase activity

Desalted extracts of various plant tissues were surveyed for PGH activity using a radioassay based on product separation by TLC (see Section 4, assay B). This assay, which uses a subsaturating concentration of [14C] pABAGlu 5 (18–26 μM), is more sensitive and specific than that employed previously (Orsomando et al., 2006). PGH activity was readily detected in all tissues analyzed, which included those tested in a pilot study (Orsomando et al., 2006).

PGH activity was consistently higher in roots than in leaves, the difference ranging from 3- to 80-fold in Arabidopsis, pea, and maize (Zea mays L.) (Figure 2). It noteworthy that, for pea at least, this pattern is the inverse of that for folate biosynthesis enzymes, whose protein and RNA levels are about 5-fold lower in roots than in leaves (Jabrin et al., 2003). Roots from in vitro cultured Arabidopsis plantlets had less activity than those grown hydroponically but were easier to produce and had no microbial contaminants, and so were chosen for subsequent work on roots.

2.2. Subcellular distribution of pABAGlu hydrolase activity

PGH was localized by cellular fractionation and enzyme assay in pea leaves, which – while low in PGH activity – are the tissue of choice for obtaining high yields of intact organelles (Baldet et al., 1993) and have been much used in folate biochemistry (e.g., Chen et al., 1997; Jabrin et al., 2003). Marker enzyme assays confirmed that puri-
the folate salvage enzyme P-amino benzoyl glutamate hydrolase in plants

Fied chloroplasts and mitochondria were essentially uncontaminated by other fractions (Figure 3). PGH activity was detected in mitochondrial and cytosol plus vacuole fractions, but not in chloroplasts (Figure 3). Multiplying the specific activity of PGH in each fraction by the percentage of cellular protein present in that fraction indicated that 89% of the cellular activity is in the cytosol plus vacuole fraction (Table 1). The PGH activity of vacuolar preparations was not enriched relative to the cytosol/vacuole fraction, although the vacuolar marker α-mannosidase was enriched up to three-fold (not shown). This indicates that PGH is certainly not solely vacuolar but is possibly partially so. In any case, the occurrence of activity in two subcellular fractions signals the presence of at least two PGH isoforms.

2.3. Chromatographic separation of pABAGlu hydrolase activity

To further investigate PGH, activity from Arabidopsis leaves and roots was precipitated with (NH₄)₂SO₄ and separated by hydrophobic interaction (Octyl-Sepharose) followed by anion exchange (Mono Q) and gel filtration (Superdex 200) steps. The activity from both leaves and roots eluted at one broad peak from Octyl-Sepharose columns (not shown) and also from the Mono Q column, although a shoulder was sometimes evident in the Mono Q peak (Figures 4 & 5). Subsequent Superdex 200 fractionation yielded a single 200-kDa peak from roots, but three peaks from leaves, with estimated molecular masses of 90, 200, and 360 kDa (Figures 4 & 5). In some leaf preparations, an additional 40-kDa peak was also present (not shown). While consistent with the existence of various PGH isoforms (i.e., various gene products), these data could also be explained by oligomerization of a single protein.

Representative purifications from leaves and roots are summarized in Table 2. Overall purification was 268-fold from leaves and 86-fold from roots; activity was generally lost at each column step, and final activity re-

Figure 2. pABAGlu hydrolase activities in various plant tissues. [14C]pABA 7 production was measured by assay B, with [14C] pABAGlu 5 concentration of 18–26 μM. Pea (Ps), Arabidopsis (At) and maize (Zm) leaves were 9, 28, and 11-days-old, respectively. Pea, maize, Arabidopsis cultured roots (-c) and hydroponic (-h) roots were 10, 6, 23, and 48-days old, respectively. Tomato (Le) pericarp was in the mature green stage. Spinach (So) leaves were fully expanded. Values are the means of three replicates and SE. Note that the scale is logarithmic.

