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SURVIVAL AND SELECTION OF MIGRATING SALMON FROM
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Abstract. Capture–recapture studies are powerful tools for studying animal population
dynamics, providing information on population abundance, survival rates, population
growth rates, and selection for phenotypic traits. In these studies, the probability of ob-
serving a tagged individual reflects both the probability of the individual surviving to the
time of recapture and the probability of recapturing an animal, given that it is alive. If both
of these probabilities are related to the same phenotypic trait, it can be difficult to distinguish
effects on survival probabilities from effects on recapture probabilities. However, when
animals are individually tagged and have multiple opportunities for recapture, we can
properly partition observed trait-related variability into survival and recapture components.
We present an overview of capture–recapture models that incorporate individual variability
and develop methods to incorporate results from these models into estimates of population
survival and selection for phenotypic traits. We conducted a series of simulations to un-
derstand the performance of these estimators and to assess the consequences of ignoring
individual variability when it exists. In addition, we analyzed a large data set of .153 000
juvenile chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) of known
length that were PIT-tagged during their seaward migration. Both our simulations and the
case study indicated that the ability to precisely estimate selection for phenotypic traits
was greatly compromised when differential recapture probabilities were ignored. Estimates
of population survival, however, were far more robust. In the chinook salmon and steelhead
study, we consistently found that smaller fish had a greater probability of recapture. We
also uncovered length-related survival relationships in over half of the release group/river
segment combinations that we observed, but we found both positive and negative rela-
tionships between length and survival probability. These results have important implications
for the management of salmonid populations.

Key words: behavioral variability; capture–recapture; chinook salmon; individual covariates;
mark–recapture; model averaging; Oncorhynchus mykiss; Oncorhynchus tshawytscha; PIT tag; se-
lection; steelhead; survival.

INTRODUCTION

Animal populations typically exhibit behavioral het-
erogeneity, and this can confound efforts to understand
population dynamics. Capture–recapture experiments,
for example, yield information on population abun-
dance, life-stage-specific survival, population growth
rate, and selection for phenotypic traits (Seber and
Schwarz 2002), but behavioral variability arising from
genetic heterogeneity, variability in developmental lev-
el, or phenotypic plasticity can lead to differential prob-
abilities of recapture within populations. Studies that
ignore differential recapture probabilities can produce
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biased estimates of population abundance (MacKenzie
and Kendall 2002), selection coefficients (Endler
1986), or survival (Lebreton et al. 1992). Of particular
concern is when a phenotypic trait is related to both
recapture and survival probabilities, because studies
that only have one opportunity to recapture animals
cannot distinguish between differential recapture rates
and selection. For example, Janzen et al. (2000) ob-
tained different estimates of size-based selection of
slider turtles depending on which assumptions they
made about non-observed individuals. Thus, under-
standing the behavioral variability within populations
is often critical for estimating population-level attri-
butes such as life-stage-specific survival rates, infor-
mation that is crucial for managing at-risk populations.

To address this, recent advances in capture–recapture
methodology have focused on incorporating individ-
ually varying traits into capture–recapture models (Pol-
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FIG. 1. Schematic diagram of the recapture
and survival processes. Note that we cannot es-
timate fn and pn separately, so they are com-
bined such that b 5 fn pn.

lock 2002). When individuals are uniquely identifiable
and have multiple opportunities for recapture, it is pos-
sible to distinguish differential effects on recapture and
survival probabilities. Also, advances in tagging tech-
niques have enhanced our ability to monitor popula-
tions. A notable example is the passive integrated tran-
sponder (PIT) tag (Prentice et al. 1990a), which lends
itself to multiple recaptures of uniquely tagged indi-
viduals. Tagging animals with the small (12-mm) tag
is relatively benign because ‘‘recapturing’’ individuals
often does not require handling: many PIT-tag exper-
iments deploy automatic detectors that record the pres-
ence of individuals in both natural habitats (Roussel et
al. 2000) and man-made structures (Prentice et al.
1990b). Worldwide, researchers have used PIT tags to
study taxa as wide-ranging as sea urchins (Hagen 1996)
and manatees (Wright et al. 1998). In the Columbia
River Basin, hundreds of thousands of juvenile sal-
monids (Oncorhynchus spp.) are PIT-tagged annually
and have multiple opportunities for detection as they
pass hydroelectric dams during their seaward migra-
tion.

Here we examine the importance of incorporating
individually varying recapture rates into the estimation
of population survival and selection for phenotypic
traits. First we present an overview of the underlying
capture–recapture models and discuss how to estimate
model parameters for a fully specified model. We then
develop methods to use results from these models to
estimate population-level parameters (survival and se-
lection coefficients), taking into account individually
varying survival and recapture probabilities. We con-
duct a series of simulations to address the following
two questions: (1) how well do our estimates of pop-
ulation parameters perform and (2) what are the con-
sequences of ignoring individual variability when it is
present? Next, we turn our attention to natural popu-
lations where underlying relationships are unknown.
Therefore, we first present methods for selecting the
best performing models among a suite of alternative
models. Finally, as a case study, we analyze an exten-
sive data set based on PIT-tagged juvenile chinook
salmon (Oncorhynchus tshawytscha) and steelhead (O.
mykiss), both listed as threatened under the U.S. En-
dangered Species Act. We examine the effect of length
at tagging on the probabilities of survival and recapture
during migration. In analyzing these data, we also ad-
dress the physiological and behavioral mechanisms that
lead to length-based recapture probabilities, and the
management implications of our results.

