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Abstract

Because coronary artery calcified plaques can hinder or eliminate stent deployment, interventional 

cardiologists need a better way to plan interventions, which might include one of the many 

methods for calcification modification (e.g., atherectomy). We are imaging calcifications with 

intravascular optical coherence tomography (IVOCT), which is the lone intravascular imaging 

technique with the ability to image the extent of a calcification, and using results to build 

vessel-specific finite element models for stent deployment. We applied methods to a large set of 

image data (>45 lesions and > 2,600 image frames) of calcified plaques, manually segmented by 

experts into calcified, lumen and “other” tissue classes. In optimization experiments, we evaluated 

anatomical (x, y) versus acquisition (r,θ) views, augmentation methods, and classification noise 

cleaning. Noisy semantic segmentations are cleaned by applying a conditional random field 

(CRF). We achieve an accuracy of 0.85 ± 0.04, 0.99 ± 0.01, and 0.97 ± 0.01, and F-score of 0.88 

± 0.07, 0.97 ± 0.01, and 0.91 ± 0.04 for calcified, lumen, and other tissues classes respectively 

across all folds following CRF noise cleaning. As a proof of concept, we applied our methods 

to cadaver heart experiments on highly calcified plaques. Following limited manual correction, 

we used our calcification segmentations to create a lesion-specific finite element model (FEM) 

and used it to predict direct stenting deployment at multiple pressure steps. FEM modeling of 

stent deployment captured many features found in the actual stent deployment (e.g., lumen shape, 

lumen area, and location and number of apposed stent struts).
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1. INTRODUCTION

When treating highly calcified coronary artery lesions with stents, interventional 

cardiologists, almost blindly and without established guidelines, make stressful treatment 

decisions that can lead to inadequate stent deployment and possible diminished outcomes, or 

even calamitous events. A cardiologist must choose between a normal sized angioplasty 

balloon; a smaller angioplasty balloons with high, prolonged pressures to fracture the 

calcification; direct stenting at very high pressures (up to 30 atm); a scoring or cutting 

balloon; or any one of a number of atherectomy devices. Detailed intravascular optical 

coherence tomography (IVOCT) evaluations of stent deployment show that without plaque 

modification, eccentric calcifications can lead to under deployment with malapposed struts 

and vessel dissections. The cardiologist’s choices can lead to deleterious consequences. 

Sub-optimal stent deployment can result in poor longer-term outcomes, a vessel can dissect, 

or more rarely, a balloon can rupture or an atherectomy device can perforate the wall. 

These challenges are particularly acute given that cardiologists make treatment decisions 

for calcified arteries on a daily basis. Calcifications are present in over 100,000 cases (17%

−35% of interventions) in the US per year, numbers that will rise with population aging and 

prolonged statin treatment.1

In this report, we outline steps in our new comprehensive program to assess the role of 

coronary calcifications in stent deployment. We develop and evaluate deep learning methods 

for segmentation of calcifications in a very large number (>2,600) of IVOCT image frames. 

We then demonstrate lesion-specific finite element analysis (FEA) of stent deployment in 

heavily calcified arteries. FEA results are compared to measured stent deployments in some 

elegant ex vivo experiments. With success, our research could lead to treatment planning 

software to support the interventional cardiologist.

2. METHODS

Image processing and learning techniques are applied to do semantic segmentation of pixels 

in IVOCT images as calcified plaque, lumen, or other. The deep learning model trained on 

the in vivo data is used to classify the images from the ex vivo experiment. The classified 

images is used to build the finite element model.

2.1 Preprocessing and Data Set Augmentation

Preprocessing steps are applied to the raw IVOCT images obtained in the polar (r, θ) 

domain. Image speckle is reduced by filtering with a normalized Gaussian kernel with a 

size of (7, 7) and standard deviation of 2.5 pixel. IVOCT (r, θ) images are scan converted 

to create (x, y) images for CNN processing. Data augmentation is used during training 

to provide more examples, improving model generalization. For anatomical (x, y) images, 
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we rotate the images with an angle picked randomly between −180 to +180. Images were 

resized from 1024 by 1024 pixels to 360 by 360 to reduce training time and computational 

cost. To augment (r, θ) images, we concatenate all the (r, θ) images into one big 2D array 

where θ repeats 0 to 360° many times. By changing an offset shift, we can resample new 

360° (r, θ) images. In practice, we shifted the starting A-line 5 times by increments of 

100 A-lines to create roughly 13,225 augmented images in this manner to supplement our 

original data sets that contains 2,646 images.

