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Fish movement may vary across a wide array of aquatic ecosystems and may be related to the overall size of
the system inhabited. We investigated movement of smallmouth bass in Lake Michigan because this informa-
tion is lacking for larger systems. A total of 16 smallmouth bass were surgically implanted with ultrasonic
transmitters within the Beaver Archipelago, northern Lake Michigan. During 2007–2008, a maximum of
one location per individual was recorded daily during three specific tracking periods – pre-spawn, spawning, and
post-spawn – to determine diurnal movement patterns. Movement was evaluated as site fidelity, minimum
displacement rate,maximumexcursion rate, anddistance fromshore. Smallmouthbass exhibited greatermaximum
excursion rates during the spawn period compared to pre-spawn. Movement rates did not differ between tracking
periods; however, movement rates were greater during the spawn period in 2007 than 2008. Both sexes moved
further offshore to deeper water during post-spawn, but females were located further offshore than males during
this period. Annual site fidelity was more evident during post-spawn than during spawning for both sexes. Two
smallmouth bass emigrated outside of the Archipelago, suggesting this population may be more “open” in
terms of individuals moving throughout northern Lake Michigan than previously thought. These results indicate
smallmouth bass may move greater distances in larger aquatic systems and therefore larger management units
(in terms of total area) should be established in Lake Michigan to account for these greater excursion distances.

Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.

Introduction

Smallmouth bass (Micropterus dolomieu) movement has been stud-
ied in many aquatic ecosystems. Smallmouth bass within lotic systems
appear to be relatively sedentary, except during spawning and prior to
moving to overwintering habitats (Bunt et al., 2002; Lyons and Kanehl,
2002; Todd and Rabeni, 1989). Earlier work (Funk, 1955) suggested
that two types of smallmouth bass – sedentary and mobile – might
exist within lotic populations. Similar to lotic populations, smallmouth
bass in smaller lentic habitats exhibit restrictedmovement and homing
tendencies (Forney, 1961; Kraai et al., 1991; Pflug and Pauley, 1983;
Ridgway and Shuter, 1996). Nest site fidelity among male smallmouth
bass has also been shown to exist in lentic populations as a majority
of males will nest within 100 m of their spawning site from a previous
year (Ridgway et al., 1991). Although previous studies have documented

some similarities between lentic and lotic smallmouthbass populations in
relation tomovement, most of these studieswere conducted in systems
that are much smaller and energetically more stable relative to the
Great Lakes (Bunt et al., 2002; Kraai et al., 1991; Lyons and Kanehl,
2002; Pflug and Pauley, 1983; Ridgway and Shuter, 1996; Todd and
Rabeni, 1989).

Although similarities can exist between movement of smallmouth
bass populations in small diverse aquatic habitats (e.g., lotic vs.
lentic), some differences have been observed that can be related to
specific characteristics (e.g., temperature regimes, size, bathymetry,
structure type, productivity) of the study system (Gerber and Haynes,
1988). For example, movement can vary seasonally within a system
(Gerber and Haynes, 1988; Lyons and Kanehl, 2002). Movement has
also been linked to depth and light intensity; smallmouth bass seek
shelter or cover within highly illuminated streams and may remain
less active in these shallow systems than in deeper lentic habitats
(Gerber and Haynes, 1988; Haines and Butler, 1969; Reynolds and
Casterlin, 1976). Due to differential movement of smallmouth bass
in contrasting aquatic systems (i.e., smallmouth bass may move at
different rates or greater distances depending on system size), a
more thorough understanding of smallmouth bass movement is
needed in large, understudied lentic systems.

The Great Lakes, and Lake Michigan specifically, differ significantly
from other smaller bodies of water in which smallmouth bass
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movement has been evaluated. The different temperature regimes
(Gorham and Boyce, 1989; Plattner et al., 2006), current patterns
(Beletsky et al., 1999), and habitat complexity experienced by small-
mouth bass in Great Lakes systems likely have a strong influence on
movement patterns. Great Lakes habitat can generally be characterized
as diverse, with deep, oligotrophic areas found adjacent to mid-lake
reefs, shallow bays, and fringing wetlands. Submerged aquatic vegeta-
tion is mostly sparse to non-existent (except in a few unique coastal
areas; e.g., Green Bay), water clarity and light penetration is generally
greater than in most inland systems, and large woody cover used by
smallmouth bass in inland systems is largely lacking, replaced instead
by cobbles, boulders, and other rock and reef structures. Because the
Great Lakes are high energy systems (i.e., strongly influenced by wind,
waves, and currents), habitat is constantly changing. Water levels in
the Great Lakes can also fluctuate dramatically (Lenters, 2001; Quinn
and Selliger, 2006), leading to seasonal and interannual changes in
habitat structure and availability (Webb, 2008). The differences seen
between these system characteristics and those of inland systems
make a study of Great Lakes smallmouth bass movement important to
an improved understanding of the ecology and population dynamics
of this species.

