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Combined analysis of soil moisture measurements
from roving and fixed cosmic ray neutron probes
for multiscale real-time monitoring
Trenton E. Franz1, Tiejun Wang1, William Avery1, Catherine Finkenbiner1, and Luca Brocca2

1School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska, USA, 2Istituto di Ricerca per la Protezione
Idrogeologica, Perugia, Italy

Abstract Soil moisture partly controls land-atmosphere mass and energy exchanges and ecohydrological
processes in natural and agricultural systems. Thus, many models and remote sensing products continue
to improve their spatiotemporal resolution of soil moisture, with some land surface models reaching 1 km
resolution. However, the reliability and accuracy of both modeled and remotely sensed soil moisture
require comparison with ground measurements at the appropriate spatiotemporal scales. One promising
technique is the cosmic ray neutron probe. Here we further assess the suitability of this technique for
real-time monitoring across a large area by combining data from three fixed probes and roving surveys
over a 12 km×12 km area in eastern Nebraska. Regression analyses indicated linear relationships between
the fixed probe averages and roving estimates of soil moisture for each grid cell, allowing us to derive an
8h product at spatial resolutions of 1, 3, and 12 km, with root-mean-square error of 3%, 1.8%, and 0.9%.

1. Introduction

Knowledge of soil moisture fields is critical for understanding the exchange of mass between the land
surface and atmosphere and thus the link between soil moisture state and planetary boundary layer
regime, clouds, and precipitation [Santanello et al., 2011]. With the continued refinement of land
surface models (LSM) to grid sizes less than 1 km [Wood et al., 2011], there remains a significant scale
gap [Ochsner et al., 2013] between available point sensor networks (i.e., Soil Climate Analysis Network,
High Plains Regional Climate Center, and Oklahoma Mesonet [Ford and Quiring, 2014]) and remote
sensing products from satellites (i.e., SMOS and SMAP [Crow et al., 2012]). Such information is essential
for model calibration and validation as well as specifying the initial conditions for data assimilation and
weather forecasting.

Accurate estimates of soil moisture fields at 1 km resolution have until recently been difficult to obtain
[Chrisman and Zreda, 2013]. The cosmic ray neutron probe (CRNP) offers a new spatial scale to observe
how soil moisture fields are structured given its support area of ~0.28 km2 [Desilets and Zreda, 2013],
effective penetration depth of ~10 to 40 cm [Franz et al., 2012], and roving capabilities [Dong et al.,
2014]. Given the fractal nature of soil moisture fields [Rodriguez-Iturbe et al., 1995], combining this new
observation scale with existing point and remote sensing products has the potential to provide further
insight into deriving any scale invariant relationships that may exist, as well as key statistical moments
of soil moisture fields at LSM grid resolutions. Moreover, an a priori estimate of the temporal and
spatial soil moisture covariance matrices at different averaging scales will be invaluable for statistical
downscaling procedures [Wood et al., 2004] of remotely sensed soil moisture products.

Using basic statistical approaches, we combine data from three fixed CRNP and 22 rover surveys over a
12 km×12 km area between May and September 2014 in eastern Nebraska, where the predominant
land use is agriculture. The goal of this work was to lay the foundation for the design of cost-effective
real-time soil moisture monitoring networks that fill in the gap between point sensors and remote
sensing products. Using the observations, we derive statistical relationships for the entire study area
with grid resolutions of 1, 3, and 12 km, allowing us to construct a real-time proximal sensing
monitoring network. In this work, we will describe the soil moisture network design within the study
area, processing of fixed and roving cosmic ray neutron data in agricultural settings, the spatiotemporal
statistics of the observed soil moisture fields, and the spatial regression procedure using data merging.
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2. Study Area

A soil moisture-monitoring network was set up over a 12 km×12 km area around Waco, NE, USA (center of
the study area 40.8976°N, 97.4604°W; Figure 1a). Because of the intense agricultural production, the study
area contains a square lattice of paved and gravel roads at 1.6 km spacing (Figure 1b), making the location
an ideal setting for roving CRNP surveys from a vehicle. The land use in the study area is a mixture of built
up urban areas (1.26%), natural wetlands (8.03%), and irrigated maize (51.82%), and irrigated soybean
(38.89%), partitioned by quarter section areas or smaller (Figure 1b). The dominant form of irrigation is
with center-pivot sprinklers. Given the available growing season rainfall in the study area, seasonal
irrigation is often supplemental with the highest use periods beginning in early July and continuing
through August. The 2014 growing season (May to September) was a relatively wet year (772mm between
April 20 and September 20, data available from the High Plains Regional Climate Center at York, NE) with
widespread irrigation only occurring between late July and mid-August with a total applied irrigation
depth of 94mm for the irrigated maize site and 82.6mm for the irrigated soybean site occurring over five
and four center-pivot passes, respectively (Chase Johnson, personal communication, 2014).

