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ABSTRACT A smart home network will support various smart devices and applications, e.g., home
automation devices, E-health devices, regular computing devices, and so on. Most devices in a smart
home access the Internet through a home gateway (HGW). In this paper, we propose a software-defined-
network (SDN)-HGW framework to better manage distributed smart home networks and support the SDN
controller of the core network. The SDN controller enables efficient network quality-of-service management
based on real-time traffic monitoring and resource allocation of the core network. However, it cannot
provide network management in distributed smart homes. Our proposed SDN-HGW extends the control
to the access network, i.e., a smart home network, for better end-to-end network management. Specifically,
the proposed SDN-HGW can achieve distributed application awareness by classifying data traffic in a smart
home network. Most existing traffic classification solutions, e.g., deep packet inspection, cannot provide
real-time application awareness for encrypted data traffic. To tackle those issues, we develop encrypted data
classifiers (denoted as DataNets) based on three deep learning schemes, i.e., multilayer perceptron, stacked
autoencoder, and convolutional neural networks, using an open data set that has over 200 000 encrypted data
samples from 15 applications. A data preprocessing scheme is proposed to process raw data packets and the
tested data set so that DataNet can be created. The experimental results show that the developed DataNets
can be applied to enable distributed application-aware SDN-HGW in future smart home networks.

INDEX TERMS Encrypted traffic classification, home gateway, distributed network management, deep
learning, SDN.

I. INTRODUCTION

A smart home has a network that supports various types
of smart devices, including home automation, health care
and entertainment [1], [2]. Those smart devices are inde-
pendently operated and managed by network operators,
service providers and home users. Due to different net-
work quality-of-service (QoS) requirements, it is challeng-
ing to have efficient end-to-end network management for
smart home users [3], [4]. In this paper, we propose an
application-aware software-defined network (SDN) inspired

home gateway (HGW) framework (SDN-HGW) for dis-
tributed smart home networks.

SDN is an emerging and promising networking paradigm
to dramatically simplify network management, improve net-
work resource utilization, reduce operating costs and promote
innovation and evolution [5], [6]. Current SDN controller can
monitor and manage QoS in core networks [7], [8]. However,
end-to-end network QoS may not be managed by the SDN
controller due to different QoS requirements for applica-
tions and end users, as well as security and privacy issues.
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Moreover, the core network controller based solutions usu-
ally require relatively high computational resources [9], [10].
QoS management in a smart home network requires a
light-weight and distributed scheme to achieve local real-time
application awareness. To tackle this issue, our proposed
SDN-HGW framework leverages the concept of SDN for
its separated layers with advanced controls and flexibility in
computing resources [11]-[16].

For user privacy, many applications have applied security
protocols such as HTTPS, SSH, SSL etc [17], [18]. Most
existing solutions to application awareness are based on Deep
Packet Inspection (DPI) and Machine Learning (ML). How-
ever, those solutions cannot provide accurate real-time traf-
fic classification encrypted network applications [19]-[22].
In this work, we design and develop DataNets (i.e. encrypted
data packet classifiers) using three approaches: multilayer
perceptron (MLP), stacked autoencoder (SAE) and con-
volutional neural network (CNN), based on a selected
dataset from the “ISCX VPN-nonVPN” encrypted traffic
dataset [23]. As a proof of concept, the selected dataset has
more than 20, 000 data packets from 15 types of applications.
The experimental results show that the developed DataNets
can provide real-time and fine-grained application awareness
to SDN-HGW in distributed home networks. The major con-
tributions in this work are summarized as follows:

o An application-aware SDN-HGW framework is pro-

posed for smart home networks.

o DataNets are developed using three deep learning based
approaches for encrypted data classification based on an
open dataset.

« Experiments are conducted to demonstrate the accuracy
of the developed DataNets. Computational efficiency is
also evaluated with practical HGW settings.

The remaining of the paper is organized as follows.
Related work is discussed in Section II. The proposed
framework for application-aware SDN-HGW is illustrated
in Section III. The data preprocessing scheme is given in
Section IV. The core development of DataNets is described
in Section V. Evaluation and experimental results are given in
Section VI. Finally, conclusion and future work are presented
in Section VII.

Il. RELATED WORK

SDN is a new network paradigm that enables network infras-
tructure virtualization by decoupling the control and data
planes, creating a dynamic, flexible, automated and manage-
able architecture [1], [5]. SDN controller in the core network
is the key component of the whole SDN architecture which
mainly control SDN switches in order to manage the whole
data flow [1], [24]. While the SDN controller enables effi-
cient flow control, it cannot achieve distributed end-to-end
QoS management due to no control of end users.

Traffic classification has been widely studied in the net-
work management domain with three major approaches,
port based [25]-[27], statistical approach [28], [29] and pay-
load based [21], [22], [30], [31]. The port-based approach
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is one of the earliest for traffic classification. It uses
the association of the ports in the TCP/UDP header
with well-known TCP/UDP port numbers assigned by the
IANA [27]. Port-based approach is simple and fast. Nev-
ertheless, not all protocols can be classified by ports due
to dynamic port assignment and tunnels and Network
Address Port Translation (NAPT) [25], [26]. The statisti-
cal approach uses payload-independent parameters such as
packet length, inter-arrival time, flow duration etc. for clas-
sification. For example, DPI is one of the mostly accepted
techniques [21], [22], [31]. However, DPI techniques have
limitations regarding encrypted payload encryption, user pri-
vacy and tunneling transfer. Besides some customized statisti-
cal methods, many researches were carried out using Machine
Learning (ML) algorithms [29], [32], [33]. Although ML can
alleviate some limitations of DPI, existing flow-based solu-
tions cannot provide real-time, fine-grained traffic classifica-
tion to support application-aware smart home networks.