In addition to examining differences between movements of small-
mouth bass among lentic aquatic systems, important information on
movement of smallmouth bass in the Great Lakes could be obtained
and incorporated into future management decisions. For example, the
Beaver Archipelago (northern LakeMichigan) smallmouth bass popula-
tion is managed under different regulations (i.e., extended spawning
closure compared to adjacent Lake Michigan and inland populations)
because it is considered a separate or isolated population from the
rest of northern Lake Michigan. Evaluation of this assumption could
aid in identifying whether this population should continue to be
managed as a separate population or alternatively as an “open popula-
tion” if movement occurs outside the Archipelago (N 5 km away from
Archipelago). In addition, identifying movement patterns of small-
mouth bass in the Beaver Archipelago will also allow managers to
identify important areas (e.g., nearshore, offshore) during pre-spawn,
spawn, and post-spawn, that should be protected from future anthro-
pogenic disturbances.

We investigated, via acoustic telemetry, several aspects of move-
ment within the Beaver Archipelago population to provide managers
with information (e.g.; site use, emigration) that is essential for effec-
tively managing Great Lakes smallmouth bass. The specific objectives
of this study were to: 1) identify the maximum extent of movement
(within the Beaver Island Archipelago as well as emigration from the
Archipelago) by individuals within this population, 2) determine if
between-year site fidelity was exhibited for areas used during spawn
and post-spawn tracking periods, and 3) determine movements from
nearshore to offshore and daily movement rates during three specific
tracking periods: pre-spawn, spawn, and post-spawn.Wehypothesized
differentialmovement for smallmouth bass between LakeMichigan and
other lotic and smaller lentic systems because larger systems may be
inherently different in terms of system stability and productivity. Our
goal was to better elucidate movement tendencies of smallmouth bass
within a large lentic system to further our understanding of population
structure and spatiotemporal distribution, important components of
population dynamics. In addition, understanding movement is vital to
appropriate conservation and management (e.g., regulation, predator
control, habitat protection) of smallmouth bass in Great Lakes systems.

Methods

Study site

The Beaver Island Archipelago is located in northeastern Lake
Michigan approximately 25–30 km from both the Lower and Upper
Peninsulas of Michigan (Fig. 1). Beaver Island is the largest island

(144 km2) within the Archipelago. The Archipelago includes fifteen
additional islands (depending on Great Lakes water levels); the
largest of these are Garden, High, and Hog Islands.

The Beaver Island Archipelago exhibits a wide variety of habitat
types: many diverse bays (in relation to bathymetry; e.g., shoals,
reefs), substrate complexity, and aquatic vegetation. For example,
Indian Harbor (Fig. 1) is relatively shallow with a moderate density
of submergent and emergent aquatic macrophytes and substrate
composed of organic material, whereas Northcut Bay is deeper and
contains fewermacrophytes and amuch rockier substrate. In addition,
this Archipelago system is relatively isolated from the mainland, pro-
viding ample opportunities for smallmouth bass to move large dis-
tances in open water.