Figure 3. Localization of pABAGlu hydrolase activity in pea mesophyll cells by subcellular fractionation. Chloroplasts (CP) and mitochondria (M) were purified on Percoll gradients. A fraction enriched in cytosol and vacuole contents (CS) was prepared from pea leaf protoplasts by pelleting intact organelles. The specific activities of PGH and marker enzymes were assayed in each fraction. Markers were: NADP-linked glyceraldehyde-3-phosphate dehydrogenase (GAPDH, chloroplast), fumarase (mitochondrion), and methylenetetrahydrofolate reductase (MTHFR, cytosol). Data are the means and SE of data from three independent preparations of each fraction.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>PGH activity (fkat/mg)</th>
<th>Protein (% of cell total)</th>
<th>PGH distribution (% of cell total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytosol + vacuole</td>
<td>0.80</td>
<td>26</td>
<td>89</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>0.67</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Chloroplasts</td>
<td>0</td>
<td>70</td>
<td>0</td>
</tr>
</tbody>
</table>

a. Values taken from Figure 3.
b. Values from Jabrin et al. (2003).
recoveries were only 4–7%. SDS–PAGE analysis of the final products revealed many protein bands (not shown). Attempts at further purification by dye-affinity chromatography resulted in ≥90% loss of the remaining activity.

PGH enzymes are probably rare proteins, as the following theoretical calculation shows. Taking *Arabidopsis* PGHs to have the same specific activity as pure CPG (3.6–12 μkat/mg) (McCullough et al., 1971; Sherwood et al., 1985) and the activity in cultured roots (Figure 2), extrapolated to \(V_{\text{max}} \) (see below), as ~0.4 pkat/mg, then the predicted abundance of PGH proteins is \(\leq 1 \) in \(10^7 \).

2.4. Enzymatic properties of root pABAGlu hydrolase

As roots were richer in PGH activity than leaves (Figure 2) and gave one major peak on Superdex 200, characterization work was done mainly with root PGH using fractions from this peak.

![Figure 4. Elution profiles of *Arabidopsis* leaf pABAGlu hydrolase activity from Mono Q and Superdex 200 columns.](image)

![Figure 5. Elution profiles of *Arabidopsis* root pABAGlu hydrolase activity from Mono Q and Superdex 200 columns.](image)

Root PGH was optimally active at pH 7.3–7.5, with half-maximal activity at pH 6.5 and 8.3. Inhibitors were used to test whether the activity is due to a serine-, cysteine-, aspartic-, or metallohydrolase (Table 3). Activity was fairly insensitive to serine, cysteine, and aspartic reagents, but was inhibited totally by one of the metal chelators tested (8-hydroxyquinoline-5-sulfonate) and moderately (53%) by another (TPEN). Moreover, the root enzyme showed modest but significant stimulation by 0.1 mM Mn\(^{2+}\) (54%; \(P < 0.05 \)) but not by Zn\(^{2+}\) or Ni\(^{2+}\); Cu\(^{2+}\) and Hg\(^{2+}\) abolished activity. Taken together, these data point to a metalloenzyme. Compounds (1 mM) found to have little (≤24%) effect on activity were ascorbate, glutathione, β-mercaptoethanol, and ATP (not shown). DTT (1 mM) caused 53% inhibition.
The relation between velocity and pABAGlu concentration was Michaelian for the root enzyme (Figure 6), with an apparent K_m value of 370 ± 19 μM (mean ± SE of three determinations). Root PGH activity was inhibited by folic acid; measured at a pABAGlu concentration of 19 μM, the concentration of folic acid giving 50% inhibition (IC$_{50}$) was 52 ± 8 μM (mean ± SE of three determinations). In view of this observation, and because CPG cleaves folates as well as pABAGlu (McCullough et al., 1971), we tested folic acid as a substrate for the root enzyme preparation, using a TLC radioassay (Oe et al., 1983) similar to that used to measure pABAGlu hydrolysis. This assay indicated that folic acid was cleaved to pteroate (Figure 7a), which was confirmed by HPLC (Figure 7b). As the root enzyme preparation was not homogeneous, the activity against folic acid cannot necessarily be ascribed to the same protein(s) as PGH activity. This is, however, the most economical explanation.