Recently, researchers have tried to apply deep learning
[34], [35] to traffic classification [36], [37]. Wang [36] pro-
posed an SAE based method to identify unencrypted data
traffic. However, the dataset was not open to the public and
the work did not demonstrate its application for encrypted
traffic. Lotfollahi et al. [37] introduced SAE and CNN based
methods to classify encrypted traffic. However, the evaluation
of computational performance was not provided.

In this work, we develop and evaluate DataNets using
three deep learning based approaches, MLP, SAE and CNN,
given the popularity of them in the community. Moreover,
a selected dataset from an open source with all encrypted
data traffic is used for DataNets development. The developed
DataNet is the core to the SDN-HGW that can help to achieve
distributed end-to-end network measurement and network
management in the SDN paradigm. The success of this work
will enable further development in networking, e.g. network
resource management, new business plans, etc., without
compromising security/privacy of service providers nor
users.

Ill. OVERVIEW OF THE APPLICATION-AWARE SDN
HOME GATEWAY FRAMEWORK

An overview of the proposed SDN-HGW framework is
shown in Fig. 1. The proposed framework is to provide
fine-grained and application-level traffic classification over
encrypted traffic from a SDN-HGW. The framework consists
of smart home infrastructure, data plane, control plane and
application plane, described in the following.

The smart home infrastructure is composed of smart
devices in a home network. Smart devices can be generally
divided into three types: home automation, healthcare and
entertainment [2]. All smart devices access the external net-
work (e.g., the Internet) through the SDN-HGW.

The data plane is at the SDN-HGW to provide distributed
network QoS management for the last hop to meet different
requirements of applications. As shown in Fig. 2, the pro-
posed SDN-HGW not only forwards packets through the
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QoS measurement
QoE Estimation
Network Monitoring
Malware Detection

Update deep-
learning based
traffic classifiers

Application Plane
----------- I—------------Northbound Interface----------I—-------------

‘ Label Traffic Flow ‘ ‘ Resource Allocation ‘ ‘ Update Classifier

Control Plane (SDN Controller)
----------- I—------------Southbound Interface----------I—-------------

Traffic Traffic Traffic
Classification Classification Classification

Data Plane (SDN-HGW)

Home Automation Healthcare Entertainment

Smart Home Infrastructure

FIGURE 1. Overview of the SDN-HGW framework.

southbound interface, but also acts as a probe for traffic
identification in smart home networks. First, the probe will
receive the packets from the raw packet collector, which
could be an eBPF program focusing on packet capturing
from the eBPF Datapath [38]. Secondly, the probe uses a
traffic classifier, which is defined as DataNet in the pro-
posed framework. Different from existing SDN controller
design, DataNet would require a local artificial intelligence
(or neural network) co-processor that is embedded in the
next-generation network gateway. The results will be tagged
as an ApplD for the SDN controller for further networking
management. Note that the proposed SDN-HGW can collect
edge traffic flows that may hardly be collected by the SDN
controller or core network. For example, some packets such
as ARP, DNS, DHCP, etc. may only be visible at the edge
network gateway [24].

The control plane is supported by the SDN controller for
three tasks. First, it labels each data flow with the probing

FIGURE 2. The internal software architecture of SDN-HGW.
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results from each SDN-HGW. Second, the SDN controller
periodically updates the DataNet and downloads the latest
classifiers to each SDN-HGW. Third, the SDN controller
manages network resources based on accurately labeled traf-
fic flows in the core network.

The application plane supports applications through the
northbound interface with the SDN controller. In particular,
a deep learning based training platform is deployed in the
application plane. The platform is responsible for creating
and updating DataNets from collected data samples from
various network applications. Note that the training platform
has much more powerful computing resources compared to a
SDN-HGW for fast and accurate DataNet development.

IV. DATA PACKET PRE-PROCESSING

DataNet is the core of the proposed SDN-HGW framework.
However, a raw data packet captured is not in ideal form
DataNet processing (and developing). For example, the data
packet used in this work is in PCAP or PCAPNG format [39].
A raw packet includes information that are unnecessary for
classification, e.g., total numbers of TCP/UDP/ICMP, etc.
In this section, we show the procedures for pre-processing
raw data packet and raw dataset to create DataNets at
the training platform, and to probe data packets at each
SDN-HGW.

A. PRE-PROCESSING PACKET BYTE VECTOR
Pre-processing a raw data packet has three steps, parsing,
truncating/padding and normalization. An overview of the
pre-processing procedure is shown in Fig. 3. A raw data
packet is processed byte by byte, similar to a pixel of an
image which can be easily imported to a deep learning based
classifier. Parsing is to remove the Ethernet header of a
raw data packet. Data-link layer information such as MAC
address, type of frame, etc., is not useful in packet classifica-
tion. The parsing process reduces the input size of a packet.
Moreover, some noise is filtered during the process for better
classification accuracy.

Truncating and zero-padding is to fix the size of each data
packet input to the classifier. An equal size of all inputs is
required for the proposed deep learning based packet clas-
sifiers. In particular, define n as the targeted input size for
DataNet, where 0 < n < 1500. The maximum transmission
unit has a size of 1500 bytes. An input packet is truncated or
zero-padded, depending on its length compared to n.