Fish tagging

Sixteen smallmouth bass were implanted with temperature-
telemetry transmitters (Sonotronics, model CTT-83-3-E, 62×16
mm, 10.0 g in H2O) in early May 2007. Eight of the smallmouth
bass tagged were from Indian Harbor and eight were from
Sturgeon Bay (Fig. 1). Our sample size was limited by the expense
of transmitter costs and logistics of tracking large numbers of individ-
uals in such a large system. Garden Island bays were selected because
historical sampling indicated higher abundances of smallmouth bass
near this island compared to other islands within the Archipelago and
represent important nesting sites (Kaemingk et al., 2011). The small-
mouth bass selected were representative of the population according
to their movement patterns as movement between bays was often
observed in a mark-recapture study from 2005 to 2008, where within
a 7 day sampling period 30% of smallmouth bass recaptured (45/148)
were captured in a different bay than previously caught (Kaemingk,
Central Michigan University, 15 September 2008, unpublished data).
This further suggests mixing is common among bays within the
Archipelago and that a point sample is an accurate representation of
the population. Acoustic transmitters were chosen for this study be-
cause large smallmouth bass (N406 mm) have been observed to inhabit
deep water (N8 m) during late summer (Cole and Moring, 1997). To
minimize the effects of the transmitters on the behavior of the fish,
transmitters did not exceed 2% of the fish's total weight (Winter,
1996). The life expectancy of each transmitter was 36 months.

Smallmouth bass were captured in trap nets (1.5 m width×0.9 m
depth frame; 2.5 m long pot with 4 cm mesh, stretched). Weight (g),
total length (mm), and sex were recorded for each transmittered
smallmouth bass (Table 1). Each smallmouth bass captured was
placed into a tank of water containing MS-222 (85 mg L−1) until loss
of equilibrium occurred. Each fish was then placed on an operating
platform capable of holding the fish stationary during surgery. While
the fish was undergoing surgery, a continual flow of anesthetic
(MS-222, 30 mg L−1) was irrigated over the fish's gills until the surgery
was completed (Adams et al., 1998). All transmitters and surgical in-
struments were sterilized with a 4% Chlorhexidine Gluconate solution
and rinsed with sterile water prior to conducting the surgeries. A
small incision (approximately 20 mm long) was made slightly above
the fish's ventral midline to insert the transmitter. Once the incision
was made, the transmitter was gently placed within the body cavity
of the fish. Single interrupted sutures were made with a round needle
through the integument and musculature using monofilament absorb-
able suture to close the incision. Each fish was held in a holding cage
positioned in the bay of capture until it exhibited normal swimming
behavior before being released back into the lake. Transmittered small-
mouth bass were also marked with two jaw tags and an upper caudal
fin clip in case of transmitter failure, which allowed identification of
the specific fish if recaptured. Incisions of transmittered smallmouth
bass recaptured during a mark-recapture study appeared to have
healed, as evident from a small scar where the incision was made.
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Fish tracking

Smallmouth bass were tracked using a boat and directional hydro-
phone (Sonotronics, model DH-4) attached to a receiver (Sonotronics,
model USR-96). Some locations were recorded from shore to minimize
time taken between identifying successive waypoints used to triangu-
late the location of the fish. Locations were not recorded until a week
had elapsed after the surgery, since fish may exhibit erratic movement
patterns during this time (Mesing and Wicker, 1986). An attempt was
made to locate each fish daily, between 0700 and 1900 h, from May to
August in 2007 and 2008. Each fish was located at different hours
each day (by varying direction of search), which allowed for an unbi-
ased estimate of diurnal movement patterns. Because smallmouth
bass remain somewhat inactive during nocturnal hours and due to the
difficulty of boating around islands at night, no tracking was done
from 1900 to 0700 h. Spatial autocorrelation among consecutive loca-
tions was appropriately accounted for by treating the fish as the exper-
imental unit in all analyses (Kenward, 1992; Rogers and White, 2007).

Three tracking periods (pre-spawn, spawn, post-spawn) were
established for all smallmouth bass. Each period was determined by
visually inspecting near-shore habitats for nesting smallmouth bass
each week during May and June each year. The pre-spawn period
(18 May–28 May, 2007; 8 May–23 May, 2008) was defined by loca-
tions of transmittered smallmouth bass observed prior to the
construction of the first nest by an individual male bass within the
study area. Locations recorded between the initial and last sightings
of a male guarding a nest were considered spawning locations (29
May–25 June, 2007; 24 May–July 1, 2008). Any locations recorded
after the sighting of the last nesting activity were assigned to the
post-spawn tracking period (26 June–22 Aug, 2007; 2 July–8 Aug
2008).

