
a change of nearly +60% or −50% for NO3–N load could result from
±10% change in precipitation (Fig. 3h and Table 4). Interestingly,
soil water content is much less responsive to increased precipitation

than is water yield Fig. 3e,f, which can be caused by the limited
water-holding capacity of the soil. This emphasizes the importance
of flood mitigation under a scenario of increased precipitation.

3.2.3. Air temperature
Scenarios 7 through 9 represent increases of 1 °C, 2 °C, and 4 °C for

average air temperature while holding other climate elements
constant (Table 2). Soil water content is little affected by a unit
temperature rise of 1 °C, but is more sensitive to larger temperature
rises (Fig. 3j). Higher temperatures will result in significant decreases
in soil water content owing to increased ET (Fig. 3i–l). The drier soil
then could cause reduction in water yield, groundwater recharge, and
NO3–N load because it affects the surface runoff, subsurface lateral flow,
and baseflow, as stated previously. A small rise in the NO3–N load in
December and January can be attributed to the increased surface runoff
resulting from increased snow melt in winter (Fig. 3l). Water yield and
groundwater recharge reductions caused by rising temperatures are
more substantial in the wet season (Fig. 3i,k), especially from May to
August when plant growth responses are more significant.

Annual average soil water content is projected to decline by 5% to
49% when increases in the air temperature range from 1 °C to 4 °C

Table 3
Evaluation of model performance in streamflow and NO3–N simulation at the basin
outlet (near Scotland, South Dakota) during ten-year calibration (1991–2000), nine-
year validation (2001–2009), and 30-year baseline (1980–2009) periods.

Period Time
scale

Mean PB (%) NSE R2

Observed Simulated

Streamflow
(m3/s)

Calibration Monthly 46.9 38.2 −18.4 0.55 0.56
Annual 0.75 0.84

Validation Monthly 32.2 29.8 −7.4 0.67 0.67
Annual 0.79 0.81

Baseline Monthly 32.0 32.2 0.8 0.45 0.51
Annual 0.72 0.74

NO3–N
(kg/d)

Calibration Monthly 830.6 849.4 2.3 0.60 0.61
Annual 0.80 0.85

Validation Monthly 522.7 621.2 18.9 0.67 0.68
Annual 0.77 0.80

Baseline Monthly 579.9 700.05 20.8 0.50 0.51
Annual 0.70 0.74
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Fig. 3. Comparison of simulated monthly water yield, soil water content, groundwater recharge, and NO3–N load under different CO2 concentrations (a–d), precipitation change
scenarios (e–h), and air temperature increase scenarios (i–l).

155Y. Wu et al. / Science of the Total Environment 430 (2012) 150–160



(Table 4). Similarly, water yield may decrease by 14% to 68%,
groundwater recharge may decrease 19% to 91%, and NO3–N load
may decrease by 14% to 55% under the same changes in air
temperature. These results indicate global warming may lead to
serious water shortages in this basin.

3.3. Projected climate-change effects

We applied the downscaled, multi-model ensemble GCM outputs
with the projected CO2 concentrations (see Section 2.5) as climate
inputs for the modified SWAT model (Wu et al., 2012) to investigate
hydrological effects of potential future climates for the mid-21st
century. Basin average monthly precipitation and air temperatures
for baseline conditions (1980–2009) and future projections
(2040–2069) under three greenhouse gas emission scenarios are
shown in Fig. 4. The comparison indicates a decrease of 8.5% to 9.0%
in precipitation and increase of 1.9 °C to 3.1 °C among the three
emission scenarios. Multiyear (2040–2069) average monthly results
(water yield, soil water content, groundwater recharge, and NO3–N)
simulated by SWAT for the whole basin are presented in Fig. 5, and
the annual average percent changes relative to the reference scenario

are listed in Table 4. Under scenarios B1, A1B, and A2, annual water
yield in this basin will decrease dramatically (about 61% to 70%)
(Fig. 5a and Table 4), principally because of the projected decreases

Table 4
Predicted relative changes (percent of baseline levels) in annual average hydrological components with climate‐sensitivity scenarios and GCM projection scenarios.

