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[1] It is demonstrated that a near-linear subsurface runoff
response from a short and relatively steep slope segment
and a nonlinear response at the watershed scale may
primarily arise from geometry rather than from an assumed
linear nature of the subsurface runoff response from the
hillslope, as Harman et al. [2009] employed for the Panola
Mountain Research (PMR) catchment in Georgia. The
authors caution in their paper that hydraulic theory (exem-
plified by the study of Brutsaert and Nieber [1977]) cannot
generally account for the heterogeneity in the watershed
scale and therefore should be used with certain reservation
when employing it for catchment-scale parameter estima-
tion. They base this on observations [Clark et al., 2009] that
the PMR watershed in Georgia displays a near-linear (which
Harman et al. accept to be linear) subsurface flow response
at a short segment (�50 m) of the upper part of a hillslope,
while the same response becomes increasingly nonlinear
with scale. The authors employ linear reservoirs in parallel,
with prescribed distributions (e.g., bounded power law
(BPL)) of the storage coefficient and in the limit; when
the number of reservoirs approaches infinity, they obtain the
required degree of nonlinearity in their summed outflow.
With the application of the BPL distribution, the shape of
which changes significantly with scale, they can achieve the
observed full range and temporally changing nature of the
exponent of the recession flow equation. This way, they
argue that the nonlinear subsurface flow response from the
PMR watershed may emerge from a combination of linear
responses similar to what is observed at the short upslope
segment.
[2] The logic behind the parallel reservoir approach taken

by Harman et al. [2009] is this: an observed near-linear
subsurface runoff response from a short, relatively steep
uphill portion of a hillslope leads to the assumption of a
linear response for all hillslopes within the catchment.
However, to my best knowledge such a general linear
hillslope response in the PMR watershed was never
observed, since hillslope runoff measurements were taken
only at one particular short uphill slope segment. This then
questions the suitability of employing a linear reservoir for

the description of the general hillslope response and, con-
sequently, that of the watershed.
[3] With the help of the 2-D combined Richards equation

an alternative explanation of the seemingly different sub-
surface runoff response between the short uphill segment
and the watershed is presented here, acknowledging that
reality is certainly much richer than what is captured in the
ensuing brief and highly simplified modeling. As described
by Freer et al. [2002], subsurface flow response at the
hillslope was obtained in a trench running perpendicular to
the slope gradient and dug down to the rock surface. This
latter property is important because, this way, the slope
section (and its subsurface flow dynamics) uphill of the
trench is cut off from the rest of the slope downhill and
the trench acts as a drain. Therefore, in comparison with the
typical watershed hillslope, one has a short, relatively steep
hillslope with relatively thin soil, and, because it is an
uphill segment, it receives relatively little support from
surface and subsurface flow from above. In addition, the
resulting subsurface outflow is collected and removed, thus
creating zero water levels in the trench, which is also
somewhat different from the case of the typical slope of
the catchment that is drained at least intermittently by a
stream with nonzero water depth. This last difference from
the ensuing modeling point of view is, however, minor
since, having no information of whether the streams at
the catchment are fully or partially incised, they will be
assumed to be fully penetrating here with zero stream water
depth (h = 0) for the trench and a constant nonzero depth for
the typical watershed.
[4] Having a look at the map of the watershed [Clark et

al., 2009], it is safe to assume a magnitude difference of the
specific hillslope segment length mentioned above and that
of the average hillslope of the catchment. Let us then
consider two slopes now, one with a base length of 20 m,
a slope of 1:2, and a soil thickness of 0.5 m, drained by a
fully incised stream with zero stream levels. Let the other
slope have a base length of 200 m, a slope of 1:10, and a
soil thickness of 1 m, drained by a fully incised stream with
h = 0.1 m (Figure 1). Let both slopes be covered by soils of
a loam-type physical texture as described by Szilagyi et al.
[2008]. Because the shorter slope is steeper and because it
has less moisture support from above (in the form of, for
example, interflow and/or preferential flow and surface
runoff with the ensuing enhanced infiltration) than the
longer one, let it have full saturation up to a unit height
from its base only, while the longer one will have saturation
up to 10 m (Figure 1), before drainage simulations start.
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Drainage simulation of the two slopes was carried out for
4 days. The reasons for not keeping the original length
of the slopes observed in the PMR catchment are that
(1) numerical integration becomes cumbersome when the
domain’s dimensions differ significantly, i.e., 0.5 versus
20 m and 1 versus 200 m, being already at the limit, and
(2) the exact true dimensions are not important now because
of the unknown hydraulic properties (i.e., water retention
and hydraulic conductivity curves) of the soils at the
watershed.
[5] Soil moisture and groundwater dynamics have been