2.2 Deep Learning Model Architecture and Implementation Details

We chose SegNet2 as our network architecture. SegNet is an end-to-end hourglass shape 

encoder-decoder convolutional neural network which was trained on CamVid dataset. Each 

encoder/decoder convolution set consists of a convolution layer, a batch normalization layer 

and a rectified linear unit (ReLU) layer. All convolution layers are with filter size of 3, a 

stride of 1, and zero padding of size 1. This filter size was chosen to detect small features, 

including the edges of calcified plaques. The depth of the network was 5 to provide a 

receptive field of (360, 360) for the CNN.

A batch normalization layer normalizes each input x across a mini-batch. The layer first 

normalizes the activations of each channel by calculating the z-score. Activations are 

subtracted the mini-batch mean μ and subsequently divided by the mini-batch standard 

deviation σ.

xnew = x − μ
σ2 + ϵ

, (1)

where ϵ improves numerical stability when σ2 is very small. To allow for the possibility that 

inputs with zero mean and unit variance are not optimal for the layer that follows the batch 

normalization layer, the batch normalization layer further shifts and scales the activations as

y = αxnew + β, (2)

Here, the offset β and scale factor α are learnable parameters that are updated during 

network training.3

Convolutional and batch normalization layers are followed by a ReLU layer. A ReLU layer 

performs a threshold operation to each element, where any input value less than zero is set to 

zero,

f x = x, x ≥ 0
0, x < 0 (3)

A max pooling layer is inserted at the end of each encoder step. All max pooling layers had 

a pool size of 2 pixels and stride of 2 pixels. Max pooling channels transfer the maximum 

responses and their indices from the encoder to the decoder to identify corresponding 

locations while upsampling. The model will produce pixel wise probability scores for 
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pre-defined class labels (“Lumen”, “Calcified Plaque”, or “Other”) with the same size and 

resolution as the input image. The model is illustrated in Figure 1.

2.3 Segmentation Refinement Strategy

We use conditional random field (CRF) as post-processing step to refine the results from the 

deep learning model. A method to integrate network outputs to a fully connected CRF is 

described in Kamnitsas et al.4 The deep learning model gives a vector of class probabilities 

at each pixel location. The CRF uses these values, pixel intensities and corresponding spatial 

location information to generate crisp class labels. This process results in images with 

reduced noise as compared to simply performing a class-wise median filter operation over 

the image. The goal is to reduce noise by generating a new labeling that favors assigning the 

same label to pixels that are closer to each other spatially (both in x and y) using the scores 

generated by the neural network. For IVOCT images, the appearance kernel is inspired by 

the observation that nearby pixels with similar intensity are likely to be in the same class.

A CRF is an undirected graphical model that encodes a conditional distribution over the 

target variable Y given a set of the observed variable X. This method maximizes the 

distribution P(Y|X)), which is expressed as a Gibbs distribution over a random field. The 

fully connected CRF described in Krähenbühl et al.,5 computes the maximum a posteriori 

label by minimizing the energy function as follows:

E l = ∑
i

θi li + ∑
i < j

θi, j li, lj (4)

where l is a particular label assignment for all pixels in the image; θi(li) = − log P(li) is the 

unary potential, where P(li) is the probability estimate of label l at pixel i computed by the 

neural network; θi,j(li, lj) is the pairwise edge potential that connects all pixel pairs in the 

image i, j; and is defined as a linear combination of Gaussian kernels as shown below

θi, j li, lj = μ li, lj w1exp −
pi − pj 2

2σα2
− Ii − Ij

2

2σβ
2 + w2exp −

pi − pj 2

2σγ2
(5)

where the label compatibility function μ(li, lj) = 1 if li ≠ lj and zero otherwise; pi and pj refer 

to the spatial positions of pixels i and j, Ii and Ij indicate the intensity vectors of pixels i and 

j; w1 and w2 are weights of the appearance and smoothness terms, respectively; and σα, σβ, 

and σγ control the degree of interaction either in the spatial or intensity dimensions.

The message passing step within the iterative update scheme can be expressed as a 

Gaussian filtering rendering the algorithm computationally efficient. All free parameters 

are determined empirically: the size of the smoothness kernels, weights of the smoothness 

and appearance kernel, and the number of iterations. Overall, for each pixel in the (x, 

y) classification view, the CRF takes in probability estimates of each class as input and 

outputs its final class ownership. Similar processing was performed when network training 

experiments were performed on the (r, θ) images as well.
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2.4 Finite Element Model

We constructed lesion-specific finite element models from IVOCT images. To create a 

finite element mesh, there were several steps. They are: (1) Process images using the 

semantic segmentation deep learning as above. (2) Manually correct labels if necessary. (3) 

Reconstruct the surface from segmentation results by computing a triangular approximation 

of the interfaces between different materials. (4) Smooth the generated surfaces to eliminate 

any staircase-like surfaces. (5) Generate the FEM mesh where the volume enclosed by 

the generated surface is filled with tetrahedra, using Amira software 6.5 (Thermo Fisher 

Scientific, Waltham, MA, USA).