METHODS

Survival and selection estimation using capture–
recapture and individual traits

In typical capture–recapture experiments, individu-
als are marked and released in a group and have several
opportunities for recapture (at least two are necessary
to estimate survival). The recapture opportunities are
separated temporally or spatially, such as along a mi-
gration route. Based on recapture information, capture
histories are constructed for each individual. The cap-
ture history reflects whether an individual was recap-
tured (1), not recaptured (0), or removed (21) for each
recapture opportunity. To conduct the type of analysis
that we present here, individuals are uniquely tagged
and are distinguishable by a measurable trait (or traits)
important for determining their behavior and survival.

Two underlying processes determine whether indi-
viduals are recaptured: probability of survival between
two recapture sites and probability of recapturing an
individual, given that it is alive. Thus we incorporate
survival and recapture probabilities into a multinomial
model of the probabilities of observing all possible
realizations of the capture history (Burnham et al.
1987, Lebreton et al. 1992, Skalski et al. 1998). To do
this we introduce three terms (based on terminology
from Lebreton et al. 1992) for the site-specific survival
and recapture probabilities (Fig. 1): fj is the probability
of fish surviving through the jth encounter segment; pj

is the probability of recapturing an individual at the
jth recapture event, given that the individual was alive;
and b is the combined probability of an individual sur-
viving the last encounter segment and being recaptured
at the last site, because the data cannot distinguish
between these two probabilities. The multinomial mod-
el provides a probability density function (pdf) for each
potential capture history (by release group), given
specified values for the probabilities. When each prob-
ability is uniquely specified by release group, this mod-
el is often referred to as the Cormack-Jolly-Seber (CJS)
model (Cormack 1964, Jolly 1965, Seber 1965). Thus,
the CJS model assumes that all individuals in a release
group behave identically (that is, they have common
survival and recapture probabilities), and that all of the
survival and recapture probabilities are independent.
Burnham et al. (1987) provide several tests to evaluate
these assumptions.

Obviously, if within-population behavioral variabil-
ity exists, the assumptions are violated. A way to over-
come assumption violations is to incorporate behav-
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ioral variability directly into the models. To achieve
this, we modify the CJS model (for details, see Hoff-
mann and Skalski 1995, Pollock 2002, Zabel and
Achord 2004) by expressing survival and recapture
probabilities as functions of a trait x. We use a logit
link to ensure that survival and recapture probabilities
range from 0 to 1. For example, the relationship be-
tween recapture probability (substitute sj(x) for pj(x)
for survival probability) at site j and trait x is

exp(a 1 a x)0, j x, jp (x) 5 (1)j 1 1 exp(a 1 a x)0, j x, j

where x is standardized to have zero mean and the a’s
are coefficients. If x is not included in the probability,
this equation reduces to pj 5 exp(a0, j)/(1 1 exp(a0, j)),
which is a constant.

Model parameters are estimated using maximum
likelihood (Mood et al. 1974) by numerically optimiz-
ing the log-likelihood function with respect to the pa-
rameters. Standard errors are estimated based on nu-
merical approximations of the Hessian matrix (Burn-
ham et al. 1987). The readily available software MARK
(White and Burnham 1999) and SURPH (Lady et al.
2001) can conduct these analyses.

Estimating population-level parameters
when individuals vary

Using CJS methodology, estimated population sur-
vival between sampling events is simply a model pa-
rameter, and thus we simply use the maximum likeli-
hood estimate for this. One element of the CJS pop-
ulation estimates is that Rj, the number of individuals
recaptured at site j, is divided by the estimated recap-
ture probability (p̂j) to estimate the actual number of
individuals alive (N̂j) during sampling event j. When
individual covariates are included in the recapture
probabilities, we can use this same approach, but it is
more complicated. We must iterate across all individ-
uals recaptured at site j and divide by the estimated
probability of recapturing an individual with attribute
xi (p̂j(xi)). This gives an estimate of the total number
of individuals alive at the recapture site. We divide this
by an estimate of the total number of individuals alive
during the previous sampling event, which is obtained
by multiplying the total number of fish released by the
survival estimates between the previous sampling
events and subtracting any removed fish:

Rj

N̂ 5 1/p̂ (x ) (2a)Oj j i
i51

N̂j
f̂ 5 . (2b)j N̂ 2 rj21 j21

In this equation, rj21 is the number of fish removed at
site j21, and site 0 corresponds to the release site. Thus
N̂0 is the number of fish released, and r0 5 0.

Another population-level attribute is the directional se-
lection coefficient (Endler 1986), defined as follows:

¯ ¯X 2 XNEW RLSd 5 (3)
Ïvar(X )RLS

where XRLS is a random variable from the distribution
of the trait in the release population, XNEW is a random
variable from the distribution of the trait after selection,
and the bar above X designates the mean value. Thus
the selection coefficient is determined by the trait-re-
lated survival relationship and the initial distribution
of the trait.