An input after truncating and zero-padding is defined as
a packet byte vector (PBV). For example, the i-th PBV is
described as follows:

X; = {xi1, Xi2, Xi3, - Xin) (N

where x;; denotes the j-th byte X;. Each PBV is then nor-
malized to [0, 1] for faster classification. For simplicity,
we assume X; is the normalized result of the i-th PBV.
Classification of a data packet is processed using the normal-
ized PBV.

VOLUME 6, 2018
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read raw data packet

Parsing raw traffic data

l read each packet

Packet data
Y 0 N
Truncating Zero-padding
l 1 % nvector l

Packet bytes vector

| 0255

Normalization

[0-1]
End

FIGURE 3. Raw data packet pre-processing.

B. PREPROCESSING PACKET BYTE MATRIX
To create DataNet, a dataset with labeled raw data packets is
processed in the steps as shown in Fig. 4.

The raw dataset is processed into a packet byte matrix
(PBM) X as follows:

X={x[.x3,....%0}", )

where (~)T is the transposition function, and m is the number
of raw data packet in the dataset. Fig. 5 shows an illustration
of a PBM.

Each PBV X; is associated with alabel L;, e.g., AIM, Email,
Netflix, etc. After preprocessing, the raw dataset is composed

read raw dataset

Each raw packet

L

Packet byte vector
pre-processing

_______________________________ .
i Packet byte matrix |
! =
¥ Normalized packet byte vector E Label
1
! !
1
: Normalized packet byte vector | | Label
i i
1 1
1 1
i i
1 1
! i
—5—b| Normalized packet byte vector | | | Label |
pd

End
FIGURE 4. Preprocessing the training dataset.
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1 | Ox3A | Ox00 | OxBE | OXAF | Ox67 | Ox87 | ... ... | Ox4B | Ox51| 0x09 | Ox13 | OXAF
2 OxBF | OXAS | OxF6 | OXA8 | Ox6A | Ox73 | ... ... | 0x00 | 0x00 | 0x00

3 0x29 | 0x80 | Ox23 | OxE9 | Ox73 | OXE7 | ... ... | 0x58 | 0x00 | 0x00

4 | Ox65 | Ox44 | 0x37 | Ox7F | Ox14 | OxBB | ... ... | Ox3A'| 0x02 | 0x03 | OxB9

5 0x38 | 0x52 | OXAE | Ox87 | Ox1A| OxCB | ... ... | 0x98 | Ox44 | 0x00

m-1 | Ox5A | Ox1F | OxBB | 0x96 | Ox68 | OxC9 | ... ... | OxDD | 0x85 | 0x53 | Ox25 | OXED
m | OxF4 | OxCF | OxFE | OXAF | 0x93 | OxD7 | ... ... | 0x00 | 0x00 | 0x00

FIGURE 5. lllustration of a Packet Byte Matrix.

of a PBM and a label vector, described as follows:

X1 L
X> Ly

X=] . [«—|. 3
Xm Ly,

An example of a labeled PBM is shown in Table 1. Since
dimension of data varies even for the same class of applica-
tion, a fixed size will ease the maintenance and update with
more future applications added to the system. Without loss of
generality, 1480 is chosen for the rest of this work.

TABLE 1. Examples of the packet byte matrix with labels.

No | Label | Packet Byte Vector | Inputsize n | Original size
1 AIM 1480 42

2 Email 1480 108

m | Netflix 1480 1480

V. DEEP-LEARNING BASED ENCRYPTED DATA
CLASSIFIER (DATANET) DESIGN

After preprocessing, X is applied to create DataNet, i.e.
encrypted data packet classifiers. In particular, we develop
three types of DataNet based on Multi-Layer Perceptron
(MLP), Stacked AutoEncoder (SAE) and Convolutional Neu-
ral Network (CNN) respectively.

A. MLP BASED DATANET

MLP is a class of feedforward artificial neural net-
work (ANN) as shown in Fig. 6. A MLP consists of three
or more layers. The first layer is for input data, i.e.,aPBV X;.
One or more hidden layers extract features from the input.
The last layer outputs a classification result. Each hidden
layer, e.g., the i-th layer, is composed of multiple neurons that
is mainly a nonlinear activation function as follows:

f@) =0 (W("> X+ b@) , )
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Output
Layer
[~ Netflix
O [ Facebook

f— Gmail

RelU

[— Skype
[— Spotify
f— Youtube

O-00
]
OO0O0O
1

Softmax
Classifier

FIGURE 6. Overview of the MLP based DataNet.

where o (-) is an activation function, e.g., o(x) = tanh(x).
The important characteristic of the activation function is that
it provides a smooth transition as input values change. W is
a weight matrix and % is a bias vector. There may be more
than one hidden layer. Each layer passes through the same
function with a different weight matrix and a bias vector. The
final layer outputs the results of the last hidden layer, e.g.,
layer j, as follows:

o(x) = g (W<f> x4 b(f)) . (5)

The MLP structure specified for the proposed packet clas-
sifier is shown in Fig. 6. It consists of one input layer, two
hidden layers and one output layer. Using the full size of the
data packet as an example, the input layer has 1480 inputs.
The two hidden layers are composed of 6 and 6 neurons
respectively. The output layer is composed of 15 neurons with
Softmax as classifier. The classification process is defined as
follows:

1) Input PBV X; = {xi1, xi2, . .., Xin} to the first hidden

layer and compute the output as follows:

D= whes X;) + b(l), (6)

where o (-) is the activation function, i.e. a rectified
linear unit (ReLU). ReLU is a non-linear operation as
follows:

ReLU (x) = max[0, x]. @)
2) For hidden layer 2 compute the output as follows:
@ — W (Za)) b2, 8)
3) A fully-connected layer with a Softmax classifier out-
put the final results as follows:
. expd
yE e
> expz

where 7 is the output of the j-th neuron. Y =
{1, Y2, 3, .....yn } is the complete set of classes, and N
denotes number of classes. The output with the highest
probability indicates the class of the input value.