Other details of finite element modeling follow. Material properties were determined by 

fitting results to our measurements at different pressures. All tissues were considered as 

hyperelastic isotropic materials with different parameters. A stent model was created from 

detailed characteristics of a Express stent, having a nominal diameter of 3 mm and length 

of 18mm. Considering the physiological environment in the body and the stenting process, 

symmetric constraints were applied to both ends of the artery.6

3. EXPERIMENTAL METHODS

3.1 Ex-vivo experimental data

All ex vivo hearts were first CT scanned to choose a good candidate that has large deposits 

of calcium. Percutaneous Coronary Intervention (PCI) was performed using an 8-Fr guiding 

catheter. We deploy a 3.0 mm diameter stent (Xience Sierra (3.0 mm diameter, 18 mm long), 

Abbott Vascular, Santa Clara, CA) using a non-compliant balloon dilated to its nominal 

pressure. This was followed by post dilations at 3.5, 4.0 and 4.5 mm, each at the following 

balloon pressures: 10, 20, and 30 atm. Maximal balloon pressure and maximal balloon size 

are recorded. IVOCT was performed after stent implantation. All IVOCT was performed as 

FD-OCT (C7 or C8 XR Imaging System; St. Jude Medical, St. Paul, MN, USA). A 2.7-Fr 

IVOCT catheter (Dragonfly or Dragonfly JP; St. Jude Medical) was advanced distal to the 

lesion, and automated pullback was performed with contrast injection through the guiding 

catheter. IVOCT images were recorded and analyzed using the IVOCT console.

3.2 In vivo training data

Our in vivo training data involves 34 clinical pullbacks from 34 patients with a total of 48 

lesions. The average number of images per lesion is 55 images. The dataset has 15 calcified 

lesions (941 images), 27 lipid lesions (1349 images) and 6 mixed lesions (356 images) with 

both calcium and lipid. All pull-backs were imaged prior to an interventional procedure. 

The in vivo IVOCT images were acquired using a frequency domain IVOCT system using 

Illumien Optis (St. Jude Medical, St. Paul, Minnesota). The system comprises of a tunable 

laser light source sweeping from 1250 nm to 1360 nm. The system was operated at a frame 

rate of 180 fps, at a pullback speed of 36 mm/sec, and has an axial resolution around 20 μm. 

The pullbacks were analyzed by two expert readers in the cartesian (x, y) view. In all, a total 

of 2,646 image frames were analyzed across 34 pullbacks. Labels from (x, y) images were 

converted back to the polar (r, θ) system for polar data set training.7 All in vivo images were 
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used to train, validate and test the deep learning model that used to classify images from the 

ex-vivo dataset to build the finite element model.

To determine the ground truth labels, we relied on the definitions given in the consensus 

document.8 Calcified plaque is seen as a signal poor region with sharply delineated front 

and/or back borders in IVOCT images. An additional class “other” was used to include all 

pixels which could not be labeled into lumen or calcified plaque. Example annotation is 

shown in Figure 2.

3.3 Network Training and Testing

A ten-fold cross-validation procedure was used to measure classifier performance. Each 

lesion was considered as a volume of interest (VOI). We assigned roughly 80% of the VOIs 

for training; 10% for validation, and 10% for testing. The VOIs were rotated until all VOIs 

were in the test set once. We ensure that in each fold that there was no lesion overlap across 

training, validation, and test sets. Mean and standard error of classification accuracy over the 

ten folds was recorded.

Predefined classes in our data set are not balanced in sense of number of pixels. We use class 

weighting to balance the classes as in Eigen et al.9 The median frequency of appearance of 

classes computed on the entire training set. The weight assigned to each class in the loss 

function is the ratio of the median frequency of appearance to the frequency of appearance 

for each class.

There were several issues associated with training. The network was trained using Adam 

optimizer11 with weight decay of 10−3. We avoid overfitting by adding a regularization term 

for the weights to the loss function. The optimal network parameters were selected based on 

the categorical cross entropy error. A mini-batch size of 4 images is used to manage memory 

requirements during training. We set the maximum number of epochs to 120. Training was 

stopped when the loss on the validation dataset did not improve by more than 0.01% for 10 

consecutive epochs or when the network was trained for 120 epochs, whichever occurred 

first. The model with the least validation loss during training was saved and was used 

to make predictions on the test set. Finally, we post-processed each image with a CRF 

algorithm to reduce classification noise.