Terms Refa Climate sensitivityb GCMc

CO2 Precipitation (%) Air temperature (°C) B1 A1B A2

×1.5 ×2 +10 +20 −10 −20 +1 +2 +4

Percent change

WY 28 19 49 59 133 −42 −69 −14 −42 −68 −61 −68 −70
ET 533 −1 −3 7 13 −8 −16 1 3 5 −5 −4 −4
SW 98 12 26 18 33 −20 −41 −5 −24 −49 −37 −45 −48
GR 14 27 67 69 152 −49 −78 −19 −58 −91 −77 −87 −89
NO3–N 0.05 14 40 58 142 −40 −64 −14 −31 −55 −49 −54 −55

a Ref means hydrological components with reference scenario.
b Climate sensitivity means the SWAT simulations with climate-sensitivity scenarios.
c GCM refers to the SWAT simulations with the averaged GCM-ensemble under the A1B greenhouse gas emission scenario; WY is water yield (mm/yr); ET is evapotranspiration

(mm/yr); SW is soil water content (mm); GR is groundwater recharge (mm/yr); NO3–N is nitrate nitrogen load (kg/ha). Positive and negative signs refer to increases and decreases,
respectively.
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in precipitation and increases in air temperature. Annual soil water
content and groundwater recharge could be reduced by about 37%
to 48% and 77% to 89% (Fig. 5b,c, and Table 4), respectively, by the
mid-21st century. The substantial decrease in groundwater recharge
could directly reduce the aquifer storage. NO3–N load was projected
to decline 49% to 55% (Fig. 5d and Table 4); however, NO3–N
concentration in stream water would increase 55% to 70% as the
amount of water in the river channel decreased.

We also compared spatial distributions (at the HRU level) of the
four hydrological variables (water yield, soil water content,
groundwater recharge, and NO3–N load) under baseline conditions
(see Fig. 6a,c,e,g) and projected climate conditions (see Fig. 6b,d,f,
h), and present outcomes from the A1B scenario here as an example.
Results show that the relatively higher annual water yield in the mid-
basin area under baseline conditions may decline to a level
comparable with other parts of the basin under the projected climate
(Fig. 6a,b). This could reduce the spatial variability of the annual
water yield by 23% in terms of the standard deviation (a shift from
47.8 to 36.4 mm). The projected climate also could reduce the annual
soil water content substantially, with an average decrease of 38% over
the entire basin and a corresponding decrease of 32% in the standard
deviation of the spatial variability (Fig. 6c,d). Moreover, areas in the
upper and lower basin may experience severe drought with this

climate scenario (Fig. 6d). The reduced soil water content could lead
to a significant decrease in groundwater recharge (Fig. 6e,f), with an
associated reduction of 31% in the standard deviation of the spatial
variability in recharge across the basin. Basin average NO3–N load
would decrease by about 31% due to the reduction in water yield,
with substantial decrease occurring on higher nitrogen load areas
(mid-basin) (Fig. 6g,h).

4. Discussion

4.1. Model performance

We identified substantial differences between observed and
modeled peak flows (e.g., 1991 and 1993), maybe because the limited
number of rainfall gages are not sufficient to reflect spatial patterns of
rainfall over such a large basin for certain years. We noted an
underestimation for 1997, possibly attributed to the intensified
rainfall (at a smaller time scale like hours) that year causing high
streamflows despite an overall moderate amount of annual
precipitation (Fig. 2b) (see also (Zhou et al., 2011)). Although the
above factors contributed to relatively low model efficiency, the
monthly streamflow simulations can be evaluated as “satisfactory”
(NSE>0.5 and |PB|≤25%) and “good” (NSE>0.65 and |PB|≤15%)

Fig. 6. Comparison of the spatial distributions of water yield (a versus b), soil water content (c versus d), groundwater recharge (e versus f), and NO3–N load (g versus h) under
baseline conditions (upper panels) and the climate projected with the A1B scenario (lower panels). These four hydrological variables represent average annual results for the
30-year baseline period (1980–2009) and projection period (2040–2069).
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for calibration and validation periods, respectively, based on the
performance ratings of Moriasi et al. (2007), which assume typical
uncertainty in observations. Because our climate-change study
focuses on long-term (30 years) impacts rather than impacts from
single events or a few years, the model performance can be deemed
acceptable for this study, especially given our use of multiyear
average simulation results.

