








Sensors 2019, 19, 1112 18 of 23Sensors 2019, 19, x FOR PEER REVIEW 18 of 23 

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RightLeft

D
ep

os
iti

on
(μ

L/
cm

2 )

Sampling point

 F1-2  
 F1-5 
 F1-8 
 F1-11
 F1-14 
 F1-17
 F1-20 
 F1-23

 
-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LeftRight

D
ep

os
iti

on
(μ

L/
cm

2 )

Sampling point

 F2-2  
 F2-5
 F2-8
 F2-11
 F2-14 
 F2-17
 F2-20 
 F2-23

 
(a) (b) 

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RightLeft

D
ep

os
iti

on
(μ

L/
cm

2 )

Sampling point

 F3-2   
 F3-5
 F3-8   
 F3-11 
 F3-14 
 F3-17
 F3-20 
 F3-23

 
-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LeftRight

D
ep

os
iti

on
(μ

L/
cm

2 )

Sampling point

 F4-2   
 F4-5
 F4-8   
 F4-11
 F4-14 
 F4-17
 F4-20 
 F4-23

 
(c) (d) 

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RightLeft

D
ep

os
iti

on
(μ

L/
cm

2 )

Sampling point

 F5-2   
 F5-5
 F5-8   
 F5-11
 F5-14 
 F5-17
 F5-20 
 F5-23

 

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

LeftRight

D
ep

os
iti

on
(μ

L/
cm

2 )

Sampling point

 F6-2   
 F6-5
 F6-8   
 F6-11
 F6-14 
 F6-17
 F6-20 
 F6-23

 
(e) (f) 

Figure 18. Droplet deposition at different sampling points at the center line of operation unit. (a) 
Route F1. (b) Route F2. (c) Route F3. (d) Route F4. (e) Route F5. (f) Route F6. 

4.3.3. Deposition of the Boundary of Operation Unit 

The UAV passes through the boundary line of the operation unit, new prescription values are 
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Figure 18. Droplet deposition at different sampling points at the center line of operation unit. (a) Route
F1. (b) Route F2. (c) Route F3. (d) Route F4. (e) Route F5. (f) Route F6.

4.3.3. Deposition of the Boundary of Operation Unit

The UAV passes through the boundary line of the operation unit, new prescription values are
obtained. To study the droplet deposition at the operation unit boundary, the experimental data of the
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fourth repeated experiment were analyzed. Table 5 shows the amount of droplet deposition in three
units of operation route F1. Droplet deposition on the other routes is shown in Figure 19.

From Table 5, the droplet deposition at the center line of each unit is approximately equal to
that at both sides of the center line. The deviation is stable below 10%. Different prescription values
correspond to different droplet deposits in the unit. The ratio of deposits to prescription values is
approximately equal, as shown in Figure 19. The sampling bands F1-4, F1-7, F1-10, F-13, F1-16, F1-19
and F1-22 are the sampling bands 1 m behind the boundary. The deviations between the droplet
deposition on these sampling belts and that at the centerline of the current unit are 8.04%, 9.03%, 3.11%,
2.43%, 4.08%, 2.97%, and 2.1%, respectively.

Table 5. The amount of droplet deposition in three units of operation route F1.

Unit Prescription Value
(L·hm−2) Band Deposition

(µL·cm−2)
Coefficient of

Variation

1 15
F1-2(Centerline) 0.347

9.46%F1-3 0.317

2 45

F1-4 0.821
8.04%

F1-5(Centerline) 0.887
1.24%F1-6 0.876

3 30

F1-7 0.742
9.03%

F1-8(Centerline) 0.675
2.37%F1-9 0.691

4 75

F1-10 1.705
3.11%

F1-11(Centerline) 1.758
1.54%F1-12 1.731

5 60

F1-13 1.235
2.43%

F1-14(Centerline) 1.265
3.32%F1-15 1.307

6 30

F1-16 0.759
4.08%

F1-17(Centerline) 0.728
1.92%F1-18 0.714

7 45

F1-19 0.975
2.97%

F1-20(Centerline) 1.004
1.69%F1-21 0.987

8 75
F1-22 1.762

2.10%F1-23(Centerline) 1.725

The flow change of the plant protection UAV has been completed in the process of flying 1 m
from the demarcation line. According to the operation speed of the plant protection UAV 2–4 m/s, the
system takes less than 0.25 s from receiving a new flow to changing the flow to the target value, which
reflects the sensitivity of the system. In Figure 19, the droplet deposition of each operation unit changes
clearly. The droplet deposition distribution in the sampling band shows a normal distribution trend,
which indicates that the system can accomplish variable spray operation according to the prescription
value and influencing factors.



Sensors 2019, 19, 1112 20 of 23Sensors 2019, 19, x FOR PEER REVIEW 20 of 23 

  
(a) (b) 

  

(c) (d) 

  
(e) (f) 
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Figure 19. Fourth test of the droplet deposition amount of operating units on different routes. (a) Route
F1. (b) Route F2. (c) Route F3. (d) Route F4. (e) Route F5. (f) Route F6.

5. Conclusions

Variable spray technology can achieve the goal of applying pesticide on demand. While improving
the chemical effects of pesticides, and effectively reducing the use of chemical pesticides. In this study,
artificial neural network is used to study the variable spraying system of plant protection UAV:

(1) Based on the existing data of plant protection UAV operation, combined with the error back
propagation neural network technology, a neural network model which affects the spray droplet
deposition factor and deposition volume was trained. These factors include environment
temperature, humidity, wind speed, flight speed, flight altitude, prescription value, nozzle
pitch and propeller pitch. The training error of the BP neural network is 0.003.

(2) The variable spray technology is combined with BP neural network technology to predict spray
deposition in real time. The droplet depositions meet the prescription value requirements.
The error between the predicted droplet deposition and actual droplet deposition is less than 20%.

(3) The UAV variable spray system based on neural network is evenly sprayed. From the change of
prescription value to the response time of regulated flow is within 0.25 s, the spray range meets
the operational requirements of plant protection UAVs.
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