A grid system (500 m×350 m)was used to locate each fish, because
it was difficult to obtain an exact location due to water clarity (i.e., boat
was highly visible and fish appeared to avoid the boat; Secchi disk
measurements N13.4 m, Galarowicz, Central Michigan University, 15
August 2010, unpublished data), high mobility of fish, and the many
shallow water locations occupied early in the season. For analyses, all
locations were assigned to the centroid (i.e., the exact center) of each
grid where the fish was located. Triangulation from visual landmarks
was used to assign each individual to its respective grid. For locations
where visual landmarks were unidentifiable (i.e., farther away from
shore/greater depths), positions and grid assignmentswere determined
by triangulating from GPS coordinates on the water (e.g., minimum of
three GPS coordinates and bearings for each fish location). The accuracy
of thesemethodswas assessed during spawning by first determining in
which grid a fish locationwas perceived, followed by a visual location of
thefish (i.e., males on the nest). For analysis purposes, significant differ-
ences inmovement rates wheremeans differed by less than 250 m (i.e.,
distance from midpoint of grid to outside edge of grid) may not fully
represent true differences, but rather are reflective of the level of
precision associated with using a grid-based system.

Movement pattern analysis

Movement was evaluated as site fidelity, minimum displacement
rate, maximum excursion rate, and distance from shore. A multiple
response permutation procedure (MRPP)was implemented to evaluate
site fidelity for the spawn and post-spawn tracking periods between
2007 and 2008 using the program BLOSSOM (Slauson et al., 1994).
The MRPP uses mean pairwise Euclidian distances to compare
within-group distances (e.g., locations within a year) to between-
group distances (e.g., locations compared between years) when groups

Fig. 1. Michigan (A), Beaver Island Archipelago (B), Garden and Hog Islands and associated bays, with stars indicating tagging locations (C).

Table 1
Length (mm), sex, and total number of locations by year within tracking periods for the
16 smallmouth bass surgically implanted with transmitters. Total search days for the
respective period are listed below each tracking period. Location describes the bay
(see Fig. 1) in which the bass were initially captured (IH = Indian Harbor, SB = Stur-
geon Bay) and Fish ID is an individual letter given to each bass for identification
purposes.

Fish 2007 2008

ID Location Length
(mm)

Sex Pre
(7)

Spawn
(18)

Post
(30)

Pre
(12)

Spawn
(26)

Post
(21)

A IH 495 F 4 8 9 11 16 6
B IH 445 F 2 2 4 4 1 0
C SB 470 F 3 9 16 7 19 14
D IH 440 F 4 12 4 3 13 3
E IH 388 M 3 16 8 11 19 14
F IH 453 M 3 15 8 4 14 9
G IH 473 F 3 15 22 12 16 17
H SB 415 F 2 15 0 0 0 0
I SB 445 F 3 3 5 8 11 8
J SB 458 F 3 8 3 8 18 1
K IH 500 F 1 9 11 3 14 16
L IH 424 F 0 0 7 8 3 4
M SB 403 F 0 15 19 6 7 16
N SB 398 M 3 15 16 0 13 16
O SB 461 F 0 0 0 0 0 0
P SB 473 F 1 2 7 4 9 10
Total 35 144 139 89 173 134

627M.A. Kaemingk et al. / Journal of Great Lakes Research 37 (2011) 625–631
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are ignored (Garrot and White, 1990). The null hypothesis states that
there is no difference in utilization distributions between 2007 and
2008 (i.e., site fidelity was exhibited). Only smallmouth bass with a
minimum of five locations per tracking period per year were used in
this analysis (N=10 fish), thereby reducing the effects of a single loca-
tion on the overall results. Limited 2007 pre-spawn period locations
precluded us from using this analysis to determine pre-spawn site
fidelity.

Location distance from shore (m) was used to determine the extent
of movement away from shore for a specific tracking period (pre-
spawn, spawn, post-spawn) for each individual fish. Each location
distance from shore was measured using the spatial analyst extension
in ArcView (version 3.3). Amean location distance from shorewas calcu-
lated for each fish for each tracking period.

Mean minimum displacement rate (m·day−1) describes distance
traveled per day for each fish tracked throughout all three tracking
periods. Straight-line distances between successive locations were
calculated to estimate minimum displacement (ArcMap version 9.2).
A significant positive correlation existed between days at large and
distance moved for all tracking periods except during pre-spawn in
2007. Therefore, distance between successive locations was divided
by the number of days at large to estimate mean minimum displace-
ment. The largest straight line distance moved per day by each fish
for each tracking period was considered its maximum excursion rate
(m·day−1) for the specified tracking period.