4.2. Climate change impacts

As stated previously (see Section 2.6), an explicit assumption with
the downscaling technique we used is that future geospatial patterns
of climate will be the same as those of the past. There is no way to
know how such patterns will change in the future within the JRB,
but information from the past provides at least one plausible
(documented) way to distribute geospatial patterns. The accuracy of
the GCM projections is unknown, although the averaged results
indicate a decrease in precipitation and an increase in air
temperature. If the annual precipitation in the JRB decreases as
expected from the GCM multi-model ensemble, even under the A1B
scenario the decline in groundwater recharge (see Table 4) would
be a critical concern for stream water availability especially in the
dry season when baseflow is the dominant contributing source. This
can be revealed by the low level of dry season water yield as shown
in Fig. 5a. Although a related substantial decrease in NO3–N load
appears to be a benefit, the increase in NO3–N concentration in
stream water as water yield decreased would result in degraded
water quality. Overall, the projected decreases in soil water content,
groundwater recharge, and water yield, and the increase in NO3–N
concentration would pose potential threats for crop production and
water quantity and quality in this basin.

5. Implications

The climate sensitivity study helped quantify responses of the JRB
hydrology and water quality to rising levels of atmospheric CO2

concentration and potential changes in precipitation and air
temperature. Our analysis of hydrological effects under a projected
climate trajectory demonstrated how and to what magnitude the
JRB hydrology and water quality could be altered in the future,
although we recognize that uncertainties with GCMs likely increase
with the length of the projection period. Therefore, the climate-
sensitivity analysis can be indispensable. Overall, both climate-
sensitivity scenarios and GCM projections are useful for informing
water resource managers and other decision makers about
precautions that may be needed to mitigate potential watershed
problems related to floods and drought and associated concerns
with water supply, water quality, food production, and risks to
human health and property.

Comparison of the JRB hydrological response with those in the
adjacent Upper Mississippi River Basin (see Fig. 1) from our previous
study (Wu et al., 2012) suggests the hydrological system in this
semiarid basin is relatively more sensitive to climate change.
Therefore, this region specific study may alert that watershed
managers for drier basins should take more precautions to cope
with the potential water issues due to climate change such as the
relatively higher variability of water yield which may cause extreme
events like flooding and drought.

6. Conclusions

We applied a modified SWAT model that incorporates plant
responses (stomatal conductance reduction and leaf area increase)
to elevated CO2 concentrations, to investigate hydrological effects of
rising CO2 concentrations and climate change in the JRB. Our analysis
of the sensitivity of hydrological variables to shifts in climate revealed

the hydrological system in this semiarid basin is highly responsive.
For example, water yield, soil water content, groundwater recharge,
and NO3–N load could increase about 49%, 26%, 67%, and 40%,
respectively, under a doubling of CO2 concentration. Nearly linear
responses in levels of water yield (−69% to 133%) and soil water
content (−41% to 33%) were predicted when precipitation changes
ranged from −20% to +20% relative to 1980–2009 baseline levels.
All four hydrological components could decrease substantially with
rises in air temperature.

Climate trajectories for three greenhouse gas emission scenarios
(B1, A1B, and A2) for 2040 through 2069 suggest decreases in
precipitation ranging from 8.5 to 9.0% and increases in air
temperature ranging from 1.9 to 3.1 °C. Under these climate
conditions, hydrological components could be altered considerably.
Soil water content, water yield, and groundwater recharge could
decrease over 61%, 37%, and 77%, respectively, and changes in the
spatial distribution of these characteristics would have differential
impacts across the basin. Although the NO3–N load may decrease
more than 49%, the projected increase of about 55% in NO3–N
concentration in stream water would be of concern for water quality
and the aquatic environment.

