University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Biological Systems Engineering: Papers and Publications

Biological Systems Engineering

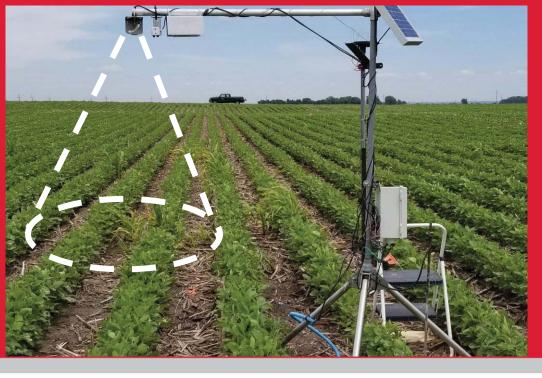
4-2020

Capturing Spatial Variability in Maize and Soybean using **Stationary Sensor Nodes**

Jasreman Singh University of Nebraska-Lincoln, jasreman.singh@huskers.unl.edu

Derek M. Heeren University of Nebraska-Lincoln, derek.heeren@unl.edu

Yufeng Ge University of Nebraska - Lincoln, yge2@unl.edu


Geng Bai University of Nebraska-Lincoln, gbai2@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/biosysengfacpub

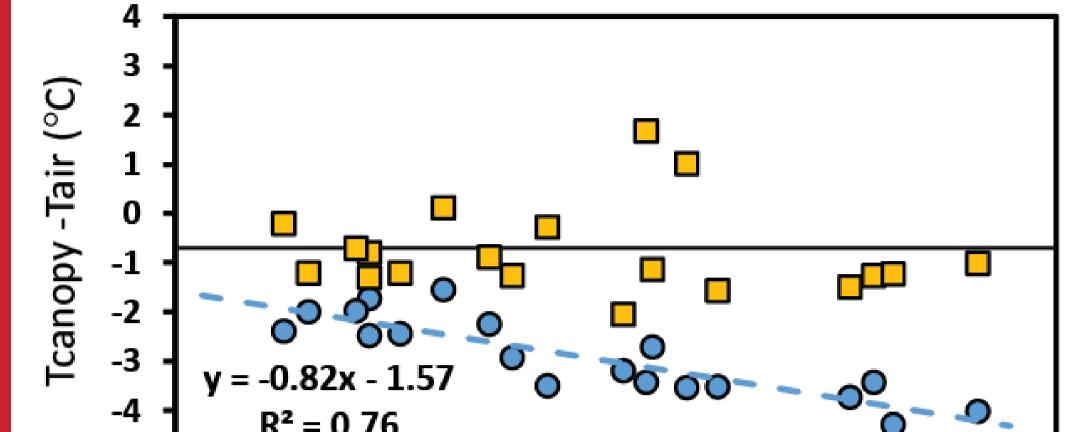
🔮 Part of the Bioresource and Agricultural Engineering Commons, Environmental Engineering Commons, and the Other Civil and Environmental Engineering Commons

Singh, Jasreman; Heeren, Derek M.; Ge, Yufeng; and Bai, Geng, "Capturing Spatial Variability in Maize and Soybean using Stationary Sensor Nodes" (2020). Biological Systems Engineering: Papers and Publications. 665. https://digitalcommons.unl.edu/biosysengfacpub/665

This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biological Systems Engineering: Papers and Publications by an authorized administrator of DigitalCommons@University of Nebraska -Lincoln.