If we assume that recapture probability is homoge-
neous in the population, then

Rj1
X̄ 5 x (4)ONEW iR i51j

where Rj is the number of individuals recaptured at site j.
If, however, recapture probability is related to x, then

Rj xiO
p (x )i51 j iX̄ 5 . (5)NEW Rj 1O
p (x )i51 j i

Once again, the differential capture probability in the
denominator of each summation inflates each observed
individual to reflect the expected number of individuals
of that size alive during the jth sampling event.

Simulations

We had two motivations for conducting the simu-
lations. First, we assessed the efficacy of Eqs. 2 and 5
as means of incorporating individual heterogeneity into
population-level estimates of survival and selection.
Second, we wanted to determine under which scenarios
we expect to see biases in population-level estimates
when existing individual heterogeneity is ignored. Be-
cause these biases are likely to vary with sample size,
parameter values, and complexity of the system, fully
understanding their behavior is beyond the scope of
this paper. Instead, we focused on establishing the most
important effects. Accordingly, we adopted a simple
system in which we set the number of released indi-
viduals at 1000, and individuals had two opportunities
for recapture. Thus we could simulate trait-based ef-
fects for the recapture probability, p1(x), the survival
probability, f1(x), and the combined survival and re-
capture probability at the second recapture site b(x).

We assumed that trait x in the population was nor-
mally distributed with zero mean and variance 5 1.0.
We set each of the effects parameters (ax) to 20.35,
0.0, or 0.35, with the magnitude of the trait effect cho-
sen such that individuals with the 97.5th percentile
value of the trait had approximately twice the proba-
bility of survival or recapture as individuals from the
2.5th percentile. We set a0 for f1(x) to 2.0, so an in-
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dividual with mean x had a survival probability through
the first recapture site of 0.88, a0 for p1(x) to 1.0, so
an individual with mean x had a recapture probability
at the first site of 0.73, and a0 for b(x) to 0.0, so an
individual with mean x had a combined probability of
survival and recapture at the second site of 0.5.

The first step of each simulation was to simulate each
individual’s capture history based on the underlying
survival and recapture processes. To do this we first
randomly assigned each individual a value of trait x.
Then we determined the probabilities p1(x), f1(x), and
b(x) and repeatedly drew from a binomial distribution
to determine each individual’s fate. Based on these sim-
ulated data, we first calculated CJS survival estimates
and selection coefficients based on Eq. 4. We then es-
timated model parameters (the a0 and ax parameters for
each of the f1, p1, and b terms) for each parameter that
was set different from zero, and used these parameters
to estimate population survival and selection coeffi-
cients using the individual covariate method, Eqs. 2
and 5, respectively. For each run of the simulation, we
compared these alternative estimates to the true pop-
ulation survival and selection coefficients (which were
calculated in each simulation), and determined the dif-
ferences (a negative difference indicated that the es-
timated value was less than the true value). Based on
1000 simulations for each scenario, we calculated the
mean and standard deviation of the differences for each
estimation method. We considered an estimate to be
biased if the mean difference between the estimate and
true value was .0.001 or ,0.001, because the means
of the true values varied across simulations by this
amount.

Model selection

One of the key questions in analyzing capture–re-
capture data from natural populations is whether to
include the trait x in the various survival and recapture
probabilities. Answering this question involves model
selection. Because capture–recapture models are often
complex, and because several alternative models might
perform similarly, most capture–recapture studies now
use AIC (or one of its variants) for model selection
(Seber and Schwarz 2002), as opposed to more tradi-
tional methods such as likelihood ratio tests. Further,
there is a trend in capture–recapture studies toward
selecting a suite of well-performing models (Johnson
and Omland 2004) as opposed to choosing a single
‘‘best’’ model. Model averaging (Burnham and An-
derson 2002) is then used where all the selected models
contribute to the final parameter estimates (for ecolog-
ical examples, see MacKenzie and Kendall 2002, Ma-
zerolle 2003, McPherson et al. 2003). An advantage of
model averaging is that model uncertainty is incor-
porated into the estimation of model parameters
(MacKenzie and Kendall 2002, Johnson and Omland
2004). We adopted this approach because it is partic-
ularly well-suited to our case study that follows.

The first step is to run all possible combinations of
trait x included or not for each of the model terms (22n21

possible combinations, where n is the number of re-
capture sites). Clearly this is intractable if there are
many recapture opportunities, but simplifying assump-
tions such as identical relationships across sites can
reduce the number of models. AICc (AIC corrected for
sample size; Burnham and Anderson 2002) is used to
weight each model i according to

exp(2D /2)iw 5 (6)i M

exp(2D /2)O j
j51

where M is the number of alternative models, and Di

is the difference in AICc between model i and the one
with the lowest AICc. Note that the denominator nor-
malizes the weights so that they sum to 1.0. Models
are included one by one, beginning with the best-fitting
one, until the sum of the weights is .0.95 (or some
other predetermined value), and then are renormalized
so that weights of the selected group of models sum
to 1.0.