No one knows with certainty how climate change will play out
over the coming decades, given the myriad interactions in the Earth's
environment, but modeling assessments such as we have undertaken
offer advanced insights into potential ranges for consequences. Our
combined analyses of sensitivity of hydrological components to
climate change and the effects of different scenarios of future climate
on the direction, magnitude, and spatial distribution of hydrological
responses provide needed input for consideration towards watershed
management and policies.
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Appendix A

We adopted widely accepted criteria to assess the SWAT model
performance against observations.

(I) The Percentage Bias (PB) measures the average difference
between measurements and model simulations. The optimal value
of PB is 0.0, with low-magnitude values indicating accurate model
simulation and positive or negative values indicating over-
prediction or under-prediction bias, respectively:

PB ¼ 1
n

Xn
i¼1

Yi;sim−Yi;obs

Yi;obs
� 100

 !

(II) The Nash–Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970)
measures the goodness of fit and approaches unity if the simulation
is satisfactorily representing the observations. The NSE describes the
explained variance for the observed values over time that is
accounted for by the model (Green and van Griensven, 2008). If the
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efficiency becomes negative, model predictions are worse than a
prediction performed using the average of all observations:

NSE ¼ 1−

Pn
i¼1

Yi;sim−Yi;obs

� �2
Pn
i¼1

Yi;obs−�Y obs

� �2

(III) The R2 evaluates how accurately the model tracks the
variation of the observed values. It can reveal the strength and
direction of a linear relation between the simulation and observation.
The difference between the NSE and the R2 is that only the NSE can
interpret model performance in replicating individually observed
values (Green and van Griensven, 2008):

R2 ¼

Pn
i¼1

Yi;obs−�Y obs

� �
Yi;sim−�Y sim

� � !2

Pn
i¼1

�
Y
i;obs

−�Y obs

�2Pn
i¼1

Yi;sim−�Y sim

�2�

where n is number of observation/simulation data for comparisons;
Yi,obs and Yi,sim are observed and simulated data, respectively, on
each time step i (e.g., day or month); and �Y obs and �Y sim are mean
values for observation and simulation during examination period.

References

Arabi M, Frankenberger JR, Enge BA, Arnold JG. Representation of agricultural
conservation practices with SWAT. Hydrol Process 2008;22:3042–55.

Arnell NW, Liv C. Hydrology and water resources. In: McCarthy JJ, Canziani OF, Leary
NA, Dokken DJ, White KS, editors. Climate Change 2001: impacts, adaptation and
vulnerability. Cambridge, UK: Cambridge University Press; 2001.

Arnold JG, Srinivasan R, Muttiah RS, Williams JR. Large area hydrologic modeling and
assessment—part 1: model development. J Am Water Resour Assoc 1998;34:
73–89.

Bates B, Kundzewicz ZW, Wu S, Palutikof J. Climate change and water. Technical Paper
VI of the Intergovernmental Panel on Climate Change. Geneva: IPCC Secretariat;
2008. p. 210.

Betts RA, Cox PM, Lee SE, Woodward FI. Contrasting physiological and structural
vegetation feedbacks in climate change simulations. Nature 1997;387:796–9.

Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, et al. Projected increase
in continental runoff due to plant responses to increasing carbon dioxide. Nature
2007;448:1037–42.

Beven KJ. Rainfall-runoff modelling. Chichester: John Wiley & Sons; 2001.
Chaplot V. Water and soil resources response to rising levels of atmospheric CO2

concentration and to changes in precipitation and air temperature. J Hydrol
2007;337:159–71.

Craig M. A history of the cropland data layer at NASS. http://www.nass.usda.gov/
research/Cropland/CDL_Hisotry_MEC.pdf2010. accessed 09 December, 2011.

