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a ground-based active sensor and aerial imagery
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Abstract Active canopy sensors are currently being studied as a tool to assess crop N

status and direct in-season N applications. The objective of this study was to use a variety

of strategies to evaluate the capability of an active sensor and a wide-band aerial image to

estimate surface soil organic matter (OM). Grid soil samples, active sensor reflectance and

bare soil aerial images were obtained from six fields in central Nebraska before the 2007

and 2008 growing seasons. Six different strategies to predict OM were developed and

tested by dividing samples randomly into calibration and validation datasets. Strategies

included uniform, interpolation, universal, field-specific, intercept-adjusted and multiple-

layer prediction models. By adjusting regression intercept values for each field, OM was

predicted using a single sensor or image data layer. Across all fields, the uniform and

universal prediction models resulted in less accurate predictions of OM than any of the

other methods tested. The most accurate predictions of OM were obtained using inter-

polation, field-specific and intercept-adjusted strategies. Increased accuracy in mapping

soil OM using an active sensor or aerial image may be achieved by acquiring the data when

there is minimal surface residue or where it has been excluded from the sensor’s field-of-

view. Alternatively, accuracy could be increased by accounting for soil moisture content

with supplementary sensors at the time of data collection, by focusing on the relationship
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between soil reflectance and soil OM content in the 0–1 cm soil depth or through the use of

a subsurface active optical sensor.

Keywords Near-infrared (NIR) � Visible (VIS) � Root mean squared error (RMSE) �
Mean absolute error (MAE) � Organic matter (OM)

Introduction

In recent years, there has been growing concern about the potential environmental hazards

from excessive uniform fertilizer and herbicide application rates to spatially-variable

landscapes. Soil with larger organic matter (OM) content requires higher chemical

application rates of some herbicides because of adsorption of the herbicide on the cation

exchange complex. However, spatial variation of soil contributes to both over- and under-

application of crop inputs within fields. Unused fertilizers and over-applied herbicides are

subject to environmental processes and can eventually contaminate surface and ground-

water (Diaz 2001; Weber et al. 2006). Precision farming technologies seek to account for

spatial variation in soil or crop properties by changing application rates based on field

characteristics (Blackmer and White 1998). Because many current herbicide and fertilizer

recommendations depend on soil OM content, technologies that account for its spatial

variation could potentially reduce the environmental hazards associated with over-applying

crop production inputs.

Soil OM is one of many soil properties that influence soil optical reflectance (Krishnan

et al. 1980). Large soil OM content is usually associated with high soil fertility and is often

observed in the field as a dark surface horizon in the soil profile. Previous studies classified

soil color based on Munsell color charts (Alexander 1969; Steinhardt and Franzmeier 1979;

Schulze et al. 1993). Schulze et al. (1993) found soil OM content to be predictable using

Munsell soil color values (R2 [ 0.90). This relationship was accurate provided that soil

texture did not vary widely within a given landscape. They also found that the relationship

between soil color values and OM should be calibrated for different landscapes. Further-

more, they found spectroscopic matching of soil reflectance was more accurate for

determining soil color than visual matching alone.

Although the relationship between soil color and OM is useful, practical application of

this relationship requires large scale assessment of variability in soil color. In the 1980s

and 1990s there was an increase in the classification of soil color by spectral sensors pulled

through the surface soil (Griffis 1985; Pitts et al. 1986; Sudduth and Hummel 1993).

Previous studies have shown these ground-based sensors can predict soil OM content

successfully (Griffis 1985; Pitts et al. 1986; Sudduth and Hummel 1991). However,

problems with calibration may occur because soil color and reflectance properties are a

function of moisture, texture, chemical composition and parent material, in addition to soil

OM (Sudduth and Hummel 1993).

Remote sensing offers a practical means of assessing the spatial variation in fields

across broad geographic areas (Scharf et al. 2002). Schepers et al. (2004) used soil

brightness from an aerial image as a data layer in conjunction with elevation and soil

electrical conductivity to delineate management zones within a field. Gomez et al. (2008)

compared the use of satellite imagery with a ground-based spectrometer to determine soil

organic carbon. They found that predictions of soil organic carbon using satellite imagery

were less accurate than with a spectrometer. Chen et al. (2000) collected soil samples from

areas within a field of varying soil brightness levels determined from a color slide and
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predicted soil organic carbon with 98% accuracy. Chen et al. (2005) predicted soil organic

carbon (R2 * 0.8–0.9) using either a USDA Farm Service Agency aerial image or a

multiband satellite image. They noted, however, that the regression models differed

between the three fields in their study. In addition, because of the trend toward conser-

vation tillage systems (Knowler and Bradshaw 2007) bare soil imagery may be increas-

ingly difficult to obtain, making it less feasible to predict surface OM accurately from an

image. For this reason, ground-based tools such as active canopy sensors could be useful

for estimating surface soil organic matter content across multiple fields.