Once the models are selected, the next step is to
estimate model-averaged parameters and standard er-
rors. Model-averaged parameter estimates are weighted
means across all selected models in which the param-
eter is included. If we use u to generically signify any
parameter, then the model-averaged estimate of u is

S

û 5 w û . (7)Oa i i
i51

The summation is across all selected models that con-
tain the parameter, i is the estimate of u from the ithû
model, and, again, the weights are renormalized to sum
to 1.0. In this study, we are interested in estimating
length relationships, so we only include the a0’s in the
selected set when they are part of a length relationship
and thus have a corresponding a1. The standard errors
associated with each parameter are estimated as

S

2ÏSE(û ) 5 w (8)var(û ) 1 (û 2 û )Oa i i i a
i51

(Burnham and Anderson 2002). Note that the estimated
standard error reflects variability associated with each
individual estimate and model uncertainty, reflected by
the second term in the square root. The 95% confidence
intervals about the estimated relationships (using re-
capture probability as an example) are

exp(a 1 a x 6 z SE)0, j x, j 0.975p (x) 5 (9)j 1 1 exp(a 1 a x 6 z SE)0, j x, j 0.975

where z0.975 is the 97.5th percentile of the z distribution,
and the standard error (SE) is defined as

2SE 5 Ïvar(a ) 1 x var(a ) 1 2x cov(a , a ) (10)0 x 0 x

(Hosmer and Lemeshow 2000).
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FIG. 2. Mainstem Snake and Columbia Rivers, including major hydroelectric dams. PIT-tagged fish are potentially detected
at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams.

Case study: Snake River spring/summer chinook
salmon and steelhead

We examined relationships between recapture and
survival probabilities and fish length for juvenile chi-
nook salmon (O. tshawytscha) and steelhead (O. my-
kiss) migrating out of the Snake River Basin in Idaho
and Oregon, USA (Fig. 2). We chose to analyze the
length phenotype because it is easily measured, reflects
the developmental level of the fish (Zabel 2002), and
is directly related to fish swimming ability (McDonald
et al. 1998, Peake and McKinley 1998). Study fish were
of both wild and hatchery origin, with the wild fish
members of Evolutionarily Significant Units (ESUs,
Waples 1995) listed as threatened under the U.S. En-
dangered Species Act. The fish were captured, PIT-
tagged, and released (for details, see Harmon et al. 2000
and Marsh et al. 2001) at Lower Granite Dam on the
Snake River (Fig. 2). We analyzed yearly release
groups from 1998 to 2002, with groups separated by
species and origin. Because the fish were not physically
recaptured, we use the term ‘‘detection’’ analogously
to the term ‘‘recapture’’ from typical capture–recapture
studies. Survival and detection probabilities may vary
over a season, so we analyzed fish from the 10-d period
when the most fish were released per release group.
The minimum sample size per release group over the
10-d periods was 5000, which ensured enough down-
stream detections to conduct the analysis.

The tagged fish were potentially detected in the ju-
venile fish bypass systems at Little Goose, Lower Mon-
umental, McNary, John Day, and Bonneville Dams
(Fig. 1). The detectors recorded individual tag codes
and uploaded them into the Columbia Basin PIT Tag

Information System (PTAGIS) operated by the Pacific
States Marine Fisheries Commission (available on-
line).6 We combined detections at the last three sites
together to increase the sample size, so an individual
fish had three opportunities for detection. Thus the full
capture history for fish i was a sequence of three digits,
each digit taking on the values 1, 0, or 21. In addition,
the fork length (tip of the snout to the fork in the tail,
in millimeters) of each fish was measured at tagging.

Before conducting our analyses, we performed good-
ness-of-fit tests to determine whether the assumptions
of the CJS model were violated, which would suggest
that behavioral variability existed. We reported results
from the overall goodness-of-fit test, which represents
a summation of several tests (Burnham et al. 1987).

We estimated parameters and AICc values for all 32
possible models per release group. We then used the
model-averaging approach to estimate model-averaged
parameters and standard errors. If the effect parameter
(ax) estimate was greater than twice its standard error,
this provided ad hoc evidence of a significant relation-
ship.

Finally, we compared estimates of population sur-
vival and selection coefficients using individually vary-
ing recapture probabilities to those that ignored this
information. To assess the consistency among methods,
we calculated mean differences in estimates and the
correlation in estimates produced by the two methods.

RESULTS

Simulations
Although we ran all combinations of parameter val-

ues (27 separate simulations), we only presented those

6 ^http://www.psmfc.org/pittag/&
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TABLE 1. Simulation results for survival estimation.

Value of effect parameter
(ax)

p1 f1 b
True mean

survival

Difference between true and estimated
survival

CJS method

Mean SD

Indiv. trait method

Mean SD

0.0 0.0 0.0 0.880 0.000 0.0171 0.000 0.0145
20.35 0.0 0.0 0.880 20.001 0.0178 20.001 0.0152

0.0 20.35 0.0 0.876 0.000 0.0179 0.000 0.0156
0.0 0.0 20.35 0.881 0.001 0.0179 0.000 0.0156

20.35 20.35 0.0 0.876 0.001 0.0178 20.001 0.0150
20.35 0.35 0.0 0.876 0.000 0.0186 20.001 0.0152
20.35 0.0 20.35 0.881 20.013 0.0171 0.001 0.0147
20.35 0.0 0.35 0.881 0.015 0.0190 0.000 0.0155