The only enzyme certainly known to hydrolyze pABA-Glu is CPG (McCullough et al., 1971) although genetic evidence indicates that the E. coli AbgA and AbgB proteins, which are weakly similar to CPG, also do so (Hussein et al., 1998; Carter et al., 2007). As all three belong to the M20 metallopeptidase family, and our data implicated a metalloenzyme (Table 3), we searched the Arabidopsis genome for similar proteins. CPG, AbgA, and AbgB sequences gave significant matches only to auxin conjugate hydrolases (LeClere et al., 2002) and to the At4g17830 protein, a putative metallopeptidase. The auxin conjugate hydrolase family of Arabidopsis includes four Mn$^{2+}$-dependent proteins that cleave indole acetic acid-amino acid conjugates (ILL1, ILL2, ILR1, and IAR3) and two proteins (ILL3 and ILL6) whose substrate is unknown (LeClere et al., 2002).

Table 2. Purification of pABAGlu hydrolase from Arabidopsis leaves and roots

<table>
<thead>
<tr>
<th>Step</th>
<th>Total protein (mg)</th>
<th>Total activity (pkat)</th>
<th>Specific activity (pkat/mg)</th>
<th>Purification (fold)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude leaf extract</td>
<td>70</td>
<td>0.369</td>
<td>0.0053</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>(NH$_4$)$_2$SO$_4$ (50-80%)</td>
<td>13</td>
<td>0.063</td>
<td>0.0049</td>
<td>0.9</td>
<td>17</td>
</tr>
<tr>
<td>Octyl-Sepharose HiTrap</td>
<td>5.6</td>
<td>0.093</td>
<td>0.0174</td>
<td>3.3</td>
<td>25</td>
</tr>
<tr>
<td>Mono Q HR 5/5</td>
<td>0.35</td>
<td>0.051</td>
<td>0.146</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Superdex 200 HR 10/30</td>
<td>0.018</td>
<td>0.026</td>
<td>1.419</td>
<td>268</td>
<td>7</td>
</tr>
<tr>
<td>Roots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude root extract</td>
<td>92</td>
<td>5.07</td>
<td>0.055</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>(NH$_4$)$_2$SO$_4$ (0-80%)</td>
<td>87</td>
<td>6.74</td>
<td>0.089</td>
<td>1.6</td>
<td>133</td>
</tr>
<tr>
<td>Octyl-Sepharose 4 Fast Flow</td>
<td>5.1</td>
<td>1.58</td>
<td>0.309</td>
<td>5.6</td>
<td>31</td>
</tr>
<tr>
<td>Mono Q HR 5/5</td>
<td>0.38</td>
<td>0.42</td>
<td>1.12</td>
<td>20.2</td>
<td>8</td>
</tr>
<tr>
<td>Superdex 200 HR 10/30</td>
<td>0.045</td>
<td>0.21</td>
<td>4.77</td>
<td>86</td>
<td>4</td>
</tr>
</tbody>
</table>

a. About 30 g of leaves were used. Enzyme activity was measured using assay A and a [3H]pABAGlu concentration of 5 μM.

b. About 75 g of roots were used. Enzyme activity was measured using assay B and a [14C]pABAGlu concentration of 18.2 μM.

Table 3. Inhibitor sensitivity of pABAGlu hydrolase from Arabidopsis roots

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Target</th>
<th>Activitya (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA 1 mM</td>
<td>Metals</td>
<td>79</td>
</tr>
<tr>
<td>1,10-Phenanthroline 100 μM</td>
<td>Metals</td>
<td>75</td>
</tr>
<tr>
<td>TPENb 100 μM</td>
<td>Metals</td>
<td>47</td>
</tr>
<tr>
<td>8-Hydroxyquinoline-5-sulfonate 1 mM</td>
<td>Metals</td>
<td>0</td>
</tr>
<tr>
<td>Phenylmethylsulfonylfluoride 1 mM</td>
<td>Serine, cysteine</td>
<td>85</td>
</tr>
<tr>
<td>5,5’-Dithio-bis(2-nitrobenzoic acid) 1 mM</td>
<td>Cysteine</td>
<td>75</td>
</tr>
<tr>
<td>Pepstatin 1.5 μM</td>
<td>Aspartate</td>
<td>72</td>
</tr>
</tbody>
</table>