Active crop canopy reflectance sensors have been studied as a ground-based sensing

tool to assess in-season plant nitrogen (N) status and to direct spatially-variable N appli-

cations (Dellinger et al. 2008; Raun et al. 2002; Raun et al. 2005; Roberts et al. 2009;

Schmidt et al. 2009; Shanahan et al. 2008; Solari et al. 2008). Active sensors are com-

mercially available tools that generate modulated light in the visible (VIS; 400–700 nm)

and near-infrared (NIR; 700–1000 nm) regions of the electromagnetic spectrum. Although

active sensors are currently being studied to assess plant N status during the growing

season, they could also provide a possible ground-based method to assess soil color and

predict soil OM content. However, little work has been done to confirm this hypothesis.

Soil OM predicted by an active sensor could potentially provide an alternative to aerial

imagery-based OM prediction. Use of an active sensor to delineate a soil property such as

OM might also help to refine current active sensor-based in-season N applications, as

suggested by Shanahan et al. (2008). Therefore, the objective of this study was to use a

variety of strategies to evaluate the capability of an active sensor and a wide-band aerial

image to estimate surface soil OM.

Materials and methods

Research fields

This research was conducted on six sprinkler-irrigated production fields in central

Nebraska during 2007 (Fields 1, 2 and 3) and 2008 (Fields 4, 5 and 6) (Fig. 1; Table 1).

Central Nebraska has a continental climate with average annual precipitation of 60–70 cm.

At the time of data acquisition, there was a moderate amount of crop residue still present

on the soil surface in all fields (covering *25% of the soil surface). Each field has 2–4 soil

Fig. 1 Map of Nebraska (USA) indicating the locations of the six fields studied
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series (Table 1), resulting in within-field variation in soil OM and soil color values. The

elevation in Fields 2, 4 and 5 varies considerably (*8–10 m), whereas Fields 1, 3 and 6

have little to no relief (\3 m).

Within-field data collection

Soil samples were taken from grid points within each field before the corn was planted

(Table 1). In 2007, samples were taken from a 0.7 ha (85 9 85 m) offset grid from Fields

1, 2 and 3. With an offset grid, each transect of sampling points is offset a certain distance

from the previous transect. This provides more information at a lower cost than a tradi-

tional square grid. In 2008, to reduce the amount of unexplained spatial variation in soil

properties, samples in Fields 4, 5 and 6 were taken on a 0.4-ha (63 9 63 m) offset grid.

Soil samples were taken from the topsoil (0–20 cm depth) using hand probe corers.

Although soil reflectance is determined from the surface 1-cm soil depth, current soil

fertility recommendations by the University of Nebraska are based on OM content at

0–20 cm depth (Shapiro et al. 2003). A total of 6–8 soil cores were taken in a 3-m radius

around each sampling point. All cores for a given sampling point were hand-mixed and a

representative sub-sample was kept for laboratory analysis. Samples were air-dried and

ground to pass through a 2 mm sieve. Laboratory analysis of soil OM content was done

according to the loss-on-ignition (LOI) method, as outlined by Nelson and Sommers

(1996), and reported as g OM kg-1 of soil.

Active sensor readings were recorded from each field at the time of planting. The active

canopy sensor used for this study was the ACS-210 Crop Circle1 (Holland Scientific, Inc.,

Lincoln, NE, USA). This sensor generates modulated light in the VIS and NIR regions of

the electromagnetic spectrum and measures canopy reflectance with VIS (590 ± 5.5 nm,

sensorAMBER) and NIR detectors (880 ± 10 nm, sensorNIR). To acquire sensor readings,

the sensor and data logger were mounted on the front of an all-terrain vehicle (ATV)