0.35 0.0 20.35 0.881 0.014 0.0193 0.000 0.0151
0.35 0.0 0.35 0.881 20.014 0.0169 20.001 0.0144
0.0 20.35 20.35 0.876 0.000 0.0177 0.000 0.0154

20.35 20.35 20.35 0.876 20.013 0.0176 0.000 0.0170
20.35 0.35 20.35 0.875 20.013 0.0178 20.001 0.0164
20.35 20.35 0.35 0.876 0.014 0.0190 20.001 0.0155

Notes: Values highlighted in boldface type varied by more than 0.001 from the true survival
and were considered biased. The CJS method refers to the Cormack-Jolly-Seber method, and
the individual trait method refers to Eq. 2. See Methods: Simulations for a description of the
simulations and Methods: Estimating population-level parameters where individuals vary for
survival estimation methods.

that were necessary to establish important results (Ta-
bles 1 and 2). For all combinations of parameters, es-
timates of population survival and selection coeffi-
cients that incorporated individual heterogeneity were
unbiased (Tables 1 and 2, Fig. 3). This indicates that
the proposed methods to account for individual het-
erogeneity were effective.

The consequence of ignoring individual heteroge-
neity in recapture probabilities was much more severe
for estimating selection coefficients than for estimating
population survival. The distribution of selection co-
efficients estimated with the standard method were far
more shifted away from the true value than were pop-
ulation survival estimates using the standard (CJS)
method (Fig. 3). Although the overall magnitude of
bias was relatively small using the CJS method (typ-
ically ,1% of the true survival, and the mean of the
bias was less than the standard deviation; Table 1), the
magnitude of bias was extremely large when using the
standard method to estimate selection coefficients.
When biases existed, they were more than twice as
large as the true selection coefficients observed under
the scenarios with trait-related survival, and the mean
of the bias was ;4–10 times greater than the standard
deviations (Table 2).

Population survival estimates using the CJS method
were biased if trait relationships existed in both the p1

term (first recapture probability) and the b term (com-
bined survival and recapture probability at the last site,
Table 1). The direction of bias was dependent on the
signs of the effect parameters (ax’s): if the signs were
the same, the CJS survival estimates were negatively
biased. Recall that with the CJS method, the number
of individuals observed at a site is divided by the es-
timated recapture probability to yield an estimate of

the actual number of fish alive at the sampling site.
This, then, is used to estimate survival. When the signs
of the effect parameters for the p1 and b terms were
the same, the chance of observing individuals with cap-
ture history ‘‘11’’ (recaptured twice) was greater than
expected with no relationships, leading to positively
biased estimates of the recapture probability and, con-
sequently, negatively biased estimates of survival. The
opposite occurred when the signs were opposite. The
presence or absence of a trait relationship with the sur-
vival parameter (f1) had no effect on the magnitude or
direction of bias. The variance about the population
survival estimates, regardless of method, generally in-
creased with the number of length relationships, but
the effects of the particular parameters on variance var-
ied, with some cases of variance decreasing with added
parameters. Further study is necessary to completely
understand the statistical properties of the population
survival estimators.

Estimates of selection coefficients were biased if a
trait relationship existed in the first recapture proba-
bility term (p1) and it was ignored (Table 2). If the
effect parameter was negative, the selection coefficient
was negatively biased. This occurred because the great-
er probability of observing individuals with lower val-
ues of x led to a negative bias in the calculation of
mean x. The opposite occurred when the effect param-
eter for p1 was positive. The magnitude of the bias
remained relatively constant, regardless of the values
of the parameters. Note that the value of the true se-
lection coefficient was determined by the value of the
effect parameter for f1, as expected. An unexpected
result with these simulations was that in the cases in
which the effect term for p1 was not equal to zero, the
standard deviation about the estimated selection co-
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TABLE 2. Simulation results for estimation of selection coefficients (d).

Value of effect parameter
(ax)

p1 f1 b
True mean

d

Difference between true and
estimated d

Standard method

Mean SD

Indiv. trait method

Mean SD

0.0 0.0 0.0 0.001 0.000 0.0204 0.000 0.0204
20.35 0.0 0.0 0.001 20.094 0.0200 20.001 0.0103

0.35 0.0 0.0 0.000 0.094 0.0214 0.000 0.0105
0.0 20.35 0.0 20.043 0.000 0.0201 0.000 0.0201
0.0 0.0 20.35 0.000 0.000 0.0202 0.000 0.0202

20.35 20.35 0.0 20.043 20.092 0.0204 0.000 0.0182
20.35 0.35 0.0 0.043 20.093 0.0206 0.000 0.0146
20.35 0.0 20.35 0.000 20.094 0.0212 0.000 0.0099

0.35 0.0 20.35 0.001 0.094 0.0222 0.000 0.0109
0.0 20.35 20.35 20.043 0.001 0.0200 0.001 0.0200

20.35 20.35 20.35 20.043 20.091 0.0211 0.001 0.0236
20.35 0.35 20.35 0.043 20.093 0.0216 20.002 0.0165

Notes: Values highlighted in boldface type varied by more than 0.001 from the true selection
coefficient and were considered biased. The standard method is based on Eq. 4, and the in-
dividual covariate method is based on Eq. 5. See Methods: Simulations for a description of the
simulations and Methods: Estimating population-level parameters when individuals vary for
estimation methods.