A repeated measures (with the individual fish as the repeated mea-
sure and experimental unit; Rogers and White, 2007) analysis of
variance (RMANOVA) was used to assess differences between tracking
periods, years, and sexes for the following dependent variables: location
distance from shore (m), maximum excursion rate (m·day−1), and
mean minimum displacement rate (m·day−1). Due to the non-
constant variability in the dependent variables, a mixed model was
used (PROC MIXED; SAS Institute Inc., 2003). Fixed effects in the
model included sex, tracking period, and year (Rogers and White,
2007). The random effect was the individual fish, allowing inferences
to be made about the population as a whole rather than only the fish
sampled (Rogers and White, 2007). The maximum likelihood method
was used because it allowed for unbalanced designs (e.g., data missing
for an individual fish for specific tracking periods; Littell et al., 1996).
Data from males and females were pooled for further analyses if no
differences existed between sexes. Tukey's pairwise comparison test
was usedwheremultiple comparisonsweremade. Dependent variables
were transformed using log10×(distance from shore) or log10x+1
(maximum excursion, mean minimum displacement) to achieve nor-
mality. Alpha was set at 0.05 for all statistical tests.

Results

Fifteen of the 16 smallmouth bass were located at least once during
the course of this study (Table 1). Seven smallmouth bass were located
a minimum of three times per tracking period for all three tracking pe-
riods both years. Smallmouth bass “O”was never located after being re-
leased in Sturgeon Bay. More locations were identified during
spawning in 2007 and 2008 than in periods before and after spawning
(Table 1).

Smallmouth bass moved between bays adjacent to individual
islands and among islands within the Archipelago during all three
tracking periods in 2007 and 2008. Two of the individuals tagged
during this study were caught by anglers outside of the Archipelago
at mainland locations near Epoufette Island, MI (33 km to the north-
east), and Manistique, MI (59 km to the northwest). One of these
smallmouth bass could not be assigned to its specific identification be-
cause the angler did not record the jaw tag numbers; however, a total
length was recorded and it fit the description of one of the two other
smallmouth bass that was not located during that time period. Some
females (4/7) and none of the males (0/3) exhibited annual site

fidelity during spawning (MRPP test, Pb0.05); however, a majority
of males (2/3) and females (7/7) did exhibit site fidelity during post-
spawn (MRPP test, PN0.05; a limited number of locations precluded
us from performing this analysis on all individuals for each period).

Distance from shore did not differ between sexes for pre-spawn
(RMANOVA, F1, 8=0.23, P=0.64) and spawn (RMANOVA, F1, 11=
0.00, P=0.94) tracking periods; however, females were further off-
shore than males during post-spawn across years (RMANOVA, F1, 12=
5.48, P=0.04; Fig. 2). Males were further offshore during post-spawn
compared to the remaining two tracking periods during 2007
(RMANOVA, F2, 4=18.99, Pb0.01), but there was no difference
between tracking periods with respect to distance from shore during
2008 (RMANOVA, F2, 3=1.99, P=0.28; Fig. 2). Females remained
further offshore during post-spawn than pre-spawn and spawning for
both 2007 (RMANOVA, F2, 12=27.68, Pb0.0001) and 2008 (RMANOVA,
F2, 17=31.32, Pb0.0001; Fig. 2). Male distance from shore did not differ
between years during pre-spawn (RMANOVA, F1, 1=10.32, P=0.19)
and spawn (RMANOVA, F1, 2=0.65, P=0.50), but males were further
offshore in 2007 than in 2008 (RMANOVA, F1, 2=26.95, Pb0.05;
Fig. 2) during the post-spawn period. Female distance from shore did
not differ between years for pre-spawn (RMANOVA, F1, 5=1.67,
P=0.25), spawn (RMANOVA, F1, 7=1.63, P=0.24), and post-spawn
(RMANOVA, F1, 8=0.84, P=0.38; Fig. 2).

Fig. 2. Mean male and female distance from shore (m) (top), mean minimum displace-
ment (m·day−1) (middle), and mean maximum excursion (m·day−1) (bottom) during
pre-spawn, spawn, and post-spawn periods for 2007 and 2008. Asterisks (*) indicate
significant differences between years within tracking periods and letters indicate signifi-
cant differences across tracking periods within years/sex. Vertical bars are ±1SE.