*0.6 m above the soil surface. The sensor was positioned over the soil surface in the nadir

view, producing a footprint of approximately 8 9 40 cm; the long dimension of this

footprint was oriented parallel to the direction of travel. The sensor footprint was posi-

tioned over the row of planted corn to minimize the amount of crop residue in the sensor’s

field-of-view as the ATV followed behind the planter. Because soil reflectance can be

greatly influenced by surface soil moisture content (Idso et al. 1975; Post et al. 2000), a

distance of *90 m was maintained between the ATV and the planter. This separation

distance minimized the effects of dust during data collection and inconvenience to the

farmer during planting. This also resulted in the data being recorded\1 min after the soil

had been disturbed, providing a moderate amount of soil water content and soil color

differentiation. The distance between consecutive ATV passes across the field was equal to

the planter width (Table 1). A Garmin 18 (Garmin International, Inc., Olathe, KS, USA)

Global Positioning System (GPS) receiver with an update rate of 5 Hz was mounted next to

the sensor. Sensor readings were recorded at 10 Hz while the ATV traveled *10 km h-1,

resulting in readings *0.56 m apart. Linear interpolation was applied to assign unique

geographic coordinates to each recorded measurement. To align sensor readings with exact

grid sample locations, sensor readings were further interpolated using inverse-distance

weighting (IDW) and exported with a 2-m pixel resolution. SensorAMBER and sensorNIR

1 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not
imply endorsement by the authors, University of Nebraska-Lincoln, USDA-ARS, or exclusion of other
products that may also be suitable.
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readings for each grid sample location were extracted using zonal statistics in ArcMap 9.2

(ESRI, Redlands, CA, USA).

Image acquisition and analysis

Bare soil images for each field were obtained by Cornerstone Mapping, Inc. (Lincoln, NE,

USA) on May 25, 2007 (Fields 1, 2 and 3) and May 20, 2008 (Fields 4, 5 and 6) when the

sky was clear. The most recent rainfall events prior to each image acquisition were not

Fig. 2 Box-and-whisker diagrams of measured OM, sensorAMBER, sensorNIR, imageNIR, imageRED and
imageGREEN for Fields 1–6. The lower and upper limits of each box are the 25th and 75th percentiles, the
lower and upper whiskers represent the 10th and 90th percentiles, the large dots represent the 5th and 95th
percentiles, the horizontal line in the center of each box represents the median and the dotted line represents
the mean values for each dependent variable. SensorAMBER and sensorNIR are reported in unitless sensor
pseudo-reflectance values. ImageNIR, imageRED and imageGREEN are reported in image digital brightness
values (0–255)
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Table 2 Correlation (p \ 0.1) of soil organic matter (OM), two sensor bands (sensorAMBER and sensorNIR),
and three image bands (imageGREEN, imageRED and imageNIR) for Fields 1–6

Field OM SensorAMBER SensorNIR ImageGREEN ImageRED ImageNIR

1

OM 1

SensorAMBER -0.73 1

SensorNIR -0.72 0.99 1

ImageGREEN -0.66 0.63 0.63 1

ImageRED -0.70 0.69 0.69 0.99 1

ImageNIR -0.67 0.61 0.62 0.98 0.97 1

2

OM 1

SensorAMBER -0.88 1

SensorNIR -0.77 0.80 1

ImageGREEN -0.74 0.73 0.66 1

ImageRED -0.77 0.76 0.67 0.99 1

ImageNIR -0.71 0.69 0.67 0.99 0.98 1

3

OM 1

SensorAMBER -0.38 1

SensorNIR -0.40 0.99 1

ImageGREEN -0.77 0.40 0.44 1

ImageRED -0.73 0.43 0.47 0.99 1

ImageNIR -0.77 NS 0.38 0.99 0.98 1

4

OM 1

SensorAMBER NS 1

SensorNIR NS 0.98 1

ImageGREEN -0.46 NS NS 1

ImageRED -0.38 NS NS 0.96 1

ImageNIR -0.38 NS NS 0.96 0.99 1

5

OM 1

SensorAMBER -0.81 1

SensorNIR -0.81 0.98 1

ImageGREEN -0.59 0.56 0.55 1

ImageRED -0.57 0.52 0.52 0.99 1

ImageNIR -0.52 0.46 0.47 0.97 0.99 1

6

OM 1

SensorAMBER -0.48 1

SensorNIR -0.40 0.92 1

ImageGREEN NS NS NS 1

ImageRED NS NS NS 0.98 1

ImageNIR NS NS NS 0.96 0.99 1

88 Precision Agric (2011) 12:82–102

123



Fig. 3 All data points of measured OM versus sensorAMBER, sensorNIR, imageNIR, imageRED and
imageGREEN for Fields 1–6