FIG. 3. Results from the simulations for estimated sur-
vival (top) and estimated selection coefficients (bottom)
where negative trait relationships existed for all three model
terms (p1, f1, b). In each plot, the solid line represents the
distribution of estimates when trait relationships were ig-
nored, the dotted line represents the distribution of estimates
when trait relationships were incorporated into the estimates,
and the dashed vertical line represents the true mean value
of survival (top plot) or the selection coefficient (bottom plot).

efficients (using the individual trait method) was re-
duced compared to the other cases. We believe that this
occurred as a result of differentially inflating obser-
vations based on their value of x (Eq. 5), leading to a

decrease in variance. Again, further research is nec-
essary to understand the statistical properties of the
proposed selection coefficient estimator.

Chinook salmon and steelhead case study

We analyzed data from .153 000 PIT-tagged indi-
viduals in eight release groups (Table 3). Distinct size
differences existed among groups, with steelhead being
longer than chinook salmon and hatchery fish being
longer than wild ones (Table 3). In five out of eight
release groups, the assumptions of the CJS model were
rejected, which suggested that behavioral variability
existed within the release groups. Using the model se-
lection techniques, we selected a broad range of ‘‘best’’
models per release group based on their AICc weights,
ranging from one model selected for wild steelhead
released in 2000 to 26 models selected for hatchery
steelhead released in 1999. In no case was the CJS
model selected among the suite of ‘‘best’’ models, fur-
ther reinforcing the existence of behavioral variability.

Detection probability was related to fish length for
all release groups in at least one of the sites. Overall,
the model selection process chose length relationships
in 11 out of 16 year–site combinations (Figs. 4 and 5,
Table 4). In all cases in which a length relationship
was selected, the length effects coefficient, ax, was neg-
ative, indicating that smaller fish had a higher proba-
bility of detection.

The relationship between estimated survival and fish
length was not as consistent. Although the model se-
lection process selected length relationships in 11 out
of 16 year–site combinations (Figs. 4 and 5, Table 5),
the direction of the relationships was variable. There
was a greater tendency for positive survival–length re-
lationships than negative ones, with eight out of 11
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FIG. 4. Relationships between recapture and survival probabilities and fish length by release group and recapture site
based on results from Tables 4 and 5. Dashed lines show the 95% confidence intervals about the relationships. The bottom
row of plots is the distribution of lengths in each release group.

TABLE 3. Number of fish released, range of release dates, and length by species, origin (hatchery or wild), and year.

Year and fish type
No. fish
released Release dates

Fish length (mm)

Mean SD GOF P
No. models

selected

Wild chinook, 1999 5858 20 Apr–29 Apr 109.3 8.0 0.8822 12
Wild chinook, 2000 19 216 13 Apr–22 Apr 110.7 7.5 0.0014 13
Wild chinook, 2002 8913 17 May–26 May 109.8 6.7 0.0618 7
Hatchery chinook, 1998 25 560 19 Apr–28 Apr 135.1 10.9 0.0000 6
Hatchery chinook, 1999 32 370 26 Apr–5 May 137.8 13.6 0.6888 4
Wild steelhead, 2000 29 600 13 Apr–22 Apr 189.3 28.5 0.0193 1
Wild steelhead, 2002 13 696 17 May–26 May 171.2 18.7 0.0156 11
Hatchery steelhead, 1999 18 607 28 Apr–7 May 210.2 21.8 0.0035 26

Notes: P values of the goodness-of-fit (GOF) tests are presented in boldface when P , 0.05, which indicates that the
assumptions of the CJS model were violated. The number of models selected refers to the number of models retained based
on their AICc weights.
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FIG. 5. Relationships between recapture and survival probabilities and fish length by release group and recapture site
based on results from Tables 4 and 5. Dashed lines show the 95% confidence intervals about the relationships. The bottom
row of plots is the distribution of lengths in each release group.

TABLE 4. Model-averaged parameter mean estimates for the recapture probability vs. fork length (FL, measured in milli-
meters) relationships by species, origin (hatchery or wild), detection site, and year.

Fish type and year

p1 (Little Goose Dam)

a0 (SE) ax (SE)

p2 (Lower Monumental Dam)

a0 (SE) ax (SE)

Wild chinook, 1999 0.702 (0.0200) 0.004 (0.0047) 0.497 (0.0325) 20.017 (0.0055)
Wild chinook, 2000 0.046 (0.0075) 20.008 (0.0026) 20.254 (0.0118) 20.007 (0.0048)
Wild chinook, 2002 0.281 (0.0209) 20.023 (0.0037) 0.075 (0.0536) 0.003 (0.0071)
Hatchery chinook, 1998 20.204 (0.0242) 20.012 (0.0015) 20.816 (0.0324) 20.006 (0.0020)
Hatchery chinook, 1999 0.281 (0.0075) 20.005 (0.0009) 20.090 (0.0146) 20.006 (0.0011)
Wild steelhead, 2000 20.065 (0.0170) 20.008 (0.0004) 20.042 (0.0236) 20.005 (0.0008)
Wild steelhead, 2002 0.201 (0.0158) 20.013 (0.0013) 0.454 (0.0700) 20.001 (0.0047)
Hatchery steelhead, 1999 0.611 (0.0129) 20.001 (0.0009) 0.270 (0.0114) 20.002 (0.0009)

Note: Boldface values of the effects parameters (ax) indicate that the estimate is greater than twice its standard error.
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TABLE 5. Model-averaged parameter mean estimates for the survival probability vs. fork length (FL, measured in millimeters)
relationships by species, origin (hatchery or wild), detection site, and year.