Duan QY, Sorooshian S, Gupta V. Effective and efficient global optimization for
conceptual rainfall-runoff models. Water Resour Res 1992;28:1015–31.

Eckhardt K, Ulbrich U. Potential impacts of climate change on groundwater recharge
and streamflow in a central European low mountain range. J Hydrol 2003;284:
244–52.

Ficklin DL, Luo YZ, Luedeling E, Zhang MH. Climate change sensitivity assessment of a
highly agricultural watershed using SWAT. J Hydrol 2009;374:16–29.

Ficklin DL, Luo YZ, Luedeling E, Gatzke SE, Zhang MH. Sensitivity of agricultural runoff
loads to rising levels of CO2 and climate change in the San Joaquin Valley
watershed of California. Environ Pollut 2010;158:223–34.

Field CB, Jackson RB, Mooney HA. Stomatal responses to increased CO2—implications
from the plant to the global -scale. Plant Cell Environ 1995;18:1214–25.

Fontaine TA, Klassen JF, Cruickshank TS, Hotchkiss RH. Hydrological response to
climate change in the Black Hills of South Dakota, USA. Hydrol Sci J-J Sci
Hydrologiques 2001;46:27–40.

Fowler HJ, Blenkinsop S, Tebaldi C. Linking climate change modelling to impacts
studies: recent advances in downscaling techniques for hydrological modelling.
Int J Climatol 2007;27:1547–78.

Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA. Detection of a direct
carbon dioxide effect in continental river runoff records. Nature 2006;439:835–8.

Gleckler PJ, Taylor KE, Doutriaux C. Performance metrics for climate models. J Geophys
Res Atmos 2008:113.

Green CH, van Griensven A. Autocalibration in hydrologic modeling: using SWAT2005
in small-scale watersheds. Environ Model Software 2008;23:422–34.

Hay LE, Markstrom SL, Ward_Garrison C. Watershed-scale response to climate change
through the twenty-first century for selected basins across the United States. Earth
Interact 2011;15:1-37.

Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, et al. Completion of the 2001
National Land Cover Database for the conterminous United States. Photogramm
Eng Remote Sens 2007;73:337–41.

Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJvd, Dai X. Climate Change 2001:
The Scientific Basis. Contribution of Working Group I to the Third Assessment
Report of the Intergovernmental Panel on Climate Change. Cambridge, United
Kingdom and New York, NY, USA: Cambridge University Press; 2001.

IPCC. Special Report on Emissions Scenarios. http://www.grida.no/publications/other/
ipcc_sr/?src=/climate/ipcc/emission2000. accessed 09 December, 2011.

IPCC. Climate Change 2001: IPCC Third Assessment Report. http://www.ipcc-data.org/
ddc_co2.html2001. accessed 1 March, 2012.

IPCC. GCM Experiment Data (AR4); 2006.
Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL, et al. Water in

a changing world. Ecol Appl 2001;11:1027–45.
Jha M, Arnold JG, Gassman PW, Giorgi F, Gu RR. Climate change sensitivity assessment

on Upper Mississippi River Basin streamflows using SWAT. J Am Water Resour
Assoc 2006;42:997-1015.

Jha MK, Schilling KE, Gassman PW, Wolter CF. Targeting land-use change for nitrate-
nitrogen load reductions in an agricultural watershed. J Soil Water Conserv
2010;65:342–52.

Kergoat L, Lafont S, Douville H, Berthelot B, Dedieu G, Planton S. Impact of doubled CO2
on global-scale leaf area index and evapotranspiration: conflicting stomatal
conductance and LAI responses. J Geophys Res Atmos 2002:107.

Koster RD, Dirmeyer PA, Guo ZC, Bonan G, Chan E, Cox P, et al. Regions of strong
coupling between soil moisture and precipitation. Science 2004;305:1138–40.

Labat D, Godderis Y, Probst JL, Guyot JL. Evidence for global runoff increase related to
climate warming. Adv Water Res 2004;27:631–42.