Table 2 continued

Field OM SensorAMBER SensorNIR ImageGREEN ImageRED ImageNIR

Overall

OM 1

SensorAMBER -0.26 1

SensorNIR -0.25 0.98 1

ImageGREEN -0.59 0.51 0.55 1

ImageRED -0.52 0.46 0.47 0.95 1

ImageNIR -0.70 0.43 0.44 0.94 0.94 1

Precision Agric (2011) 12:82–102 89
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recorded. A digital sensor system (Applanix Corporation, Richmond Hill, Ontario, Canada)

mounted on an aircraft was used to acquire the images. This sensor had a charge-coupled

device (CCD) array of 4092 9 4077 pixels, 8-bit radiometric resolution (0–255 brightness

values) and broad spectral channels in the green (510–600 nm; imageGREEN), red (600–

720 nm; imageRED) and NIR (720–920 nm; imageNIR) portions of the electromagnetic

spectrum. In the CCD array, each pixel was converted into an electrical charge, with the

intensity being related to a particular color in the light spectrum (0–255). Thus, each pixel

consisted of three digital brightness numbers, representing the values for imageGREEN,

imageRED and imageNIR. At a flight altitude of 1824 m, the resulting imagery had a spatial

resolution of 0.3 m.

Images were georectified by Cornerstone Mapping, Inc. using POSPAC processing

software (Applanix Corporation, Richmond Hill, Ontario, Canada). Further georectifica-

tion was done using the AutoSync tool in ERDAS Imagine 9.1 (ERDAS Inc., Norcross,

GA, USA) and rectifying the image to a base image obtained during the growing season.

The base image was georectified with POSPAC processing software and further posi-

tioning was done using eight ground control points obtained with a sub-meter accuracy

Trimble GeoXT GPS handheld unit (Trimble Navigation Limited, Sunnyvale, CA, USA).

To account for slight deviations in GPS positions between soil sampling locations and

image pixels, bilinear resampling was done in ArcGIS 9.2 to a 2-m spatial resolution. A

low-pass 5 9 5 filter was applied to each image in ERDAS Imagine 9.1 to reduce the

variance among pixels. Digital brightness values for each soil sampling location were

extracted as data.

Fig. 4 Relationship of predicted versus measured OM for Fields 1–6 using the uniform OM prediction
strategy for each field. Average OM values were determined using all data points from each field, or by
calculating the average of three data points selected from high, medium and low OM areas of each field. The
RMSE and MAE are in the same units as measured and predicted OM
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Model development and validation

Prior to data analysis, data points from each field were divided into three datasets. For

dataset 1, sample points for individual fields were arranged in order of increasing OM

levels. An equal number of sample points was assigned to high, medium and low OM

intervals for each field. One sample point from each interval was removed randomly for

use in model development (discussed later). The remaining data points in each field were

re-randomized and divided equally into calibration and validation datasets. Different

strategies to predict OM using grid sampling as well as aerial imagery and ground-based

sensing were investigated. These strategies were selected to compare OM prediction

techniques commonly used by researchers and other approaches derived after initial data

inspection. Strategies included uniform, interpolation, universal, field-specific, intercept-

adjusted and multiple-layer prediction models.

The uniform prediction model is a commonly used method in production agriculture; it

assumes that an average OM value is applied to the entire field (average of all sample

locations in the calibration dataset). Because soil sample data on a grid may not be

available for every field, we tested an alternative prediction model using three data points

representing areas of high, medium and low levels of OM for each field. For the inter-

polation prediction model, inverse distance squared (IDW) in the Geostatistical Analyst of

ArcGIS 9.2 was used to interpolate OM from the calibration dataset for each field.