Fish type and year

f1

(L. Granite to L. Goose)

a0 (SE) ax (SE)

f2

(L. Goose to L. Monumental)

a0 (SE) ax (SE)

Wild chinook, 1999 3.034 (0.0838) 0.039 (0.0165) 2.518 (0.0837) 0.057 (0.0156)
Wild chinook, 2000 2.416 (0.0136) 0.021 (0.0060) 2.227 (0.0396) 20.001 (0.0086)
Wild chinook, 2002 2.998 (0.0390) 0.074 (0.0077) 2.791 (0.0569) 20.061 (0.0232)
Hatchery chinook, 1998 5.888 (0.1910) 0.118 (0.0176) 2.035 (0.0651) 20.007 (0.0077)
Hatchery chinook, 1999 3.136 (0.0121) 20.002 (0.0031) 2.619 (0.0315) 0.008 (0.0039)
Wild steelhead, 2000 3.434 (0.0511) 0.032 (0.0031) 2.124 (0.0694) 20.017 (0.0015)
Wild steelhead, 2002 2.442 (0.0306) 0.015 (0.0029) 2.823 (0.0761) 20.025 (0.0053)
Hatchery steelhead, 1999 2.215 (0.0132) 20.004 (0.0013) 2.252 (0.0210) 20.003 (0.0029)

Note: Boldface values of the effects parameters (ax) indicate that the estimate is greater than twice its standard error.

FIG. 6. Comparison of (A) survival estimates and (B)
estimates of selection coefficients derived with length-related
recapture probabilities to those that ignored these relation-
ships.

significant length relationships having a positive value
of ax.

When we compared among methods for estimating
population survival, we found a high level of corre-
lation between methods and little evidence for bias in
the CJS method when ignoring the individual trait (Fig.
6A). Survival estimates produced by the two methods
were highly correlated (r 5 0.861), and the CJS pro-
duced survival estimates that averaged 0.1% less than
those produced when incorporating individually vary-
ing recapture probabilities. One release group, wild
steelhead released in 2000, had relatively poor corre-
lation between the two methods. When this group was
removed, the correlation between the methods in-
creased to 0.989. This group was different from the
other groups in several ways: it only had one model
selected (the model with all possible length relation-
ships) in the model selection process; the difference in
AICc between the best model and the CJS model was
much larger compared to other groups (2381.1 com-
pared to 2123.5 for the next largest group); and it had
relatively small standard errors for all the effect pa-
rameters (Tables 4 and 5). All of these effects lead to
the conclusion that length effects were particularly
strong for this release group, and that the CJS model
poorly represented the survival and recapture process.
We believe that this led to bias in the CJS survival
estimates. We note, though, that the product of f1 and
f2 for this release group was similar between the two
methods, indicating that most of the discrepancy oc-
curred in partitioning survival between the two river
segments, not in estimating the overall survival through
both segments.

When we examined selection coefficients produced
by the two methods, we found striking differences (Fig.
6B). The estimated selection coefficients were poorly
correlated between the methods (r 5 0.365) and some-
what biased (mean difference of 0.015 between the two
methods). The most striking result was that the selec-
tion coefficients derived from models with constant
detection probabilities spanned a much greater range
than those derived from models with length-related de-
tection probabilities. Thus, ignoring differential recap-
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ture probabilities would lead to the conclusion that
magnitude of selection was much greater than it ac-
tually was.

Overall, the results of the case study were consistent
with the results from the simulation study. With the
exception of one release group, the CJS method pro-
duced reasonable estimates of population survival that
were within the range of biases produced in the sim-
ulations (Table 1, Fig. 6). Selection coefficients were
extremely biased if differential recapture probabilities
were ignored, and, again the range biases were con-
sistent with those observed in the simulation study (Ta-
ble 2, Fig. 6). Further, the majority of the selection
coefficients estimated under the standard model were
negatively biased (Fig. 6), consistent with the conclu-
sion of the simulation study that negative trait rela-
tionships in the recapture probabilities lead to negative
bias in selection coefficients.

DISCUSSION

Animal populations typically are behaviorally het-
erogeneous and inhabit heterogeneous environments.
The same heterogeneity that leads to differential sur-
vival can also lead to differential capture rates, thus
potentially obscuring population dynamics. Here we
demonstrated that, with carefully planned experiments
that allow for multiple recaptures of individually
tagged animals, one can properly partition observed
trait-related variability into survival and recapture
probability components. This, in turn, allows for un-
biased estimation of population survival and selection
coefficients.