©))
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In our MLP model, we use cross entropy as loss function
and the calculation of gradient and updates of weights and
bias are defined as follows:

1) Calculate the loss function of cross entropy between the
output value and the label value as follows:

n
L=-7) yilnf(x,0), (10)
i=1
2) Update weights and bias using gradient descent as
follows:
oL
W= w—1n—,
ow
b<b oL (11)
<~ b—n—.
Tob

To start the training process, training parameters are set as
{Ne, M, n}, where N, is the maximum number of Epoch,
M is the size of mini_batch used in the stochastic gradient
method, 7 is the learning rate. The complete process for the
training process is summarized in Alg. 1. Without loss of
generality, the algorithm only summarizes the basic structure
of the process. Stopping criteria such as validation is not given
in the description.

Algorithm 1 MLP Based DataNet Training
Require: Training data, training parameters
Ensure: MLP based DataNet.

1: fort =1toN, do

2:  for each batch of M input data do
For each training samples X; € X:
Compute the output using Eq. (6);
Process with activation function Eq. (7);
Compute the output using Eq. (8);
Process with activation function Eq. (7);
Output classification results according to Eq. (9);
Compute the training error according to Eq. (10);
10: Update weights and bias according to Eq. (11);
11:  end for
12: end for

R A

B. SAE BASED DATANET
We propose to design a classifier based on stacked autoen-
coders (SAE) [40]. An autoencoder is usually used for dimen-
sionality reduction or feature extraction. In general, autoen-
coders are used for automatic features extraction. As shown
in Fig. 7, the proposed SAE architecture consists of five
layers, input, three encoders and the output layer. The input
layer has a size of 1480, and the three encoders are stacked
with sizes of 740, 92 and 32 neurons respectively.
The classification process is defined as follows:
1) Input PBV X; = {x;1, x;2, ..., xj»} with 1480 neurons
to the first hidden layer, Encoder 1 with 740 neurons
and compute the output using Eq. (6).

VOLUME 6, 2018
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Encoder 1 (740 neurons)
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o

c
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FIGURE 7. Overview of the SAE based DataNet.

2) After activation of ReLU according to Eq. (7),
the results are as input to the second hidden layer,
Encoder 2 with 92 neurons and using Eq. (8).

3) The same with above mentioned, after activation of
ReLU, the results are as input to the third hidden layer,
Encoder 3 with 32 neurons.

4) A fully-connected layer with a Softmax classifier out-
put the final results as Eq. (9).

The training process of the classifier has two steps: training
encoders; and training the classifier. As shown in Fig. 8, three
encoders are trained in a greedy layer-wise fashion [41]. The
process to train Encoder 1 is described as follows:
1) Input PBV X; = {xi1, xi2, ..., Xin}, where n = 1480 in
this design. Compute the output using Eq. (6). The pro-
cess the results with an activation function, i.e. Eq. (7).

2) After activation with ReLU, the results are input to the
output layer (i.e. Decoder 1 with 1480 neurons) and
compute the output using Eq. (8) and the activation of
Eq. (7).

3) Compute the reconstruction errors between input and

output using mean squared error as follows:

1 m
o) = — ; e? (k) (12)

where ej(k) = ¥j(k) — yj(k) is the error between the
output and the targeted value and m is the number of
samples.

4) Update the weight matrices based on the least
mean squares algorithm through back-propagation.

E Encoder 2

FIGURE 8. Encoder training for SAE based DataNet.

Encoder 1

Encoder 3

Decoder 1
Autoencoder 2
Decoder 2
Autoencoder 3

Decoder 3

Autoencoder 1

O -0 O O]

O
O
O
O
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The change in each weight is as follows:

. de(k)

Aw;(i) = —n 8zj(k)z’(k) 13)
where z; is the output of the previous neuron and 7 is
the learning rate.

Encoder 1 is the input of successive layer to train Encoder 2
in a similar way, where the size of each layer is updated to
targeted size. Encoder 3 is trained with Encoder 2 as the input.

Algorithm 2 SAE Based DataNet Training
Require: Training data, training parameters
Ensure: SAE based DataNet.

1: Initial training dataset X:

2: for Three encoders do

3: fort=1toN, do

4 for each batch of M input data do

5 For each training samples X; € X:
6: Compute the output using Eq. (6);
7
8
9

Process with activation function Eq. (7);
Compute the reconstruction error, i.e. Eq. (12);
Update the weights and bias according to
Eq. (13);

10: end for

11:  end for

12:  Use the current Encoder as the input of the successive

layer.
13: end for
14: Train the DataNet based on Alg. 1.

In the second step of SAE based DataNet training, the final
classifier can be trained using Alg. 1, given all three encoders.
Note that the input has a size of 32 instead of 1480. The
complete process for training the SAE based DataNet is
summarized in Alg. 2. The training parameters are set as { N,
M, n}, where N, is the maximum number of Epoch, M is the
size of mini_batch used in the stochastic gradient method, 1
is the learning rate.

C. CNN BASED DATANET

We develop encrypted packet classifiers based on CNN [42].
CNN is a typical deep learning network applied for classi-
fication. Different from a typical deep neural network, e.g.,
the artificial neural network, CNN applies function convolu-
tions, as follows:

y(t) = x(1) * (1), (14)

where x() is the input function and w(¢) is the kernel function.
A CNN structure consists of three types of layer: input layer,
hidden layer and output layer. Computational features include
local receptive field, shared weights and bias, and pooling,
as described below.