For the universal prediction model, a simple linear regression model with OM as the

dependent variable was applied across all fields according to the following equation:

OMuniversal ¼ interceptuniversal þ slopeuniversal � X;

where X was the sensor output or aerial imagery value for a specific spectral band. Sim-

ilarly, the field-specific model is given by:

OMfield-specific ¼ interceptfield-specific þ slopefield-specific � X;

where interceptfield-specific and slopefield-specific were recalculated for each field. Based on a

preliminary inspection of the data, a regression model that adjusted only the intercept for

each field appeared to be more practical because only a few calibration samples would be

required for prediction in each field. This intercept-adjusted OM prediction model using

one slope and field-specific intercepts was calculated as:

OMintercept-adjusted ¼ interceptfield-specific þ slopeuniversal � X;

where interceptfield-specific was the adjusted intercept for individual fields, and slopeuniversal

was one regression slope applied across all fields. In this equation, interceptfield-specific was

calculated from the average of the three data points (high, medium and low levels of OM)

removed from each field before model development. This was done by calculating one

regression slope (slopeuniversal) across all fields in the calibration dataset while holding the

intercept constant at zero, followed by calculating the average intercept value for each field

using the 3 data points mentioned above (interceptfield-specific). Multiple-layer prediction

models were derived using a combination of the best performing sensor and imagery data

from the intercept-adjusted model.

The OM values predicted using all the listed models were compared with actual

measurements using both calibration and validation datasets. Regression models were

developed using calibration datasets; the resulting models were then applied to the vali-

dation datasets. Comparison of predicted and measured OM values in calibration datasets
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were used to illustrate the strength of the models developed, but did not have practical

application. On the other hand, the analysis performed using the validation dataset pro-

vided an objective comparison among all the models for each field as well as for the entire

dataset.

Each prediction model was evaluated using root mean squared error (RMSE) and the

coefficient of determination (R2) for a simple linear regression between measured and

predicted soil OM. To test for statistical differences between the prediction strategies, the

mean absolute error (MAE) was also calculated for each validation dataset. Field-specific

and overall MAE estimates were compared using a completely randomized block design

(a = 0.05). Statistical analyses for this study were done in Microsoft Excel (Microsoft

Corp., Redmond, WA, USA) and SAS 9.1 (SAS Institute Inc., Cary, NC, USA).

Results and discussion

Initial data analysis

Measured OM ranged widely both within and among fields (Fig. 2); average values ranged

from 11 to 43 g kg-1 across all fields. Within-field OM variation was greatest in Fields 2, 4

and 5 (range = 22 g kg-1), and least in Field 1 (range = 10 g kg-1). Average measured

OM where the soil is sandy (Fields 1 and 4; 17 g kg-1) was half that of fine-textured soils

(Fields 2, 3, 5 and 6; 34 g kg-1).

Across all fields, sensorAMBER and sensorNIR measurements are strongly correlated

(r = 0.98; Table 2). Measurements from imageGREEN, imageRED and imageNIR are also

strongly correlated (r C 0.94). Relationships between sensorAMBER or sensorNIR mea-

surements and imageGREEN, imageRED, or imageNIR measurements show only moderate

correlation (r = 0.4–0.6). SensorAMBER and sensorNIR have the strongest correlation to

OM in Fields 2 and 5, the two fields with silt loam soil and substantial relief. For sen-

sorAMBER and sensorNIR the correlations to OM are not significant in Field 4. This could

potentially be related to the substantial relief in this field and moisture loss from the sandy

soil between the time of soil disturbance and data collection. This same reason may also

have contributed to weaker correlations between imageGREEN, imageRED and imageNIR to

OM in Field 4. It is not clear why the imagery bands are not significantly correlated to OM

in Field 6 (Table 2). For the entire dataset, measured OM is only weakly correlated to both

sensorAMBER and sensorNIR (r \ -0.3), possibly as a result of slight variation in the

distance between the ATV and planter during data collection and rapid drying of the soil

that may have occurred after soil disturbance. Correlation of OM to imagery bands is

moderate (r = -0.5 to -0.7). These results provide a broad range in OM, sensor and

imagery measurements with which to build prediction models of OM.

Relationships between OM measurements and sensorAMBER, sensorNIR, imageGREEN,

imageRED and imageNIR are shown in Fig. 3. An initial inspection of the graphs in Fig. 3

indicates that OM prediction models for Field 1 and possibly Field 4 (sandy soil) would

require different intercepts and or slopes than the remaining fields in the analysis (fine-

textured soil). As shown in Fig. 3, the relationships between measured OM and sensor

measurements for fine-textured soil types indicate that field-specific or intercept-adjusted

models would need to be developed for accurate prediction of OM by sensors. In contrast,

inspection of measured OM and imagery bands in Fig. 3 indicates that one linear

regression model could potentially be applied across the four fields with fine-textured soil.