Probably our most striking result, obtained from both
the simulation and the case study, is the demonstration
of potential for extreme bias in estimating selection for
phenotypic traits when differential recapture probabil-
ities are ignored. Estimating selection for phenotypic
traits is a key element of evolutionary ecology (Endler
1986), with selection coefficients routinely estimated
for hundreds of taxa (Kingsolver et al. 2001). Unfor-
tunately, many advances in capture–recapture meth-
odology that can rectify these biases have not found
their way into the evolutionary ecology literature
(Clobert 1995; but see Kingsolver and Smith 1995).
We note that with slight modifications, the methods
that we presented here can be used to estimate more
complex forms of selection such as stabilizing or dis-
ruptive selection or correlations in selection among
multiple traits.

Our results indicate that population survival esti-
mates are more robust in the face of a variety of as-
sumption violations concerning recapture and survival
probabilities, a result observed elsewhere (e.g., Lebre-
ton 1995). This is encouraging news because CJS meth-
odology (which ignores differential recapture and sur-
vival probabilities) is used extensively. However, an
important consideration is that differential capture
probabilities may result in a sample of tagged animals

that is not representative of the entire population. When
differential capture probabilities are combined with
size-related selection, a nonrepresentative sample of
individuals can produce a biased estimate of population
survival, regardless of the estimation procedure.

Chinook salmon and steelhead case study

Our results clearly indicate that migrating juvenile
salmonids exhibit behavioral variability. Thus, the type
of analysis that we performed is warranted and can
shed light on this behavioral variability. Although it is
clear that seaward-migrating juvenile salmonids ex-
perience selective mortality in the mainstem Snake and
Columbia Rivers, the lack of consistent pattern indi-
cates that the selection probably arises from a variety
of sources. The two primary sources of mortality for
these fish are predation (by both piscivorous fish and
birds) and mortality associated with dam passage. Fur-
ther studies that specifically target these mortality
sources are needed to elucidate these patterns.

Our analysis demonstrated a consistent negative re-
lationship between detection probability at fish bypass
systems and fish length of seaward-migrating salmo-
nids. Size-related recapture rates can arise from two
nonmutually exclusive mechanisms. First, spatial het-
erogeneity related to size may result in differential ex-
posure to the trap or detection site. Second, individuals
of different sizes may have differential abilities to es-
cape the trap or detection site once they are in close
vicinity. In the case of migrating juvenile salmonids,
each of these mechanisms could contribute to the re-
sults that we observed, and we will examine them in
more detail.

In the system that we studied, the vertical position
of a fish in the water column is likely to be important
in determining its probability of detection. Fish that
are more surface-oriented are more likely to be diverted
into bypass systems than fish swimming lower in the
water column (Coutant and Whitney 2000). One key
factor that influences the vertical position of salmonids
is smoltification, the series of physiological, morpho-
logical, and behavioral changes that ready fish for a
saltwater environment (Hoar 1976). Smolted fish are
more buoyant than non-smolted ones and tend to mi-
grate higher in the water column (Saunders 1965, Pin-
der and Eales 1969). We have some evidence that
smaller fish may be more smolted than larger ones in
the system that we studied. Gill Na1, K1-ATPase ac-
tivity (an indicator of smoltification) was measured in
juvenile wild and hatchery chinook salmon sampled
from bypass systems in 2000, 2001, and 2002, and it
was negatively correlated (a 5 0.05) with fish length
in two of four analyses for wild fish and in four of
seven analyses for hatchery fish (unpublished data, J.
L. Congleton).

Our second hypothesis is that fish of different sizes
react differently to flow patterns that they encounter at
the face of the dam. Larger fish have longer swimming
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times-to-fatigue and greater burst-swimming abilities
than smaller individuals (McDonald et al. 1998, Peake
and McKinley 1998). The higher absolute burst-swim-
ming speed and greater endurance of the larger fish
may allow them to more successfully avoid guidance
by diversion screens. Flow velocities approaching the
screens are typically ;1 m/s (Coutant and Whitney
2000), equivalent to a velocity of 10 body lengths/s for
a 100-mm fish, or 5 body lengths/s for a 200-mm fish.
At these swimming velocities, the expected time to
fatigue would be only a few seconds for a 100-mm
salmonid (McDonald et al. 1998), but 12–15 s for a
200-mm fish (Brett 1964). Large fish would have more
time to maneuver and might be able to swim around
the bypass screen or sound below it.

The results of our case study have implications for
the management of Columbia River Basin salmonids.
PIT-tag studies are routinely used to estimate adult re-
turn rates, which are used to assess population perfor-
mance. In these studies, juveniles are collected from
bypass systems and are tagged, under the assumption
that the collected fish represent the entire population.
The tendency, demonstrated in this study, for bypass
systems to divert smaller fish, on average, than the
entire population, coupled with the tendency for small-
er fish to return at lower rates (Zabel and Williams
2002) could lead to underestimates of population return
rates. Further, studies that use bypassed fish as a treat-
ment group and undetected fish as a control group (e.g.,
studies on the efficacy of transportation [Marsh et al.
2001] or examinations of the latent effects of bypass
systems [Budy et al. 2002]) could produce misleading
results. Williams et al. (2005) discuss this issue in much
greater detail.

In summary, recent advances in tagging technology
and analytical methods have enabled researchers to ac-
curately portray survival and recapture processes in
natural populations. The ability to elucidate within-
population behavioral variability is crucial for describ-
ing population dynamics. This, in turn, will allow us
to more effectively manage at-risk populations.
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