a. Control activity in the absence of inhibitor was 3.6–4.8 pkat/mg, measured at a [14C]pABAGlu concentration of 18.2–25.9 μM using assay B. Values are means of three determinations.

2.5. Carboxypeptidase G-like proteins in Arabidopsis

The only enzyme certainly known to hydrolyze pABAGlu is CPG (McCullough et al., 1971) although genetic evidence indicates that the E. coli AbgA and AbgB proteins, which are weakly similar to CPG, also do so (Hussein et al., 1998; Carter et al., 2007). As all three belong to the M20 metallopeptidase family, and our data implicated a metalloenzyme (Table 3), we searched the Arabidopsis genome for similar proteins. CPG, AbgA, and AbgB sequences gave significant matches only to auxin conjugate hydrolases (LeClere et al., 2002) and to the At4g17830 protein, a putative metallopeptidase. The auxin conjugate hydrolase family of Arabidopsis includes four Mn$^{2+}$-dependent proteins that cleave indole acetic acid-amino acid conjugates (ILL1, ILL2, ILR1, and IAR3) and two proteins (ILL3 and ILL6) whose substrate is unknown (LeClere et al., 2002).
The six members of the auxin conjugate hydrolase group and the At4g17830 protein were expressed in *E. coli* and tested for PGH activity. The former were expressed as GST fusions and purified using glutathione–agarose columns. At4g17830 was expressed with a C-terminal histidine tag and purified by Ni$^{2+}$ affinity chromatography. The IAA-alanine hydrolyzing activities of two of the most efficient auxin conjugate hydrolases – ILL2 and IAR3 – were used as positive controls, and were found to be similar to those previously reported (Davies et al., 1999; LeClere et al., 2002). Although all seven proteins were enriched to near-homogeneity, none of them had significant PGH activity; only ILR1 showed any trace of activity (Figure 8).

3. Concluding remarks

Our evidence is consistent with the pABAGlu hydrolase activity of both pea and *Arabidopsis* being due to two or more isoforms, at least one of which is a metalloenzyme and all of which are of low abundance. The existence of more than one isoform is presaged by the situation in *E. coli*, in which disrupting *abgA* or *abgB* does not much affect PGH activity (Hussein et al., 1998).

An obvious approach to identifying plant PGH genes – screening all *Arabidopsis* homologs of bacterial PGHs for activity – indicated that none of them is a PGH. From this it follows that plant proteins with PGH activity must be novel in the sense either that they are: (a) known enzymes not yet known to attack pABAGlu, or (b) proteins whose activity is so far unknown. The former possibility seems likelier, for two reasons. First, pABAGlu has never been tested as a substrate for most peptides, which are good candidates *a priori*. Second, the tyrosine-pABA bond in the synthetic peptide N-benzoyl-L-tyrosyl-pABA is cleaved by chymotrypsin (Yamato and Kinoshita, 1978). Given the failure of sequence homology to find plant proteins with PGH activity, this task clearly requires an approach that makes no prior assumptions about the nature of the enzymes, such as functional complementation screening in bacteria. The pilot studies of Hussein et al. (1998) on the *abgA* and *abgB* genes in *E. coli* suggest that this approach may be feasible.

Lastly, our finding that the enzyme preparation from *Arabidopsis* roots can cleave folates is not unprecedented inasmuch as CPG is known to do the same thing (McCullough et al., 1971). It nevertheless empha-
sizes an often-overlooked possibility, namely that folate breakdown is in part enzymatic – and hence subject to regulation – as well as merely chemical (Suh et al., 2001).