Labat D, Godderis Y, Probst JL, Guyot JL. Reply to comment of Legates et al. Adv Water
Res 2005;28:1316–9.

Lambert SJ, Boer GJ. CMIP1 evaluation and intercomparison of coupled climate models.
Clim Dyn 2001;17:83-106.

Legates DR, Lins HF, McCabe GJ. Comments on "Evidence for global runoff increase
related to climate warming" by Labat et al. Adv Water Res 2005;28:1310–5.

Leipprand A, Gerten D. Global effects of doubled atmospheric CO2 content on
evapotranspiration, soil moisture and runoff under potential natural vegetation.
Hydrol Sci J-J Sci Hydrologiques 2006;51:171–85.

Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M,
et al. Stomatal conductance of forest species after long-term exposure to elevated
CO2 concentration: a synthesis. New Phytol 2001;149:247–64.

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model
evaluation guidelines for systematic quantification of accuracy in watershed
simulations. Trans ASABE 2007;50:885–900.

Morison JIL. Intercellular CO2 concentration and stomatal response to CO2. Stanford,
USA: Stanford University Press; 1987.

Morison JIL, Gifford RM. Stomatal sensitivity to carbon dioxide and humidity. Plant
Physiol 1983;71:789–96.

Muleta MK, Nicklow JW. Sensitivity and uncertainty analysis coupled with automatic
calibration for a distributed watershed model. J Hydrol 2005;306:127–45.

Nash JE, Sutcliffe JV. River flow forecasting through conceptual models. Part I a
discussion of principles. J Hydrol 1970;10:282–90.

Neitsch SL, Arnold JG, Kiniry JR,Williams JR, King KW. Soil andWater Assessment Tool
Theoretical Documentation, Grassland, soil and research service, Temple, TX;
2005.

NOAA/ESRL. In: Pieter T, editor. NOAA ESRL DATA; 2010. www.esrl.noaa.gov/gmd/
ccgg/trends/.

Pervez MS, Brown JF. Mapping irrigated lands at 250-m scale by merging MODIS data
and national agricultural statistics. Remote Sens 2010;2:2388–412.

Piao SL, Yin L, Wang XH, Ciais P, Peng SS, Shen ZH. Summer soil moisture regulated by
precipitation frequency in China. Environ Res Lett 2009:4.

Pierce DW, Barnett TP, Santer BD, Gleckler PJ. Selecting global climate models for
regional climate change studies. Proc Natl Acad Sci U S A 2009;106:8441–6.

Pritchard SG, Rogers HH, Prior SA, Peterson CM. Elevated CO2 and plant structure: a
review. Glob Change Biol 1999;5:807–37.

Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. Validation of the
SWAT model on a large river basin with point and nonpoint sources. J Am Water
Resour Assoc 2001;37:1169–88.

Saxe H, Ellsworth DS, Heath J. Tree and forest functioning in an enriched CO2
atmosphere. New Phytol 1998;139:395–436.

Schaake JC. Water resources. In: Waggoner PE, editor. Water resources. New York: John
Wiley; 1990. p. 177–206.

Sharpley AN, Williams JR. EPIC—erosion productivity impact calculator, 1. model
documentation, U.S. Department of Agriculture, Agricultural Research Service.
Tech Bull 1990;1768.

Stockle CO, Dyke PT, Williams JR, Jones CA, Rosenberg NJ. A method for estimating the
direct and climatic effects of rising atmospheric carbon dioxide on growth and
yield of crops. 2. Sensitivity analysis at 3 sites in the Midwestern USA. Agr Syst
1992a;38:239–56.

Stockle CO, Williams JR, Rosenberg NJ, Jones CA. A method for estimating the direct and
climatic effects of rising atmospheric carbon dioxide on growth and yield of crops.
1. Modification of the EPIC model for climate change analysis. Agr Syst 1992b;38:
225–38.

Stone MC, Hotchkiss RH, Hubbard CM, Fontaine TA, Mearns LO, Arnold JG. Impacts of
climate change on Missouri River Basin water yield. J Am Water Resour Assoc
2001;37:1119–29.