1) LOCAL RECEPTIVE FIELD
In an ordinary neural network, the inputs are depicted as a
vertical line of neurons. In CNN, the layers have neurons
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arranged in three dimensions: width, height, depth. Each
neuron in the /-th layer is connected to a small region of the
neurons from the previous layer. The small region is called the
local receptive field. We slide the local receptive field across
the entire (I — 1)-th layer. And there will be a different neuron
in the /-th layer for each local receptive field.

2) SHARED WEIGHTS AND BIASES
transition from a layer to the next layer is defined by a weight
matrix and a bias, e.g.,

fCeiwi b) =" wixi + b. (15)

In CNN, the weight matrix and the bias are usually shared for
different transitions. The shared weights and bias are often
called as kernel or filter. The advantage of applying shared
weights and biases is that it greatly reduces the number of
parameters.

3) POOLING

Pooling is an important component of a CNN. A pooling
layer is usually used after a convolutional layer to reduce
the dimensionality of the results from convolution. In the
mean time, pooling would retain most information with the
reduced dimensionality. One common procedure for pooling
is max-pooling. In max-pooling, a pooling unit outputs the
largest element within a rectangular subregion. Other popular
procedures for pooling include average pooling, L2 pooling,
etc.

FIGURE 9. Overview of the CNN based DataNet.

The CNN structure specified for our proposed packet clas-
sifier is shown in Fig. 9. It consists of three convolution
layers, 2 Maxpooling layers and a fully-connected layer with
Softmax as classifier. Since the input data packet is converted
into a two-dimensional (2D) matrix, we will discard depth
and focus on processing the 2D data. The classification pro-
cess is defined as follows:

1) The first convolutional layer processes the input data
with 8 filters, where each filter has a size of [3, 3]. Each
filter moves 1 step after one convolution operation.

2) Results of the convolution layer are input to an activa-
tion function, i.e. Eq. (7).
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3) After activation of ReLU, the results are then processed
through max pooling. In each step, the max pooling
processes a [2, 2] input as follows:

max pooling [il §2:| = max(xq, x2, x3, x4). (16)
3 X4

The max pooling has a step size of 1.

4) The outputs of the max pooling are processed by
the second convolutional layer with 16 [3, 3] filters.
The step size in this layer is 2.

5) An activation of ReLU (i.e. Eq. (7)) follows to process
the outputs.

6) The max pooling in the second layer has a size of [2,2]
and step size 2.

7) The third convolutional layer has 32 [3, 3] filters.

8) A fully-connected layer with a Softmax classifier (i.e.
Eq. (9)) outputs the final results.

In the model training process, a loss function is defined
based on cross entropy, i.e., Eq. (10). Stochastic gradient
method is applied to find weights and bias that computes the
minimum loss.

To start the training process, training parameters are set
as {N,, M, n, K, S}, where N, is the maximum number of
Epoch, M is the size of mini_batch used in the stochastic
gradient method, 7 is the learning rate, K is the number of
filters, S is the step length. The complete training process is
summarized in Alg. 3.

Algorithm 3 CNN based DataNet training
Require: Training data, training parameters
Ensure: CNN based DataNet.

1:

2: fort =1to N, do
3:  for each batch of M input data do
4 For each training samples x € X:
5: Compute the convolutional results;
6: Compute according to Eq. (7);
7
8
9

Max pooling according to Eq. (16);
Output classification results according to Eq. (9);
: Compute the training error according to Eq. (10);
10: (W, b) < argminL;

11:  end for
12: end for

VI. EVALUATION AND EXPERIMENTAL RESULTS

In this section, we present the experimental results to evaluate
the accuracy of the proposed DataNets. Moreover, we also
compare the computational resource requirements for the
three developed DataNets.

A. EXPERIMENT SETTINGS
1) DATASET FOR EVALUATION

The dataset for evaluation is selected from the “ISCX
VPN-nonVPN traffic dataset” [23]. As shown in Table 2,
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TABLE 2. Description of the chosen datasets.

Application ‘

‘ Full dataset

‘ Balanced dataset

Security
‘ Protocol ‘ Quantity Percentage ‘ Quantity Percentage
AIM HTTPS 4869 2.356% 4869 6.634%
Email-Client SSL 4417 2.137% 4417 6.018%
Facebook HTTPS 5527 2.674% 5527 7.531%
Gmail HTTPS 7329 3.546% 5000 6.813%
Hangout HTTPS 7587 3.671% 5000 6.813%
1CQ HTTPS 4243 2.053% 4243 5.781%
Netflix HTTPS 51932 25.126% 5000 6.813%
SCp SSH 15390 7.446% 5000 6.813%
SFTP SSH 4729 2.287% 4729 6.443%
Skype proprietary 4607 2.229% 4607 6.277%
Spotify proprietary 14442 6.987% 5000 6.813%
torTwitter proprietary 14654 7.089% 5000 6.813%
Vimeo HTTPS 18755 9.074% 5000 6.813%
voipbuster proprietary 35469 17.161% 5000 6.813%
Youtube HTTPS 12738 6.163% 5000 6.813%
TOTAL | 206688 100% | 73392 100%

the total dataset for evaluation is composed of 15 applications,
e.g., Facebook, Youtube, Netflix, etc. The chosen applica-
tions are encrypted with various security protocols, including
HTTPS, SSL, SSH, and proprietary protocols. A total of
206, 688 data packets are included in the selected dataset.
To reduce impacts from imbalanced dataset [43], e.g., Netflix
accounts for 25.126% of the total dataset, we further create a
subset with more balanced data samples for each application.
The balanced subset has a total of 73, 392 data packets. It is
composed of the same 15 applications, where each class
accounts for around 6.18% of the total subset.