4. Experimental

4.1. Reagents

\[\text{Ring}^{14}\text{C}]pABA \text{ 7 (55 mCi/mmol), [3,5-3\text{H}]pABA \text{ 7 (26.2 Ci/mmol) and [3',5',7,9-3\text{H}]folic acid 1 (43.2 Ci/mmol)} \]

were from Moravek Biochemicals (Brea, CA, USA). \[^{14}\text{C} \]

pABAGlu 5 and \[^{3\text{H}}\text{pABAGlu 5} \]

were prepared as described (Orsomando et al., 2006). \[^{3\text{H}}\]Folic acid 1 was purified before use by folate affinity chromatography (Gregory and Toth, 1988). All protein chromatography columns were from GE Healthcare (Piscataway, NJ, USA).

4.2. Plant material

Arabidopsis thaliana (L.) Heynh. ecotype Columbia plants for leaf production were grown at 23–28 °C in 12-h days (photosynthetic photon flux density 80 μE m\(^{-2}\) s\(^{-1}\)) in potting soil irrigated with water. For root production, plants were grown hydroponically as described (Giorgi and Toth, 1988). All protein chromatography columns were from Moravek Biochemicals (Brea, CA, USA). \[\text{[3',5',7,9-3\text{H}]folic acid} \]

were from GE Healthcare (Piscataway, NJ, USA).

4.3. Subcellular fractionation of pea leaves

Mitochondria and chloroplasts were purified on Percoll gradients (Cline, 1986; Douce et al., 1987). A fraction enriched in cytosol plus vacuole contents, and vacuoles, were prepared from protoplasts (Orsomando et al., 2005). Protoplasts were purified on a three-step sucrose-sorbitol gradient as described (Baldet et al., 1993; Orsomando et al., 2005). Maize (Zea mays cv. NK508) leaves were from 11-day old plants grown in potting soil in a naturally lit greenhouse. Spinach (Spinacia oleracea) was purchased locally.

4.4. Hydrolease assays

For pABAGlu hydrolase, standard reaction mixtures (final volume 10 μL) contained 8 μL of KPi buffer, 50 mM, pH 7.4 or 8.0, 0.1–16 μg protein, 1 mM MnCl\(_2\), and either 10–14 nCi (182–259 pmol) of \[^{14}\text{C}]pABAGlu 5 \]

or 42–166 nCi (70–280 pmol) of \[^{3\text{H}}\text{pABAGlu 5} \]. Incubation was for 3–8 h at 30 °C. \[^{14}\text{C}]pABA \text{ 7 was separated either by EtOAc partitioning (Orsomando et al., 2006) (assay A) or by TLC (assay B). \[^{3\text{H}}\text{pABA} \text{ 7 was separated by the former procedure. In the latter, reactions were mixed with unlabeled pABA \text{ 7} \]

and pABAGlu 5 carriers (100 nmol each) and applied to 1-cm origins on 10-cm silica gel 60 F\(_{254}\) TLC plates (Merck, Darmstadt, Germany). After developing with EtOAc:MeOH:H\(_2\)O (77:13:10, v/v/v), the pABA zone (R\(_f\) 0.9) was scraped out for scintillation counting. \[^{14}\text{C}]\text{pABA 7 formation was linear with respect to time and amount of enzyme. Routine assays in this study used a subsaturating \[^{14}\text{C}]\text{pABAGlu 5 concentration, 4.5-fold less than that used previously (Orsomando et al., 2006); the activity values reported are consequently lower. Folate hydrolase activity was assayed by a TLC method (Oe et al., 1983) similar to assay B, using \[^{3\text{H}}\]Folic acid 1 as substrate and quantifying pteroate release. The identity of pteroate 3 was confirmed by HPLC with UV detection (300 nm) essentially as described (Diaz de la Garza et al., 2004). Apparent K\(_m\) values were determined from Hanes plots (Figure 6).