3. Sampling and Network Design

Three fixed CRNP (model #CRS 2000/B from Hydroinnova LLC, Albuequerque, NM USA) were set up in late
April 2014 at an irrigated maize field (40.9482°N, 97.4875°W), an irrigated soybean field (40.9338°N,
97.4587°W), and a rainfed mixed maize and soybean field (40.8899°N, 97.4586°W) within the study area
(Figure 1a). At each site, hourly values of moderated neutron counts, air pressure, air temperature, and

Figure 1. (a) Location of the 12 km× 12 km study area (defined by yellow pins) in eastern Nebraska and the three fixed
CRNP in irrigated maize, irrigated soybean, and rainfed mixed. (b) The 2014 land cover map classifying the study area
into four categories and illustrating the 1.6 km network of gravel and paved roadways.
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relative humidity were recorded for processing [Zreda et al., 2012]. Over the course of the growing season, 11
calibration data sets (5 at each of the two irrigated sites and 1 at the rainfed site) were collected for variables
of area average gravimetric water content, soil bulk density, soil lattice water, soil organic carbon, wet
aboveground biomass, and dry aboveground biomass following established protocols [Zreda et al., 2012],
see Figure 2 and Table S1 in the supporting information for full data sets. Calibration sampling duration
took between 2 and 4 h to complete on each sampling day.

Between 29 April and 16 September 2014, 22 mobile CRNP surveys were collected across the study site. The
cosmic ray rover is composed of eight specially designed extra long (~1.8m as compared to ~0.9m) CRS
2000/B tube capsules and has counting rates are approximately 11 times greater than the original CRS
2000/B model, allowing for 1min level measurements with sufficiently low uncertainty (~350 c/min with an
uncertainty of~ 5%). The eight capsules are mounted on a custom vibration-minimizing frame, which is
bolted to the bed of a vehicle. Air temperature, air pressure, relative humidity, and location (with an accuracy
of <10m) were also recorded at 1min intervals. During a rover survey, the vehicle was driven at a maximum
speed of 0.8 km/min (i.e., in order to have a reasonable density of grid points for spatial interpolation to
~1 km), first in a north-south boustrophedonic pattern, then followed by an east-west survey, see Figures 3a
and 3b for example survey points and spatially interpolated neutron count fields. Given the use of heavy
equipment and routine maintenance of gravel roads, road closures often occurred requiring the vehicle to
double-back and/or periodically skip certain sections. In general, rover surveys took between 4 and 6h to
complete resulting in between 240 and 360 neutron count observation points. Start times of the surveys
varied between 9 A.M. and noon local time. Because of the required time to collect a rover survey (4h) and
calibration data set (2–4h), all statistically derived data products have a time resolution of 8 h. Future work
may be able to further reduce the temporal resolution of the data products.

4. Cosmic Ray Neutron Data Processing for Soil Moisture Estimation

Fixed and roving moderated neutron counts were first corrected for location (i.e., neutron scaling factor),
incoming high-energy particles, atmospheric pressure, and absolute humidity following established

Figure 2. (a) Comparison of soil water content from the three fixed CRNP (green, red, and blue lines) and average from the
22 CRNP rover surveys (black dots) betweenMay and September 2014. Gravimetric estimates from calibration data sets are
also shown (black diamonds, black stars, and black square). All data sets are provided in Tables S1, S2, S3, and S6 in the
supporting information. (b) Time series of rainfall and irrigation water inputs.