Intercept adjustment of the imagery-based model could possibly provide increased
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accuracy in the prediction of OM for the fields with sandy soil. The difference in the scatter

of points between the sensor and image bands in Fig. 3 is because the digital brightness

values for each image were stretched to a range of 0–255. This step in image processing

created a site-specific adjustment for each field, resulting in all fine-textured soil types

Table 3 Summary of accuracy of OM prediction strategy models using both calibration and validation data

Strategy Data used Calibration Validation

R2 RMSE
g kg-1

R2 RMSE
g kg-1

MAE
g kg-1

Uniform All points 0.83 4.0 0.70 5.4 3.9

3 Points/field 0.76 4.8 0.71 5.1 4.0

Interpolation IDW 1.00 0.0 0.75 4.9 3.6

Universal SensorAMBER 0.05 9.5 0.08 9.2 7.4

SensorNIR 0.04 9.5 0.07 9.2 7.4

ImageNIR 0.47 7.1 0.47 7.0 5.5

ImageRED 0.26 8.4 0.25 8.3 6.3

ImageGREEN 0.33 8.0 0.32 7.9 5.8

Field-specific SensorAMBER 0.88 3.4 0.82 4.1 3.1

SensorNIR 0.88 3.4 0.80 4.4 3.2

ImageNIR 0.87 3.5 0.75 4.9 3.6

ImageRED 0.88 3.4 0.76 4.8 3.6

ImageGREEN 0.88 3.4 0.76 4.8 3.5

Intercept-adjusted SensorAMBER 0.85 3.8 0.78 4.5 3.4

SensorNIR 0.84 4.0 0.76 4.6 3.6

ImageNIR 0.85 3.9 0.78 4.5 3.4

ImageRED 0.86 3.8 0.79 4.4 3.3

ImageGREEN 0.86 3.8 0.79 4.4 3.3

Multiple layers SensorAMBER ? SensorNIR 0.85 3.8 0.78 4.5 3.4

SensorAMBER ? (ImageRED ? ImageGREEN) 0.87 3.6 0.82 4.1 3.1

SensorNIR ? ImageNIR 0.86 3.8 0.81 4.2 3.2

ImageNIR ? (ImageRED ? ImageGREEN) 0.86 3.7 0.80 4.3 3.4

SensorAMBER ? ImageGREEN 0.87 3.6 0.82 4.1 3.1

Fig. 5 Calibration and validation results of predicted versus measured OM for Fields 1–6 using inverse
distance squared interpolation (IDW). The RMSE and MAE are in the same units as measured and predicted
OM
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Fig. 6 Calibration and validation results of predicted versus measured OM for Fields 1–6 using a universal
regression model developed from and applied across all fields. Single prediction variables include
sensorAMBER, sensorNIR, imageNIR, imageRED and imageGREEN. The RMSE and MAE are in the same units
as measured and predicted OM
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being grouped along a similar slope and intercept. Sensor data were not stretched to a

standardized range so that data points for each field have a similar slope, but different

intercept values (Fig. 3). In addition, the different slope values for the sandy soil compared

to fine-textured soil could possibly be related to soil parent material and soil moisture

content at the time of data collection.

Model development and validation

Results for the uniform OM prediction models are shown in Fig. 4 and Table 3. Use of all

calibration points produces a RMSE of 4.0 g kg-1, which increases by 1.4 g kg-1 when

applied to the validation dataset. An RMSE of 4.8 g kg-1 results when the average of three

selected data points are used instead of the calibration dataset. When this uniform

regression model is applied to the validation data, the RMSE increases by 0.3 g kg-1, and

the resulting RMSE is comparable to the uniform prediction model that used the entire

calibration dataset. These results suggest that prediction of OM from a reduced number of

sample points or from a few representative data points from directed sampling could

provide error estimates similar to models that use all the data for a field.

The results of IDW interpolation are shown in Fig. 5. For the calibration IDW dataset,

the R2 values are 1 because IDW is an exact interpolator, and all of the calibration points

are used to create the IDW surface. When applied to the validation dataset, IDW produces

a RMSE of 4.9 g kg-1 and MAE of 3.6 g kg-1. This interpolation method predicts OM

content more accurately than the uniform prediction models.