4.5. Protein extraction and purification

All steps were at 0–4 °C. Protein was estimated by the dye-binding method (Bradford, 1976). For tests of PGH activity in various plant sources, proteins were extracted and desalted as described (Orsomando et al., 2006). For protein purification, proteins were extracted from seven-week old Arabidopsis plants or roots from 25- to 28-day-old cultures were triturated in liquid N\(_2\) and suspended (1 g/2.5 mL) in 50 mM KPi, pH 8.0 containing 3% (w/v) polyvinylpolypyrrolidone. The brei was centrifuged (12,000g, 20 min) and filtered through Miracloth, with proteins fractionated by adding finely ground (NH\(_4\))\(_2\)SO\(_4\) to obtain the desired concentration (Table 2). After stirring for 30 min and centrifuging (13,000g, 20 min), the pellet was resuspended in 20 mL of 50 mM KPi, pH 8.0, 30% saturated with (NH\(_4\))\(_2\)SO\(_4\) (Buffer A).

For root proteins, the solution was applied to a 1.3 × 5.6 cm Octyl Sepharose 4 Fast Flow column equilibrated with Buffer A. The column was washed with Buffer A (2.5 mL/min) until the A\(_{280}\) of the effluent was <0.02. PGH activity was eluted (2.0 mL/min) with an 83.5-mL linear gradient (100%–0% Buffer A/0–100% KPi 50 mM, pH 8.0), collecting 2.5-mL fractions. Fractions with activity were pooled and desalted on PD-10 columns equilibrated with 50 mM KPi, pH 8.0. For leaf proteins, two 0.7 × 2.5 cm Octyl-Sepharose HiTrap columns were coupled and replaced the Fast Flow column.

Active fractions from the Octyl Sepharose step were loaded (0.5 mL/min) onto a Mono Q HR 5/5 column equilibrated with 50 mM KPi, pH 8.0, and the column was washed with this buffer until the A\(_{280}\) of the effluent fell to zero. PGH activity was eluted (0.5 mL/min) with a 9-mL linear gradient of 0–0.5 M KCl in 50 mM KPi, pH 8.0, collecting 0.3-mL fractions. Active fractions
were pooled and concentrated to 0.5 mL in a Centri-
con-10 (Millipore, Billerica, MA, USA).

The concentrate from the Mono Q step was applied
(0.25 mL/min) to a Superdex 200 HR 10/30 column
equilibrated with 50 mM KPi, pH 8.0 containing 50 mM
KCl, and eluted with the same buffer, collecting 0.4-
ml fractions. From roots, fractions making up the PGH
activity peak were pooled, concentrated to 0.28 mL,
brought to 10% (v/v) glycerol, frozen in liquid N₂, and
stored at −80 °C until use. To estimate native M₆, the Su-
perdex column was calibrated with carbonic anhydrase
(29 kDa), bovine albumin (66 kDa), alcohol dehydroge-
rase (150 kDa), α-amylase (200 kDa), apoferritin (443
dkDa), and bovine thyroglobulin (669 kDa).