Geophysical Research Letters 10.1002/2015GL063963
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protocols [Zreda et al., 2012]. The corrected neutron counts were then converted to volumetric pore water
content using the calibration function originally proposed by [Desilets et al., 2010] and further modified by
[Bogena et al., 2013]. The calibration function is given by

θp þ θLW þ θSOCeq
� � ¼ 0:0808

N
N0 f BWEð Þ½ � � 0:372

� 0:115 (1)

where θp is pore water content (g/g), θLW is lattice water content (g/g), θSOCeq is soil organic carbon water
content equivalent (g/g), N is the corrected neutron counts per time interval (cph or cpm), N0 is a specific
calibrated parameter that represents the count rate over dry silica soils (cph or cpm) and is a function of BWE,
and BWE is the biomass water equivalent (mm). We note that soil water content (SWC) = volumetric water
content and that SWC ¼ θp*

ρb
ρw

cm3=cm3ð Þ, where ρb is the dry soil bulk density (g/cm3), ρw is the density of
water (=1 g/cm3), and we report here the SWC on a percent volume basis for convenience of units. Soil
organic carbon water content equivalent is estimated from on-site soil chemistry sampling as

θSOCeq ¼ TC� TICð Þ*1:724*fWE (2)

where TC is the soil total carbon (g/g), TIC is the inorganic carbon determined by measuring CO2 after the
sample is acidified (g/g), 1.724 is a constant to convert total organic carbon into total organic matter, and
fWE = 0.494 is the stoichiometric ratio of H2O to organic carbon (assuming organic carbon is cellulose
C6H10O5) [Nelson and Sommers, 1996].

From the calibration data sets, we found that a linear function can be used to describe the dependence of
changing biomass on N0 for both maize and soybean. In addition, we choose here to provide a scaled

Figure 3. (a and b) Neutron count field and corresponding (c and d) soil water content for a rainfed (Figures 3a and 3c) and
irrigated period (Figures 3b and 3d). The black dots correspond to measurement locations. Rover data sets are provided in
Table S6 in the supporting information.

Geophysical Research Letters 10.1002/2015GL063963
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relationship to the rover observations in order to remove any sensor to sensor bias that may exist [McJannet
et al., 2014]. We correct for variations between instruments and for changes in BWE by scaling the fixed probe
observations against the rover:

N0;F BWEð Þ ¼ N0;F 0ð Þ mR

N0;R 0ð Þ BWEþ 1

� �
(3)

where N0,F(0) is the fixed probe estimate of N0 with no standing biomass, N0,R(0) is the rover estimate of N0

with no standing biomass, andmR is the slope of the relationship betweenN0 and BWE from the rover surveys
and calibration data sets. We note that for the rover survey points, N0,F(0) =N0,R(0), further simplifying
equation (3). The BWE was found from the calibration sampling as

BWE ¼ SWB� SDBþ SDB*fWE (4)

where SWB is the standing wet biomass per unit area (kg/m2 ~mm of water/m2) and SDB is the standing dry
biomass per unit area (kg/m2 ~mm of water/m2) found by ovendrying samples at 70°C for 5 days. From the
available calibration data sets, we found that the rover had a statistically significant linear relationship
yielding the coefficients of N0,R(0) = 518.34 cpm andmR=� 4.9506 with an R2 = 0.515 and P value = 0.03, see
Table S2 in the supporting information for full rover and fixed calibration data sets and neutron count
observations. From the available calibration data sets, we found that the irrigated maize field had an N0,F(0)
= 2771 cph, the irrigated soybean field had an N0,F(0) = 2796 cph, and the rainfed mixed field had an N0,F(0)
= 2642 cph, where the differences in N0,F(0) values likely represent sensor to sensor differences in counting
efficiency. This efficiency difference is accounted for in equation (3) by the term N0;F 0ð Þ

N0;R 0ð Þ. We further note that
the other sources of error from the calibration procedure and neutron counting uncertainty will be lumped
into this relationship through the estimation of N0. The 8 h SWC values from the three fixed CRNP are plotted
in Figure 2 and provided in Table S3 in the supporting information.