628 M.A. Kaemingk et al. / Journal of Great Lakes Research 37 (2011) 625–631
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Males and females did not differ with respect tominimum displace-
ment (m·day−1) during pre-spawn (RMANOVA, F1, 8=0.11, P=0.74),
spawn (F1, 11=3.12, P=0.10), and post-spawn (F1, 12=0.69, P=0.42);
data for both sexes are combined for subsequent analysis. Displace-
ments were similar across all three tracking periods for 2007 (RMA-
NOVA, F2, 18=1.99, P=0.16) and 2008 (RMANOVA, F2, 22=3.02,
P=0.06; Fig. 2). Smallmouth bass exhibited greater movement rates
during spawn (RMANOVA, F1, 10=9.38, Pb0.05) and post-spawn
(RMANOVA, F1, 11=8.54, Pb0.05) in 2008 compared to 2007, but
there was no difference in movement rates between years during pre-
spawn (RMANOVA, F1, 7=1.84, P=0.21) (Fig. 2).

Maximum excursion rates (m·day−1) did not differ between
sexes during pre-spawn (RMANOVA, F1, 8=0.30, P=0.60), spawn
(F1, 11=0.20, P=0.66), and post-spawn (F1, 12=0.29, P=0.60) pe-
riods. In 2007, smallmouth bass exhibited greater maximum excursion
rates during the spawn and post-spawn period in comparison to the
pre-spawn (RMANOVA, F2, 18=6.0, P=0.01) period (Fig. 2). In 2008,
bass exhibited greater maximum excursion rates during spawn in com-
parison to pre-spawn (RMANOVA Tukey's post hoc, t22=−3.57,
Pb0.01), but no difference existed between post-spawn and pre-
spawn periods (RMANOVA Tukey's post hoc, t22=−1.46, P=0.15).
Maximum excursion rate did not differ between years during pre-
spawn (RMANOVA, F1, 7=3.94, P=0.08) or post-spawn (RMANOVA,
F1, 11=3.83, P=0.07); however, maximum excursion rates during the
spawn period were greater in 2008 than in 2007 (RMANOVA,
F1, 10=29.30, P=b0.001; Fig. 2).

Discussion

These results support other studies conducted in lentic and lotic
habitats where smallmouth bass movement is more restricted during
summer months (Hubert and Lackey, 1980; Pflug and Pauley, 1983;
Savitz et al., 1993). In our study, it appeared that most (13 of 15 indi-
viduals tagged) smallmouth bass remained within the Archipelago
(b5 km away from Archipelago), as each of these were located on
multiple occasions throughout most tracking periods; however,
some individuals may have left the Archipelago and returned. While
smallmouth bass in many populations exhibit restricted movements,
some individuals have been seen to move upwards of 89 km (Bunt et
al., 2002; Langhurst and Schoenike, 1990) in riverine systems. Our
study also documented more extensive movement, with known in-
stances where female smallmouth bass moved 33 km and 59 km out-
side the Archipelago. This study supports the idea that two different
individual movement types may exist among smallmouth bass, with
some smallmouth bass exhibiting restricted movements and others
more extensive movements. A majority of smallmouth bass in most
studies exhibit the former pattern rather than the latter; this was
also seen in the current study.

While evidence from this study indicates two types of smallmouth
bass may exist (restricted vs. extensive movement) in the Archipelago,
it also suggests that migration rates may be higher than previously
thought, with several individuals dispersing out of the Archipelago. A
Lake Erie smallmouth bass genetics study showed that migration rates
may be higher in lake-spawning, as opposed to lotic-spawning, small-
mouth bass (Stepien et al., 2007). Findings from this study and other
evidence fromLake Erie (Stepien et al., 2007)may indicate that this pop-
ulation is more “open”, with some individuals leaving the Archipelago.
Therefore, northern LakeMichiganmay need to be considered oneman-
agement unit for smallmouth bass.