4.6. Recombinant protein expression and purification

Constructs of cDNAs of the Arabidopsis auxin-conju-
gate hydrolase family (ILL1, ILL2, ILL3, ILL6, ILR1, and
IAR3) in pGEX-KTO (Davies et al., 1999; LeCler et al.,
2002) were from B. Bartel and R. Rampey (Rice Uni-
versity, Houston, TX, USA). pGEX-KTO is an expres-
sion vector in which the cloned protein is fused to the
C-terminus of glutathione S-transferase. The At4g17830
cDNA (obtained from the Arabidopsis Biological Re-
source Center, OH, USA) was modified by using splice
overlap extension PCR to ablate an internal NcoI site,
and the modified At4g17830 cDNA was cloned between
the NcoI and XhoI sites of pET28b (Novagen), which
adds a C-terminal hexahistidine tag. Constructs were
introduced into E. coli BL21-CodonPlus (DE3)-RIL cells
(Stratagene), which were grown at 37 °C in LB medium
until A₆00 reached 0.6. Temperature was then dropped
to 25 °C and isopropyl-D-thiogalactopyranoside was
added (final concentration 0.1 mM). Incubation was
continued for 3 h at the same temperature. Subsequent
procedures were at 0–4 °C. Cells from 50-mL cultures
were pelleted, resuspended in 2 mL of 50 mM Tris–HCl,
(pH 8.0, 0.1 mM MnCl₂, 0.01 mM ZnCl₂), and broken in
a Mini-BeadBeater (Biospec, Bartlesville, OK, USA). Ly-
sates were cleared by centrifugation (10,000 × g, 10 min),
desalted on PD10 columns equilibrated with 140 mM
NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄,
(pH 7.3. GST-fusion proteins were purified on GSH-aga-
rose resin and the histidine-tagged protein on Ni-NTA
agarose resin (Qiagen, Valencia, CA, USA) according
to the manufacturers’ recommendations. For extracts of
cells expressing ILL2 or IAR3, hydrolysis of indole ace-
tic acid-alanine was measured as described (LeCler et
al., 2002).

Acknowledgments – This work was supported in part by
National Science Foundation Grant No. MCB-0443709 and
by an endowment from the C. V. Griffin, Sr. Foundation. We
thank Bonnie Bartel and Rebekah Rampey for auxin conjugate
hydrolase cDNA expression constructs and for advice.

References

► A. M. Albrecht, E. Boldizsar and D. J. Hutchison, Carboxy-
peptidase displaying differential velocity in hydrolysis of
methotrexate, 5-methyltetrahydrofolic acid, and leucovor-

Baldet et al., 1993 ► P. Baldet, C. Alban, S. Axiotis and R.
Douce, Localization of free and bound biotin in cells from
67–73.

Bradford, 1976 ► M. M. Bradford, A rapid and sensitive
method for the quantitation of microgram quantities of

Carter et al., 2007 ► E. L. Carter, L. Jager, L. Gardner, C.
C. Hall, S. Willis and J. M. Green, Escherichia coli abg
genesis enable uptake and cleavage of the folate catabo-
3329–3334.

Chen et al., 1997 ► L. Chen, S. Y. Chan and E. A. Cossins,
Distribution of folate derivatives and enzymes for synthesis
of 10-formyltetrahydrofolate in cytosolic and mitochon-
299–309.

Cline, 1986 ► K. Cline, Import of proteins into chloroplasts.
Membrane integration of a thylakoid precursor protein
reconstituted into chloroplast lysates. J. Biol. Chem., 261

Cossins, 2000 ► E. A. Cossins, The fascinating world of fo-
691–708.

Davies et al., 1999 ► R. T. Davies, D. H. Goetz, J. Lasswell, M.
N. Anderson and B. Bartel, IAR3 encodes an auxin conjugate
365–376.

Díaz de la Garza et al., 2004 ► R. Díaz de la Garza, E. P.
Quin-livan, S. M. Klaus, G. J. Basset, J. F. Gregory and A. D. Han-
son, Folate biofortification in tomatoes by engineering the

Douce et al., 1987 ► R. Douce, J. Bourguignon, R. Brouquisse
and M. Neuburger, Isolation of plant mitochondria. Gen-
eral principles and criteria of integrity. Methods Enzymol.,

Gibeaut et al., 1997 ► D. M. Gibeaut, J. Hulett, G. R. Cramer
and J. R. Seemann, Maximal biomass of Arabidopsis thali-
ana using a simple, low-maintenance hydroponic method
and favorable environmental conditions. Plant Physiol., 115

Gregory and Toth, 1988 ► J. F. Gregory and J. P. Toth, Chem-
ical synthesis of deuterated folate monoglutamate and in
vivo assessment of urinary excretion of deuterated folates

Hussein et al., 1998 ► M. J. Hussein, J. M. Green and B. P.
Nichols, Characterization of mutations that allow p-ami-
 nobenzoyl-glutamate utilization by Escherichia coli. J. Bacte-