Following the procedures described above, we processed the individual points of each of the 22 rover
surveys in the same manner. In order to assign the spatial location of an observation, we take the
midpoint between successive rover locations, which were recorded once per minute. However, we note
that the midpoint is representative of an elliptical area due to the nature of CRNP neutron counts summed
over 1min intervals and the CRNP measurement area of ~300m radius and the distance between driving
points. Given the maximum driving speed of 0.8 km/min, the largest measurement area would be an
ellipse with major axis = 1400m and minor axis = 600m. After computing the neutron correction factors
and assigning the observation midpoint, we use an ordinary kriging procedure with an exponential model
to perform a spatial interpolation of the 12 km×12 km domain with a resolution of 250m. A resolution of
250m was chosen, as it is convenient for the spatial scaling analyses, where the entire domain is 48 × 48
and divisible by integers of 2, 3, 4, 6, 8, 12, 16, and 24. Table S4 in the supporting information summarizes
the estimates of the sill, range, and R2 (all> 0.89) for each of the sampling dates. We estimate N0,F(BWE)
for all points in time and space (see Table S4 in the supporting information) using the available data sets
of land use (Figure 1b and Table S6 in the supporting information), vegetation sampling during calibration
dates (Table S2 in the supporting information), and using a linear interpolation with time between
calibration dates. For wetland areas, we assumed a similar growth rate and change in BWE as the
soybeans, and for built-up areas, we assumed a BWE equal to 0. We use the average parameter estimates
of θLW, θSOC, and ρb from the calibration data sets (Table S2 in the supporting information) for all points in
the domain in order to specify the remaining parameters needed by equation (1) to convert neutron
counts into SWC, see Figures 3c and 3d for example rover SWC values. Available soil maps from the NRCS
indicate a fairly homogeneous surface soil texture (i.e., ~90% silt loam and ~10% silty clay loam in the top
30 cm) in the study area. We do note the influence of the dry gravel roads on the SWC in Figures 3c and
3d. Table S6 in the supporting information summarizes the kriged neutron counts and SWC from all rover
surveys. Figure 2 illustrates the mean values of all rover surveys showing temporal behavior consistent
with the fixed probe values but with consistently lower absolute values. The differences in the absolute
values are likely due to the fact that the rover surveys were all collected from the single-lane gravel and
paved roadways. We note that during calibration sampling, the rover was driven to within 5m of the fixed
probe and showed consistent behavior indicating the likely influence of the dry roadways on the rover
surveys. Future efforts may consider reducing or removing the effects of dry roadways or dry field corners
on SWC values, particularly if using them to help schedule irrigation of an agricultural field.

Geophysical Research Letters 10.1002/2015GL063963
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5. Results
5.1. Spatiotemporal Statistical Analysis

Table S7 in the supporting information reports themean, variance, skewness, kurtosis, coefficient of variation,
and median SWC of the 12 km×12 km study area at aggregate spatial resolutions of 1 and 3 km for each of
the 22 surveys. We find that a strong linear relationship (see Figure 4a and Table S8 in the supporting
information for R2 and P values) exists between the mean and variance at both spatial resolutions as
reported by others [Crow et al., 2012]. The limited range of observed mean values (16 to 27%) likely limits
the expected inverted parabolic shape reported elsewhere [Crow et al., 2012]. We found no consistent
statistically significant linear relationships existed between (1) the mean and higher order moments, (2)
the mean and the range of the semivariogram, or (3) by partitioning the observations into time periods of
predominantly rainfed and irrigated (Figure 4a).

Table S9 in the supporting information and Figures 4b–4d summarize a spatial scaling analysis [Rodriguez-Iturbe
et al., 1995] indicating that the log of the averaging area versus the log of the SWC variance follow a power law
with all sample dates having an R2 over 0.9. The analysis indicated no statistically significant relationship
between the slope of the power law function versus the mean soil moisture (R2 = 0.14, P value= 0.18 for
rainfed periods and R2 = 0.07, P value= 0.57 for irrigated periods) as reported elsewhere [Rodriguez-Iturbe
et al., 1995]. A preliminary fractal analysis using exceedance probabilities of SWC islands [Rodriguez-Iturbe
et al., 1995] indicated fractal and multifractal signatures. However, samples sizes of SWC islands were small

Figure 4. (a) Relationship between themean soil water content (1 km resolution) and variance of soil water content organized
by rainfed and irrigated periods. (b) Slope of the log area versus log variance plotted versus mean soil water content. (c and d)
Log variance versus log area relationships for different rover sample dates and organized by rainfed and irrigated periods.
Data sets and statistical analysis are provided in Tables S7 and S8 in the supporting information.