Capturing Spatial Variability in Maize and Soybean using Stationary Sensor Nodes

Jasreman Singh¹, Derek M. Heeren¹, Yufeng Ge¹, and Geng Bai¹


¹ Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE

BACKGROUND

- Irrigation in agriculture maximizes crop yield and improves food security globally
- Irrigation scheduling is strongly based on the ability to accurately estimate the appropriate amount and timing of water application
- The timing of the irrigation can best be informed through the crop canopy stress,

RESULTS

and the amount of irrigation is informed through soil moisture depletion

RESEARCH OBJECTIVES

- Developing upper (non-water stressed) and lower (non-transpiring) baselines for irrigated and non-irrigated maize and soybean
- Investigating the relationship between the canopy stress and the soil moisture stress

APPROACH

-5 K = 0.76							
0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50
Vapor Pressure Deficit (kPa)							
IRRIGATED TREATMENT INON-IRRIGATED TREATMENT							

UPPER AND LOWER LIMITS FOR dT (SOYBEAN)

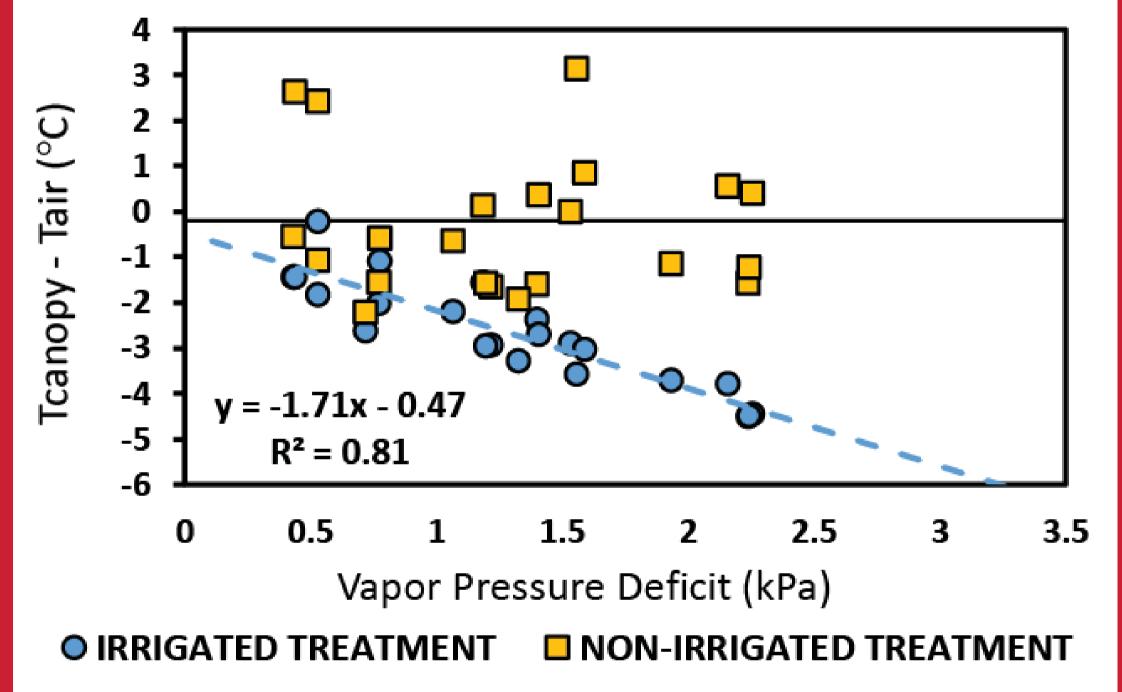


Fig. 1 (a)

Fig. 1 (b)

- a) Installation of GS-1 soil moisture sensors in the field during the beginning of the growing season.
- b) Stationary sensor node recording temperature and surface reflectance parameters over maize during full canopy cover

CONCLUSIONS

The canopy temperature stress and soil moisture depletion had **stronger** correlation for **non-irrigated** treatments in soybean than maize

RECOMMENDATIONS

Relationship between crop canopy stress and soil moisture depletion is an indicator of irrigation requirement

ACKNOWLEDGEMENTS

The authors are grateful to the Daugherty Water for Food Institute, and the United States Department of Agriculture – National Institute of Food and Agriculture (USDA-NIFA) for funding and support.

UNIVERSITY of NEBRASKA-LINCOLN