2) CONFIGURATIONS OF THE COMPUTING PLATFORM

The performance evaluations are conducted using a Thinkpad
laptop computer with an Intel 17-7600U CPU at 2.8 GHz,
8 GB RAM and an external GPU (Nvidia GeForce GTX
1080) connected through Thunderbolt 3. The data preprocess-
ing is based on Python package Scapy [44] to parse PCAP
file. The software platform for deep learning is built on Keras
library [45] with Tensorflow [46] (GPU-based version 1.4.0)
as the back-end support.

3) PERFORMANCE METRICS
The performance metrics used for evaluations are Precision,
Recall and F| score [47].

P

o Precision: precision r), is the ratio of true positives n;
over the sum of n% and false positives nk. In the pro-
posed classification methods, precision is the percentage
of packets that are properly attributed to the targeted
application.

ny
= n’TJ +n§' a7

e Recall: recall r. is the ratio of n; over the sum of n’T)
and false negatives n’}’ or the percentage of packets in
an application class that are correctly identified.

P
n
T
re= 5 —x- (18)
ny +ng
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e Fy-score: the Fy score ry is a widely-used metric in
information retrieval and classification that considers
both precision and recall as follows:

. 2rp - e

Iy = (19)

rp+re

For simplicity, the evaluations in this work are conducted
with full-size data packets, i.e., 1480 bytes per packet. Dif-
ferent settings for truncating/padding will be evaluated in our
future work.

B. CREATING DATANETS

We first create two sets of DataNets trained from the full
dataset and the balanced dataset respectively. Each set of
evaluation consists of three DataNets trained from the three
proposed methods, i.e., MLP, SAE and CNN based ones.
Each training process uses 60% for training, 20% for valida-
tion and 20% for test. In total, the accuracy of 6 DataNets are
evaluated for the packet classifier of an SDH-HGW. Settings
for the three methods are given in Table 3.

TABLE 3. Settings for DataNet training.

Max Ne M n Optimizer
MLP based DataNets 100 128 | 0.01 SGDM
SAE Encoders 100 256 | 0.01 ADADELTA [50]
SAE based DataNets 100 256 | 0.01 ADAM [51]
CNN based DataNets 100 256 | 0.01 SGDM

C. CLASSIFICATION ACCURACY OF THE DATANETS

The accuracy of each DataNet model is evaluated with
50 tests. Each test is conducted using a randomly chosen

P MLP-Full
o SAE-Full
3 — — —CNN-Full
<< MLP-Balanced
SAE-Balanced
— — — CNN-Balanced
04+E I I I I I I I I I |
0 10 20 30 40 50 60 70 80 90 100
epoches
(@
2
MLP-Full
SAE-Full
1.5 — — —CNN-Full

| MLP-Balanced
SAE-Balanced
— — — CNN-Balanced

0
0 10 20 30 40 50 60 70 80 90 100
epoches

(®)

FIGURE 10. Training accuracy and loss. (a) Training accuracy. (b) Loss
function.

55387



IEEE Access

P. Wang et al.: Datanet: Deep Learning-Based Encrypted Network Traffic Classification in SDN HGW

Traffic Cl Traffic Cl

Confusion Matrix (SAE with full-size dataset)

Traffic Cl

Confusion Matrix (MLP with full-size dataset) Confusion Matrix (CNN with full-size dataset)

1600

1600

1600
AIM_chat §EHY 2 8|2 f1wfofoflz2f2[1)o0f1]|s]0 AM_chat REEY o (18 [ 8 |1 [ss|o oo o1 |[0o|o]o]0 aim_chat 88 o 72 0 |ofo|ofofofofo]o
3 o220 0 o 1 0 o 0 0 o il 576 0 1 0 0 0
email 1400 email 1400 email 1400
facebook | 19 wslofof o1 Jofo]1]0 facebook o o ] facebook o 3
g gmail [31 [ 1| 3 o o2 ofofo|1]s]| 20 g gmail o 1 o 3o 20 g gmail o ) 1200
?El hangout | 5 | o | 28 P 2 | oo |1 [ofofof|o|1]|0 ?El hangout 0 57 0 oo _E hangout 0 0
s icalns| 1 [0 [z] 1 oo |1 |z2]1 |0 o8]0 1000 § icalz o181 o e 1000 § icQ o o 1000
o ix[ 0 | o |0 |o|o|oREdo|o||5|o]z]o0]o o o oo |o]o s o | o o o 5 o
g remx o g remx g remix
{= scpDown [ 0 [ o | o oo oo 1lofofofo|1]|o 800 = scpDown |0 |0 |00 |0 oo 800 = scpDown | o o Rl o 800
£ stppown | 1 [ o [0 [+ |0 |3 [o|o B o[ [o]o]]0 £ stipbown [0 [0 [0 [0 [0 o | o g sfioDown | o o 6
£ skype [s [ 1 [s|s[1|7]a]0 1510 o [14 ]| n 600 & skype [0 | o [0 [0 [ o s 600 & skype | 1 1o o0 600
8 8 8
B spotify| 3| o |1 [z2]1|2]|6s 0|18 0 1|4 B spotify [ o | o |1 |00 o |1 B spotify | 0 BERE
g g g
< tortwitter [ 0 | o [0 [o [ o[+ [ 1000 & oo 400 < yorTwitter | 0 [ o [0 [0 [0 oo 400 < torTwitter | o oo o 400
vimeo [ 1 [0 [+ [+ [o [+ [+ o] vimeo [ 0 [0 [0 [0 [0 ' vimeo | o s [o]o s
200 200 . 200
voipbuster | 2 | 0 [ 1[5 [ o [ s [0 [0 [0 [0 voipbuster | 0 [ o [0 [1 [0 voipbuster | 1 oo o o
youtube [ 0 | o [0 [0 oo [2]0 |01 o youtube [ 0 [ 0 [0 [0 [0 o youtube | o ofofo 1 o
NN NS NN NS NN NS
& D & > O o & o & D xS O S & & D & D SHP O & )
PP S E S S \\@ & PRI ECF S N LS FLIL S ECT SIS E
& € S LS %/\«44 & € F S S QOO(;;R/\%‘AQQ o &8 S TS T LS
© P S N « A SR & & 2 L A EANES ) K