Geophysical Research Letters 10.1002/2015GL063963
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(n< 30), limiting the robustness of the analysis. Future rover surveys that cover larger areas (~40 km×40 km)
should generate more SWC islands (n> 200) in order to provide sufficient sample sizes to gain further
insight about the fractal nature of soil moisture fields in agricultural areas of eastern Nebraska.

Table S10 in the supporting information summarizes the temporal covariance matrix at 1 and 3 km
aggregation scales. We assembled the temporal covariance matrix by selecting paired points at the same
grid location and resolution between sampling dates. As reported elsewhere [Brocca et al., 2012], the
diagonals are the dominant terms indicating the high spatial variability within a sampling day as
compared between sampling dates. The off-diagonal terms indicate that the correlation dies off quickly
and is not well captured by our weekly sampling. Tables S11 and S12 in the supporting information
summarize the spatial covariance matrices at 1 and 3 km aggregation scales. We assembled the spatial
covariance matrix by selecting paired points between various grid locations on the same sampling date.
As with the temporal covariance, the diagonal terms are largest with the off-diagonals oscillating with
values close to zero. By investigating the spatial and temporal covariance matrices, we find that relative
magnitudes of the diagonals are much larger than the off-diagonals. The reduction of the covariance
matrix to its diagonal components is a significant simplification for performing statistical downscaling of
remotely sensed products or LSM model outputs following previous methods [Vrugt et al., 2003].

5.2. Spatial Regression and Data Merging

Table S13 in the supporting information and Figure 5 summarize a leave-one-out cross-validation linear
regression analysis for aggregation scales of 1, 3, and 12 km following Ford and Quiring [2014]. The linear
regression coefficients for each grid cell were estimated by comparing the average SWC of the three fixed
CRNP versus the corresponding rover SWC value for that grid cell at 1, 3, and 12 km resolutions for each
sampling date. Coefficients and root-mean-square error (RMSE) values were estimated by leaving one
survey date out of the regression analysis and repeating the procedure until all surveys had been removed
and added. The average coefficients and RMSE values are then reported. Table S13 in the supporting
information provides the grid cell location, the average best fit intercept and slope, RMSE, and R2 of the
linear regression analysis. The 12 km resolution resulted in a low RMSE of 0.86%, the 3 km resolution
resulted in RMSE values for all grid cells less than 1.83%, and the 1 km resolution resulted in 85.4% of grid
values with RMSE less than 3%. The highest RMSE values were predominantly located in the built up
environment and wetland areas where the CRNP did not adequately capture the SWC dynamics. Video S1
in the supporting information illustrates the 8 h 1 km derived soil moisture product and consistently
follows wetting patterns from the available rainfall and irrigation time series. We note that we assume that
the relationship between fixed measurements and each pixel in the SWC map remains the same over
time. While the data confirms this assumption here, we suggest that future studies verify this behavior. In
particular for larger averaging areas, where the degree of heterogeneity in soil, land use and climatic
conditions may violate this assumption.

Figure 5. RMSE of linear relationship between average of three fixed probes and rover SWC estimates for (a) 1 km and
(b) 3 km resolutions. Data sets are provided in Table S13 in the supporting information.

Geophysical Research Letters 10.1002/2015GL063963
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6. Discussion

With the fixed CRNP SWC values (Table S3 in the supporting information) and linear regression coefficients
(Table S13 in the supporting information) distributed in space, a continuous monitoring network of SWC
and associated RMSE can be produced at the various grid aggregations of 1, 3, and 12 km. We note that
the intercept and slope appear fairly constant over the study period as indicated by the leave-one-out
cross-validation analysis. However, this finding should be further validated by repeating the experiment
with significantly longer periods of irrigation at this study site or in drier environments where more
contrast in SWC between irrigated and rainfed areas is likely to exist. Future studies should consider the
selection of the representative fixed CRNP within the study area, relative weighting of each fixed CRNP
SWC value, or inclusion of ancillary data (i.e., soil type, topography, and vegetation type) to further
improve the regression analysis [Coopersmith et al., 2014] and overall performance of the SWC
monitoring network.