Applying a universal simple linear regression model across all fields leads to over-pre-

diction of OM for Fields 1 and 4 (sandy soil) and under-prediction for Fields 2, 3, 5 and 6

(fine-textured soil) (Fig. 6). Universal sensor-based prediction results in substantially weaker

model performance (R2 B 0.08, RMSE = 9.2 g kg-1, MAE = 7.4 g kg-1) compared

with uniform (R2 = 0.71, RMSE = 5.1 g kg-1, MAE = 4.0 g kg-1) or interpolation

(R2 = 0.75, RMSE = 4.9 g kg-1, MAE = 3.6 g kg-1) prediction models (Table 3). Uni-

versal imagery-based prediction performs substantially better than the sensor-based models,

with imageNIR performing better (R2 = 0.47, RMSE = 7.0 g kg-1, MAE = 5.5 g kg-1)

than imageRED (R2 = 0.25, RMSE = 8.3 g kg-1, MAE = 6.3 g kg-1) and imageGREEN

(R2 = 0.32, RMSE = 7.9 g kg-1, MAE = 5.8 g kg-1) (Table 3). However, the imageNIR

universal prediction model substantially overestimates OM for Field 1 (Fig. 6). These results

indicate that a simple linear sensor-based or imagery-based prediction model using one

prediction variable will not predict OM as accurately for these data as the uniform or inter-

polation prediction strategies. These results agree with findings by others (Schulze et al.

1993), where the model accuracy decreased substantially when samples from a large geo-

graphical area with different parent materials were included in a single regression model

(universal strategy).

Field-specific models provide the most accurate OM prediction (Fig. 7). When applied

to the calibration data, a single sensor or imagery band used to predict OM content results

in R2 C 0.87 and RMSE B 3.5 g kg-1. When applied to the validation data, either sensor

layer (sensorAMBER or sensorNIR) provides a better prediction of OM than any of the

individual imagery bands (Fig. 7; Table 3). For either sensor platform (i.e. sensor or

image), visible bands slightly reduce error values compared to their respective NIR bands,

indicating that for these data VIS predicts soil OM content more accurately than the NIR

bands. The field-specific sensor and imagery calibration provides the most accurate pre-

diction of OM; however, its implementation on a large scale would be impractical due to

time and cost for site-specific calibration. Therefore, additional analyses were done to
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Fig. 7 Calibration and validation results of predicted versus measured OM for Fields 1–6 using a field-
specific OM prediction strategy. Field regression models were developed from and applied to individual
fields. Single prediction variables include sensorAMBER, sensorNIR, imageNIR, imageRED and imageGREEN.
The RMSE and MAE are in the same units as measured and predicted OM
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derive a feasible alternative that could potentially be implemented at the farm level with

limited time and cost requirements for calibration.

Based on the scatter of the data in the plots in Fig. 3, we tested an intercept-adjusted

OM prediction model as a possible alternative to the field-specific strategy. For the cali-

bration data, the intercept-adjusted method results in less accurate predictions of OM for

the sensor (R2 C 0.84, RMSE B 4.0 g kg-1) as well as the aerial imagery (R2 C 0.85,

RMSE B 3.9 g kg-1) (Fig. 8; Table 3). When applied to the sensor validation data, the

prediction accuracy of OM decreases for both sensorAMBER and sensorNIR compared to a

field-specific strategy. When the intercept-adjusted strategy is applied to the imagery

validation data, all three bands give more accurate predictions of OM compared to the

validation data using the field-specific strategy. This is attributed to the original moderately

large correlation coefficients between the imagery bands and measured OM (r = -0.5 to

-0.7), and the smoothing effect that occurs when one predictive model is applied to

several fields rather than individual fields. Performance of the model is enhanced due to the

larger range of values when using all the fields together to define the slope of sensor

response to the change in OM. Soil texture may be a significant factor affecting this slope,

as was observed in the relationship between sensor readings and measured OM.

Based on sensor and imagery performance in the intercept-adjusted strategy, we tested

the use of a combination of sensor and imagery data for predicting OM. Use of both

sensorAMBER and sensorNIR (Fig. 9) gives results that are comparable to the use of sen-

sorAMBER only (R2 = 0.78, RMSE = 4.5 g kg-1, MAE = 3.4 g kg-1; Fig. 8 and

Table 3). Because imageGREEN and imageRED were shown to be more accurate than

imageNIR, the average of imageGREEN and imageRED was combined with sensorAMBER,

resulting in R2 = 0.82, RMSE = 4.1 g kg-1 and MAE = 3.1 g kg-1. A combination of

sensorNIR and imageNIR as well as all imagery bands gives a slightly larger OM prediction

error. A combination of sensorAMBER and imageGREEN results in a model prediction

accuracy comparable to that determined for the field-specific strategy (R2 = 0.82,

RMSE = 4.1 g kg-1, MAE = 3.1 g kg-1). These results indicate that a combination of

sensor and imagery data does not significantly increase OM prediction accuracy.