Applications Traffic Samples

(a)

Applications Traffic Samples

(d)

Applications Traffic Samples

(c)

Traffic Cl

Traffic Classification Confusion Matrix (MLP with balanced dataset) Confusion Matrix (SAE with balanced dataset) Traffic Classification Confusion Matrix (CNN with balanced dataset)

1600 1600
AM_chat BB 1 [rz2] 7 [ o [0 [ o 11 Jof1]o]o0 AM_chat [EY o 1 Jw]ofofofofofo oo]o 1500 AM_chat [0 o
o i o z[ofofofofofolafo]0
email 1400 email email 1400
facebook 61 o facebook w5 1o oo 1|1 [o]o]o]o facebook
g omel 1 2 1 20 g omail o [o [ [ [ o] ] g oma 1200
S hangout o 7 o S hangout o 570 o [ofofofofo]o]o]o B hangou 12
S icQ o 2 | o o 1000 3 icQ o[+ |s|o BB o o1 [o]ofo|o|o]0 1000 § icQ o 1000
© i ° o
2 netfix | o [0 [ 2 [o |00 2 £ netflix | o [ o [ o [ o | o[+ B oo am]|n]s|w|o]7 £ netlix o
2 scpbown [0 [0 [o oo 0 800 | scpDown | o [o[o o000 oo [olofo]0 £ scpDown o 800
§ sftpDown [ 0 [ o | o |1 |0 |3 1 § sftpDown [0 [ o [ o [0 |0 |3 |0 1 oo g sftpDown o
5 skype| 1o |3 [1]o]s o 600 % skype| o |0 |0 |2 |1 |40 o e T skype o o 600
8 8 8
‘S spotify| 3 o s 1|16 o T ospotify | 1 o6 |11 |36 ) 500 g spotity 2 1
< torTwitter [ 0 [ o [ 1 [0 [0 [ o 400 < yortwitter | 0 [0 [0 [0 [0 [ 1 [ o < torTwitter 1 o 400
vimeo| o [o [s [ 1[0 ] o vimeo| 1 [0 [2[o o1 s o vimeo o o
200 " 200
voipbuster | 6 [ o [ 7 [ s [ 1 [w o voipbuster | 18 | o [ 4 |16 ] 2 |21 [0 voipbuster 1 o
youtube [ 0 [0 [0 [0 [0 [0 o . youtube [ 0 [0 [0 [0 {0 |00 . youtube o o o .
NN NS NN NS 5 NN NS
& & & O & © & & & & & S S S & D & D SP & &L
Kye@@o@(}\o&«\e\ﬁ \\\(\oe\v §e@@°@<§\& S S EE S :?@@cf’“@&\"e*‘o*‘e\d&qx\§§y
&7 & O & <> o /\é 3 N Q7 & O & & TS TS Q7 & O & TS 3 S
© o K & © S & S & ?x IS & o5 By

Appncauons Traffic Samp\es

(d

Applications Traffic Samples

()

Applications Traffic Samp\es

()

FIGURE 11. Classification results of the six DataNets (average values from 50 tests). (a) MLP based DataNet (full dataset). (b) SAE based DataNet (full
dataset). (c) CNN based DataNet (full dataset). (d) MLP based DataNet (balanced dataset). (e) SAE based DataNet (balanced dataset). (f) CNN based

DataNet (balanced dataset).

balanced subset from the full dataset. In each chosen subset,
40% are randomly chosen for classification test. For example,
to test Netflix, 5000 samples are randomly chosen from the
total pool of 51, 932. Then 2, 000 samples are further selected
for classification test. The average of results of Precision,
Recall and F1-Score are presented for each DataNet. Training
Accuracy and Loss of 6 DataNets are shown in Fig. 10(a)
and Fig. 10(b). All three approaches show promising conver-
gence in training DataNets. The evaluation results of the six
DataNets are summarized in Table 4.

TABLE 4. Classification accuracy of the DataNets.

For better illustration, Fig. 11 shows the average results of
the detailed classification for each DataNet. The elements on
the diagonal of confusion matrix present accurately classified
results. The inaccuracy of ICQ classification using MLP
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DataNets can be verified from Fig. 11(a) and Fig. 11(d).
As we can see, many ICQ packets are wrongly classified
as AIM_Chat and vice versa. Similar results for SAE based
DataNets (Figs. 11(a) and 11(d)) and CNN based DataNets
(Figs. 11(c) and 11(f)) are also given. We can see that both
SAE and CNN DataNets have better performance in classi-
fying the two on-line chatting applications. More discussion
on each type of DataNet is given below.