7. Conclusions

In this work, we present a proof-of-concept study for designing a cost-effective and real-time soil moisture-
monitoring network at the critical 1 km spatial resolution that can cover 102 to 103 km2. The network design
fills a critical gap in soil moisture observations that will be beneficial for (1) the next generation of
hyperresolution land surface models that will investigate areas such as optimal water management in
irrigation, (2) the strength of land-atmospheric coupling, (3) calibration and validation of satellite remote
sensing products, and (4) value addition to satellite remote sensing products by spatial downscaling.
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Introduction  

This supporting information contains 13 datasets that support the 5 figures in the 
manuscript. The datasets describe the 11 calibration datasets of the cosmic-ray probes, 
the 3 time series of fixed cosmic-ray probe data, the 22 cosmic-ray rover datasets, the 
landcover, the cosmic-ray rover geostatistics, the spatiotemporal statistics of cosmic-ray 
rover results, and the data fusion regression coefficients. This supporting information 
also contains 1 avi movie file illustrating the 8-hr 1 km resolution soil moisture product 
and corresponding rainfall and irrigation events. 
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Data Set S1. Summary of 11 calibration datasets from the 3 fixed cosmic-ray neutron 
probes. On 9 of the 11 calibration dates it was possible to drive the cosmic-ray rover 
within 5 m of the fixed probe site for cross calibration. The 108 gravimetric water content 
and soil bulk density estimates are provided from each of the 18 sampling locations and 
6 depths. A 30 cm long split tube sampler with a 5 cm diameter was used to collect the 
gravimetric and bulk density samples. 

Data Set S2. Summary of fixed and rover cosmic-ray neutron counts during calibration. 
Soil sampling results reporting the average gravimetric water content, soil bulk density, 
soil lattice water and soil organic carbon water equivalent are also summarized. Soil 
chemistry samples from 1 calibration date were sent to Actlabs (Ontario, Canada) for 
analysis. Biomass sampling results are also summarized. Biomass estimates were 
collected at 6 points from around the footprint and consisted of estimating the number of 
plants per unit area, clipping, weighing, and drying biomass samples (typically 1 to 3 
plants per site). Calculations of N0 for the fixed and rover are computed from the 
datasets using equation (1) and average estimates of soil bulk density, lattice water, and 
soil organic carbon water equivalence. 

Data Set S3. Summary of 8-hour estimates of SWC for the 3 fixed cosmic-ray neutron 
probes. The time varying N0 values summarized in DS02 were used with Eq. [4].     

Data Set S4. Summary of semivariogram from 22 rover surveys reporting the sill, range, 
and R2. An exponential model with no nugget was used as the variogram model. A 
simple ordinary kriging algorithm was used with the exponential model fit to generate the 
spatial interpolation of the neutron counts over the domain.  

Data Set S5. Summary of N0 values by landcover and date. For the builtup environment 
we assumed a constant N0 value and for the natural areas we assumed the same N0 as 
the soybeans given the similar standing biomasses of tall grass prairies and soybeans.    

Data Set S6. Summary of rover survey results for a 48 by 48 grid with a 250 m 
resolution. The dataset includes the UTM coordinate location, estimate of landcover, 
spatially interpolated neutron counts, and SWC values. 

Data Set S7. Summary of rover survey SWC statistical moments at 1 and 3 km 
aggregate resolutions. 

Data Set S8. Summary of linear regression results between mean SWC and higher 
order moments at 1 and 3 km aggregate resolutions. 

Data Set S9. Summary of power law fit between the log area and log SWC variance for 
each sampling date. 

Data Set S10. Summary of SWC temporal covariance matrix at 1 and 3 km aggregate 
resolutions.   

Data Set S11. Summary of SWC spatial covariance matrix at 1 km resolution for each 
sampling date. The area locations coordinates in UTM of the two samples are also 
provided for reference.  
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Data Set S12. Summary of SWC spatial covariance matrix at 3 km resolution for each 
sampling date. The area locations coordinates in UTM of the two samples are also 
provided for reference. 

Data Set S13. Spatial linear regression fits and coefficients between the average of the 
3 fixed cosmic-ray SWC (provided in DS3) and the rover estimates for 1, 3, 12 km 
aggregate resolutions. The grid location coordinates are provided for reference. 

Movie S1. Summary movie of 8-hr 1 km soil moisture product with corresponding rainfall 
and irrigation time series. 
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