A summary of the RMSE and MAE calculated for each strategy is given in Table 4. For

each field in the table, bold values indicate the OM prediction strategies that produce the

smallest MAEs, and the superscripts indicate strategies with significantly larger MAEs.

These results indicate that the most accurate predictions of OM are obtained for Field 2

using the field-specific or intercept-adjusted strategy, with interpolation in Field 4 and with

any method other than uniform or universal for Fields 1, 3, 5 and 6. The uniform and

universal strategies provide the least accurate predictions of OM across all fields in this

study compared with the other methods tested. Overall, a field-specific strategy using

sensorAMBER results in the smallest MAE, but this was not significantly better than

interpolation or other strategies that incorporated imagery bands. It should also be noted

that the validation dataset results in a MAE of *3.3 g kg-1 for any of the field-specific or

intercept-adjusted strategies. The interpolation methods result in a non-significant increase

of MAE to 3.5 g kg-1, whereas the MAE for a uniform approach is significantly larger at

4.0 g kg-1. Finally, it is not feasible to use a single (universal) calibration model for the

entire dataset. This is related to the range of soil texture, differences in soil moisture

content at the time of data collection and the lack of a standardized range for sensor output

values (sensor data only). A system that accounts for a wider range of soil texture and

moisture contents could potentially produce a universal model to apply across a broad

geographical area. Alternatively, increased prediction accuracy of OM could possibly be
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Fig. 8 Calibration and validation results of predicted versus measured OM for Fields 1–6 using the
intercept-adjusted OM prediction strategy. A single regression model was applied across all fields. Intercept
values were adjusted for each field based on three data points selected from high, medium and low OM areas
of each field. The RMSE and MAE are in the same units as measured and predicted OM
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Fig. 9 Calibration and validation results of predicted OM versus measured OM for Fields 1–6 using a
combination of multiple prediction variables and the intercept-adjusted OM prediction strategy. Prediction
variables included sensorAMBER plus sensorNIR, sensorAMBER plus the average of imageRED and
imageGREEN, sensorNIR plus imageNIR, imageNIR plus the average of imageRED and imageGREEN, and
sensorAMBER plus imageGREEN. The RMSE and MAE are in the same units as measured and predicted OM
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achieved by dividing the 0–20 cm soil samples into surface (0–1 cm) and subsurface (1–

20 cm) increments.

Although there was no significant difference in accuracy between sensor- and imagery-

based OM estimates, these results show that specific field environments influenced sensor-

based measurements more than imagery-based measurements. This could be attributed to

the scaling of digital pixel values during the processing of aerial images, whereas a similar

standardization is not performed on sensor data. Also, this difference could possibly be

related to the bandwidths and wavelengths recorded for each sensing system. Although it

would have been preferable to record data from the same wavelengths with both sensing

systems, this study provides an initial analysis of two sensing systems available to pro-

ducers. A follow-up study could include a comparison between the two platforms when

similar data filters are used in both systems.

Conclusions

In this study, we have shown that surface soil OM can be predicted from a wide-band aerial

image or a ground-based active sensor. We found that it was not feasible to use a single

(universal) calibration model for the entire dataset. However, by adjusting regression

intercept values for each field, OM was predicted using a single sensor or image waveband

with an R2 C 0.76, RMSE B 4.6 g kg-1 and MAE B 3.6 g kg-1. This degree of accuracy

of prediction is likely to be acceptable for use in the site-specific control of input rates for

nitrogen fertilizer or pesticides, for example. Soil OM prediction using a ground-based

sensor or an aerial image may be field-specific and not always significantly better com-

pared to a conventional practice such as the assumption of uniform OM or interpolated

estimates from sample data on a grid. Increased accuracy in soil OM prediction using an

active sensor or aerial imagery may be obtained by acquiring the data when there is

minimal surface residue or when it has been removed from the sensor field-of-view, by

accounting for soil moisture content through the use of supplementary sensors at the time

of data collection or by focusing on the relationship between soil reflectance and soil OM

content in the 0–1 cm soil depth.
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