modeled by a combined version of the 2-D Richards
equation [Lam et al., 1987] that treats saturated and unsat-
urated flow in one equation. For further details of the model
in a hillslope setting, see Szilagyi [2006] or Szilagyi et al.
[2008].
[6] Figure 2 depicts the resulting subsurface flux rates as

a function of time as well as the flux versus time rate of
change in the flux values in a double-logarithmic graph. As
can be seen in the double-logarithmic graphs, the outflow of
both hillslopes behaves highly nonlinearly at early times of
the drawdown (slope much larger than unity) while turning
into a near-linear response (slope of about unity) at later
times only for the short slope during the 4 days of drainage
modeled. The 4 day period was chosen because Clark et al.
[2009] mentions that measurements were taken only for a
few days after individual storm events. With an increase in
drainage time, one would naturally see the same near-linear
response (omitted in the graph) for the longer slope, as can
be seen for the shorter one preceded in time by a steeper
slope section for early drawdown.

[7] What likely conclusions follow from this?
[8] 1. The instrumented hillslope of the PMR catchment

tends to behave near linearly because of its uphill position
(reduced support of moisture from above, thus reduced
ability for becoming saturated), thin soil, relatively steep
slope, and short length and because of the fact that it is cut
off from the rest of the slope by an artificial trench speeding
its drainage (i.e, compared to being connected to the rest of
the slope). Note that hydraulic theory does not predict a true
linear recession, as the observed recession is not truly linear
either; that is, the slope is somewhat larger than unity [see
Harman et al., 2009, Figure 7; Clark et al., 2009].
[9] 2. The longer hillslopes of the catchment behave

nonlinearly because of reasons opposite to what were listed
before; that is, they are milder in slope, have thicker soil,
and receive abundant moisture support from uphill to keep
their lower segments closer to saturation at all times.
Compare the shape of the modeled recession curve with
that of Harman et al. [2009, Figure 7] or Clark et al. [2009,
Figure 2].
[10] 3. The nonlinear behavior attributed to the watershed

by Harman et al. [2009] thus emerges not from a collection
of linearly responding hillslopes but rather as the inherently
nonlinear drainage response of the hillslope itself. This is
fundamentally different from the conclusion of Harman et
al. [2009].
[11] Harman et al. [2009], however, are right when

cautioning the potential user of hydraulic theory for esti-
mating watershed-scale hydraulic characteristics. For
instance, the hydraulic theory approach by Brutsaert and
Nieber [1977] yields effective parameter sets but does not

Figure 1. Schematic representation of the hillslopes.
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provide information about how the parameters might vary
for individual subcatchments or hillslopes within the water-
shed; indeed, the catchment hydrograph may not contain
sufficient information for that end, as Harman et al. [2009]
point out.
[12] Certainly, there is room for further testing of the

hydraulic theory for catchment-scale parameter estimation.
Such an approach could be via the application of numerical
models (as was demonstrated by Szilagyi et al. [1998]) with
varying sophistication, in which arbitrarily complex aquifer
heterogeneity can be prescribed, or via intensive field
campaigns such as those reported by Rupp et al. [2004].
So far, both studies supported the applicability of the
hydraulic theory for catchment-scale hydraulic parameter
estimation.

[13] Acknowledgment. The constructive comments of John Nieber
are greatly appreciated by this author.
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Figure 2. Flux rate versus time and flux rate versus time rate of change in the flux rate value from the
hillslopes depicted in Figure 1, having a unit width. Flux is measured in liters per hour.
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