Images preprocessing and deep learning model were performed using MATLAB 2017b 

(MathWorks Inc., Natick, MA) environment. The execution of the network was performed 

on a Linux-based Intel Xeon Processors x86_64 (x86_64 indicates Intel Xeon 64-bit 

platform; architecture based on Intel 8086 CPU) with a CUDA-capable NVIDIA™ Tesla 

P100 16GB GPU.

4. RESULTS

4.1 Deep learning semantic segmentation

Preprocessing and data augmentation steps are shown in Figure 3. All images are shown 

after log compression for improved visualization.
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We determined the role of different algorithms on classification performance. First, training 

the model on (r, θ) data tended to have a higher classification accuracy than training on (x, 

y) data over every class (Table 1). Second, it was highly desirable to clean the pixel wise 

classification from all model networks. Following noise cleaning, the classification results 

compared favorably with the annotated labels. We optimized CRF parameters in an ad hoc 

fashion. We also found that the (x, y) model had higher error rate as compared to the (r, 

θ) across all folds. As shown by the classification results in Table. 1, both (r, θ) and (x, 

y) models perform well, but close examination showed that the (r, θ) model agreed more 

favorably to the annotated labels.

To estimate the accuracy of deep learning prediction in identifying calcified plaque in 

IVOCT images during the testing process, accuracy and dice coefficient were computed 

against manual segmentation for each class. Table 1 shows the confusion matrix for both (x, 

y) and (r, θ) views while Table 2 shows the performance of the model based in the (r, θ) data 

set before and after noise cleaning.

We also made visual assessments. The qualitative results show the ability of the proposed 

model to classify smallest class in IVOCT images, i.e. calcium plaque, while producing 

a smooth segmentation of the overall image. The weights that produced the highest 

accuracy were used for comparison against manual segmentations in a held-out test set. 

For visual inspection, we display an image frame, with the annotated ground truth image, 

our prediction output and the prediction after refinement process. The red shaded area is 

the lumen area while the blue is the calcified plaques. Deep learning classifications for 

lumen were similar to those obtained from manual segmentation, and the results were 

consistent for all testing sets. Overall, calcified plaques were well captured. Knowledge 

of the lumen region serves as the basis for calcifications quantification. Demarcation 

of the vessel lumen in IVOCT images quantitates the luminal cross-sectional area and 

assess the stenosis severity. Using IVOCT, it was shown that circumferential extent of 

calcification is a predictor of stent strut malapposition. All predicted images for all training 

sets were compared with their corresponding manual segmentation. Example deep learning 

segmentations of lumen and calcified plaque were compared with ground truth manual 

segmentations from the held out test set are shown in Figure 4.

4.2 Demonstration of FEA of stent deployment in a heavily calcified artery

The performance of the finite element model was measured by comparing the lumen area 

from the IVOCT experiment in different pressure and balloon sizes steps and the predicted 

lumen area from the FEM. Figure 5 shows FEM predictions as compared to actual lumen 

area from IVOCT measurements. Stent strut malapposition is another point of interest. The 

FEM was able to predict the location of malapposition. Figure 6 shows the malapposition 

from the IVOCT image and the prediction from the finite element model. FEM was able to 

predict that the malapposition will happen in the region close to the calcified plaque. The 

FEM results agree well with the measurement from the IVOCT images.

Gharaibeh et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. DISCUSSION

In this paper, we demonstrated the ability to segment calcifications using deep learning, and 

to create lesion-specific finite element models from the segmentations. This research is part 

of a project to provide interventional cardiologists with information and tools to better plan 

stent interventions in the presence of highly calcified plaques.

CNN semantic segmentation worked significantly better on data arranged in (r, θ) arrays 

than in (x, y) arrays (Table 1). There are multiple potential reasons. First, when one 

reformats data into an (x, y) array, there is increasing interpolation as one goes out from the 

catheter center. This is not the case in (r, θ) arrays. This interpolation effect could negatively 

affect the success of local kernels. Second, the (r, θ) data representation was amenable to 

an elegant data augmentation scheme as described in Methods, allowing us to create heavily 

augmented data. Third, we were able to process the (r, θ) images at full resolution, but had 

to downsample the (x, y) images in order to train the Segnet model. This could have affected 

the ability of the CNN to recognize features such as the sharp edges at calcifications.

Predictions from the FEM were compared with the results from the ex vivo experiment. 