The evaluation results of MLP based DataNets are shown
in Fig. 12. The MLP DataNet trained from the full dataset
achieves high precision for most applications, as shown
in Fig. 12(a). Specifically, Email, Netflix, ScpDown, Sft-
pDown and TorTwitter are close to 100%. Precision of

MLP SAE CNN . .
T B T R Baeed Rl Balesd AIM_Chat and ICQ has a relatively low precision at 88%
Precision and 83% respectively. Similarly, recall and FI-score are high
Maximum | 09714 00420 | 09914 09741 | 09930 09754
Average 09657 09342 | 09883 09692 | 09847  0.9696
Minimum | 09595 09254 | 09851 09642 | 09628  0.9633
Recall
Maximum | 09717 00403 | 09915 09737 | 09920 09746 =
Average 09653 09309 | 09881 09678 | 09842  0.9685
Minimum | 09582 09226 | 09847 09619 | 09613  0.9623
FI1-Score
Maximum | 0.9694 09375 | 09905 09723 | 09891 _ 09732
Average 09653 09308 | 09882 09678 | 09843  0.9685
Minimum | 09603 09235 | 09855 09641 | 09656  0.9634

SEE OSSP
s **%"eﬁ 4@ St

(b)

FIGURE 12. Testing results of MLP based DataNets. (a) Trained from full
dataset. (b) Trained from balanced dataset.
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for most applications except AIM_Chat and ICQ. Three met-
rics of most applications achieve an average result of 96%.
In comparison, the MLP DataNet trained from the balanced
dataset has relatively low performance. In fact, the recall of
Spotify classification is even lower than 80% with the MLP
DataNet trained from the balanced dataset.

The evaluation results of SAE based DataNets are shown
in Fig. 13. We can see that all precision, recall and F1-Score
are much higher than MLP based DataNets. All three metrics
achieve an average result of 98% for SAE based DataNets.

P OF P ITOCT AL E DS @SS
' & O S 0“4@9\‘*%‘}°\«*‘ S
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S F D ITE S E S
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FIGURE 13. Testing results of SAE based DataNets. (a) Trained from full
dataset. (b) Trained from balanced dataset.
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FIGURE 14. Testing results of CNN based DataNets. (a) Trained from full
dataset. (b) Trained from balanced dataset.

The evaluation results of CNN based DataNets are shown
in Fig. 14. As we can see, the CNN based DataNets achieve
even better results of precision, recall and F1-Score. All three
metrics achieve an average result of 98%.

D. COMPUTATIONAL PERFORMANCE

We then evaluate the computational performance of the three
types of DataNets. Without loss of generality, the three
DataNets trained from the balanced dataset are used for
evaluation. 50 tests are performed for each DataNet. Each
test records the computational performance of classifying
150, 000 data packets. With a relatively powerful configura-
tion, e.g. the configurations set for training, the classification
processes can be performed in real-time for a home network
with a bandwidth over 100 Mbps, as shown in Table 5.

In order to achieve real-time network management for a
local user (e.g., a home user), the proposed DataNets shall
be processed at the SDN-HGW instead of the SDN core
network controller. Nonetheless, an SDN-HGW has limited
computational on CPU, memory and flash. We conduct a
case study with an SDN-HGW configured with a 4-core CPU
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TABLE 5. Computing performance with GPU settings.

MLP DataNet | SAE DataNet CNN DataNet
Speed 76 ps/step 146 ps/step 104 ps/step
Bandwidth 158 Mbps 82 Mbps 115 Mbps
GPU usage 3—-5% 7—9% 5—7T%

TABLE 6. Computing performance with HGW settings.

MLP DataNet | SAE DataNet CNN DataNet
File Name MLP.h5 SAE.h5 CNN.h5
File Size 178KB 12681KB 1467KB
# Parameters 12943 1359463 182927
F1-Score 0.9653 0.9882 0.9843
Per-step speed 91 ps/step 339 ps/step 2.61 ms/step
Bandwidth 131 Mbps 35.4 Mbps 4.6 Mbps
CPU usage 7—8% 19 — 21% 59 — 63%
Memory usage | 31MB 53.81MB 137.35MB
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FIGURE 15. Analysis of CPU usage on an SDN-HGW.

(with more than 1500 DMIPS), 512 MB RAM and 128 MB
Flash. As shown in Table 6, the MLP DataNet has the most
computational efficiency. It can process over 10, 900 packets
per second, or roughly 16.48 MB. In other words, real-time
processing capability of MLP DataNet is over 131 Mbps.

Due to different complexity of the schemes, CPU and
memory usages may vary. As shown in Fig. 15, the MLP
based DataNet consumes the least computing resources
amongst the three schemes, thus providing the largest band-
width for real-time processing. We will further study this
matter for better performance in the future work.

VII. CONCLUSION

In this paper, we proposed an SDN-HGW framework to
support distributed end-to-end network QoS management.
The core of the proposed SDN-HGW framework is DataNet,
a deep learning based encrypted data packet classifier. The
proposed DataNets are developed with three approaches,
including MLP, SAE and CNN. An open dataset with more
than 20, 000 packets from 15 applications were used to
develop and test the proposed DataNets. The experimental
results showed that the developed DataNets can be applied
to the proposed SDN-HGW framework with accurate packet
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classification and high computational efficiency for real-time
processing in a smart home network. In the future work,
we will continue to improve the performance of DataNets
and apply them to enhance network resource management,
to enable new business plans, etc., without compromising
security/privacy of service providers nor users.
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