Tabor K, Williams JW. Globally downscaled climate projections for assessing the
conservation impacts of climate change. Ecol Appl 2010;20:554–65.

159Y. Wu et al. / Science of the Total Environment 430 (2012) 150–160

http://www.nass.usda.gov/research/Cropland/CDL_Hisotry_MEC.pdf
http://www.nass.usda.gov/research/Cropland/CDL_Hisotry_MEC.pdf
http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission
http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission
http://www.ipcc-data.org/ddc_co2.html
http://www.ipcc-data.org/ddc_co2.html
http://www.esrl.noaa.gov/gmd/ccgg/trends/
http://www.esrl.noaa.gov/gmd/ccgg/trends/


Tebaldi C, Knutti R. The use of the multi-model ensemble in probabilistic climate
projections. Philos Trans R Soc A Math Phys Eng Sci 2007;365:2053–75.

Thomas MA, Engel BA, Chaubey I. Water quality impacts of corn production to meet
biofuel demands. J Environ Eng-Asce 2009;135:1123–35.

Tolson BA, Shoemaker CA. Cannonsville Reservoir Watershed SWAT2000 model
development, calibration and validation. J Hydrol 2007;337:68–86.

USGS. Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture
Dataset for the United States (MIrAD-US). U.S. Geological Survey Dataset. http://
earlywarning.usgs.gov/USirrigation/2002. accessed 1 March, 2012.

van Griensven A, Meixner T, Grunwald S, Bishop T, Diluzio A, Srinivasan R. A global
sensitivity analysis tool for the parameters of multi-variable catchment models. J
Hydrol 2006;324:10–23.

Vicuna S, Maurer EP, Joyce B, Dracup JA, Purkey D. The sensitivity of California water
resources to climate change scenarios. J Am Water Resour Assoc 2007;43:482–98.

Wand SJE, Midgley GF, Jones MH, Curtis PS. Responses of wild C4 and C3 grass
(Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic
test of current theories and perceptions. Glob Change Biol 1999;5:723–41.

Williams JR. Chapter 25. The EPIC Model. Computer Models of Watershed Hydrology.
Highlands Ranch, CO: Water Resources Publications; 1995. p. 909-1000.

Wilson CO, Weng Q. Simulating the impacts of future land use and climate changes on
surface water quality in the Des Plaines River watershed, Chicago Metropolitan
Statistical Area, Illinois. Sci Total Environ 2011;409:4387–405.

Winchell M, Srinivasan R, Di Luzio M, Arnold JG. ArcSWAT 2.3.4 Interface For
SWAT2005, Grassland, soil and research service, Temple, TX; 2009.

Wu Y, Liu S, Abdul-Aziz OI. Hydrological effects of the increased CO2 and climate
change in the Upper Mississippi River Basin using a modified SWAT. Clim Change
2012;110:977-1003.

Xu ZX, Zhao FF, Li JY. Response of streamflow to climate change in the headwater
catchment of the Yellow River basin. Quat Int 2009;208:62–75.

Young CA, Escobar-Arias MI, Fernandes M, Joyce B, Kiparsky M, Mount JF, et al.
Modeling the hydrology of climate change in California's Sierra Nevada for
subwatershed scale adaptation 1. J Am Water Resour Assoc 2009;45:1409–23.

Zhang XS, Srinivasan R, Bosch D. Calibration and uncertainty analysis of the SWAT
model using genetic algorithms and bayesian model averaging. J Hydrol
2009;374:307–17.

Zhou G, Wei X, Wu Y, Liu S, Huang Y, Yan J, et al. Quantifying the hydrological
responses to climate change using an intact forested small watershed in Southern
China. Glob Change Biol 2011;17:3736–46.

160 Y. Wu et al. / Science of the Total Environment 430 (2012) 150–160

http://earlywarning.usgs.gov/USirrigation/
http://earlywarning.usgs.gov/USirrigation/