Lumen gain and malapposition were investigated at different cross sections of the model 

at different pressures and balloon sizes. Calcified plaque caused malapposition of the stent 

strut (Figure 6). The prediction from the FEM has a good match to what we have from 

the ex vivo experiment. The lumen area that the FEM predicted is lesser than the IVOCT 

measurement (around 10%) as in Figure 5. There could be several reasons for this result. 

First, a single mechanical model for all tissues which are not calcified plaque was used. 

Second, the balloon was modeled as a cylindrical tube, whereas the one used in the ex vivo 

experiment was a tri-folded balloon. Third, the frictions between the balloon and stent were 

not considered in the model. The material properties of artery and plaque components could 

be improved to be nonhomogeneous, anisotropic, and time dependent.

Further work will involve conducting additional ex vivo experiments using varieties of 

stent models and sizes, different balloon sizes, different pressure steps, and tuning the 

segmentation algorithm and the FEM parameters to give more clinically matched results. 

Results are promising, and encourage us to continue our efforts towards creating methods to 

aid pre-stent planning.
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Figure 1. 
Deep Learning Model Architecture. Each Convolution Set consists of a convolution layer, 

batch normalization layer, and rectification layer. The arrows between the encoder and 

decoder layer are the pool indices channels. In the output labeled image, the shaded red area 

is the lumen and the blue one is the calcified plaque
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Figure 2. 
Example IVOCT images with lumen and calcified plaque labels. (A) Calcified plaque is seen 

as a signal poor region with sharply delineated front (yellow arrow) and/or back borders 

(blue arrow) in IVOCT images (B) Manual labeling of the IVOCT image. The color code 

is: red (lumen) and blue (calcified plaque). Labels were created by consensus between two 

expert IVOCT readers.
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Figure 3. 
(r, θ) data set augmentation. (A) Images from the original data set. (B) Concatenating the 

images vertically to form one big image. (C) Cropping the big image in (B) using a sliding 

window but with 100 A-lines off of the starting point as the beginning of the big image
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Figure 4. 
Segmentation Results. Two examples of automated calcium segmentation. A) Raw IVOCT 

Image. B) Ground Truth. C) Automatic segmentation.
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Figure 5. 
A comparison between lumen area measured from the IVOCT images and the prediction 

from the FEM model measured in different pressure steps and different balloon sizes.
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Figure 6. 
A is the IVOCT image where the arrow indicates the malapposition. FEM Prediction of 

malapposition in B for the same frame. Calcified plaque defined as an orange arc in the 

IVOCT image and a gray area in the FEM.
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Table 1.

Comparison of classification results between (x, y) and (r, θ) data sets. Results where classification is 

performed on (x, y) data are shown in A. Results for (r, θ) data are shown in B. Numbers in brackets indicate 

the mean and standard deviation (in percentage) across all folds. Model trained on (r, θ) data gives higher 

accuracy when detecting calcified plaques by ~3%. Also the percentage of misclassified other tissues as 

calcified plaque is lowered by half (from 3.3% to 1.75%).

A

Predicted “Other” Predicted “Lumen” Predicted “Calcified Plaque”

True “Other” 14,208,138 (95.18 ± 2.83) 220,241 (1.485 ± 1.23) 493,874 (3.333 ± 2.08)

True “Lumen” 17,574 (1.54 ± 2.48) 1,112,913 (98.03 ± 2.42) 4,768 (0.4214 ± 0.54)

True “Calcified Plaque” 32,154 (13.76 ± 6.96) 7,817 (3.345 ±2.40) 193,697 (82.89 ± 6.81)

B

Predicted “Other” Predicted “Lumen” Predicted “Calcified Plaque”

True “Other” 87,966,274 (97.62 ± 1.47) 560,685 (0.62 ± 0.55) 1,582,785 (1.75 ± 1.09)

True “Lumen” 167,637 (0.56 ± 0.60) 29,536,981 (99.42 ± 1.05) 4,076 (0.01 ± 0.02)

True “Calcified Plaque” 466,286 (14.50 ± 7.33) 7,101 (0.22 ± 0.23) 2,741,775 (85.27 ± 4.82)
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Table 2.

Accuracy and Dice coefficient calculated before (A) and after (B) classification noise cleaning. Accuracy for 

Calcified Plaque improved by 3% and the Dice coefficient more than 30%. Table contains results for (r, θ) data 

only.

A B

Accuracy Dice coefficient Accuracy Dice coefficient

Other 0.94 0.97 Other 0.98 0.98

Lumen 0.99 0.98 Lumen 0.99 0.98

Calcified 0.82 0.42 Calcified 0.85 0.73
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