Extensive movement is typically observed during the fall or spring
when bass are relocating to overwintering grounds or spawning sites
(Langhurst and Schoenike, 1990; Montgomery et al., 1980), but in-
creased maximum excursion rates in this study were also observed
during the spawn and post-spawn periods, especially during the
spawn period in 2008. Greater movement distances during these
tracking periods could be due to the size of smallmouth bass tagged

in this study; more extensive movements have been recorded for
bass greater than 400 mm in length (Cole and Moring, 1997). Larger
smallmouth bass may be more mobile than smaller conspecifics and
more likely to move greater distances (Beam, 1990; Cole and Moring,
1997). Increased daily food requirements for larger bass as opposed to
smaller conspecifics may cause larger bass to search larger areas to
meet these higher energy demands (Beam, 1990; Ridgway and Shuter,
1996).

Daily movement rates during 2007 (mean=493 m day−1) were
similar to those reported from a study conducted in a deep oligo- to
mesotrophic lake in Maine (Cole and Moring, 1997; Table 2). Our
2008 minimum displacement rates (mean=853 m day−1) were
more similar to a study conducted in Lake Ontario, another Great
Lakes system comparable in size to Lake Michigan; however, some
of the Lake Ontario fish were experimentally displaced, and data
from these fish may not truly reflect normal daily movement patterns
(Gerber and Haynes, 1988). Our results, in combination with Gerber
and Haynes (1988), suggest that daily movement may not be related
to the size of the system inhabited but rather a function of prey avail-
ability or some abiotic factor such as temperature. In terms of bioen-
ergetics and system productivity, fish in larger systems (i.e., those
that are less productive) may be required to travel greater distances
to meet daily energy requirements.

No differences were observed for minimum displacement rates
between tracking periods within a given year for smallmouth bass
in this study. Other studies have found differences in movement in re-
lation to light intensity, with smallmouth bass in more illuminated
systems exhibiting less activity than those located in deeper lentic hab-
itats (Gerber and Haynes, 1988; Haines and Butler, 1969; Reynolds and
Casterlin, 1976).Water clarity was high during all tracking periods dur-
ing both years of sampling, and thus movement rates may not have
been affected by differences in turbidity across tracking periods. How-
ever, movement rates could differ inmore eutrophic systems that expe-
rience a much wider range of turbidity across seasons.

Although no differences in movement rates were observed be-
tween tracking periods within a given year, there were differences
in movement rates between years during the spawn and post-
spawn tracking periods. Differences in movement rates during these
periods in 2007 and 2008 may be related to seiches or upwellings
as found in another smallmouth bass movement study in Lake
Michigan (M. Carter, personal communication). Seiches and wind-
driven upwelling events can cause dramatic short-term temperature
fluctuations (Plattner et al., 2006), and the magnitude or number of
these occurrences may have differed between years.

Table 2
Smallmouth bass greatest maximum distance traveled (Max) and minimum displace-
ment per day (Min/day) for various sizes of lakes (shown in ascending order with cor-
responding data source) in comparison to this study (n.a. = data not available). Studies
where smallmouth bass were experimentally displaced by humans (Gerber and
Haynes, 1988) were not included in this table because movement by these smallmouth
bass may not reflect natural movement.

Location Size (ha.) Max (km) Min/day (m) Study

Green Lake, Maine 1209 2.4 590 Cole and Moring,
1997

Lake Sammamish,
Washington

2000 4.8 n.a. Pflug and Pauley,
1983

Melton Hill Reservoir,
Tennessee

2270 3.5 1,925 Bevelhimer, 1995

Lake Opeongo,
Ontario

5860 9.1 n.a. Ridgway and
Shuter, 1996

Meredith Reservoir,
Texas

6447 6.5 n.a. Kraai et al., 1991

Lake Michigan 5,780,000 148.1 n.a. Latta, 1963
Lake Michigan 5,780,000 59.0 658 This study

(2007 & 2008)
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A majority of smallmouth bass were found further offshore during
post-spawn compared to the two remaining tracking periods, similar
to smallmouth bass in other lentic habitats (Cole and Moring, 1997;
Hubert and Lackey, 1980). During both years, females remained
further offshore than males during the post-spawn tracking period;
however, we caution that these differences may not reflect differences
at the population level as our sample size was limited for males. Sex-
related differences in movement have been found in other centrarchid
species (Paukert and Willis, 2002) but not specifically in smallmouth
bass. Sex-related differences in movement could coincide with differ-
ential energy demands in which male smallmouth bass need to forage
more in near-shore areas because large amounts of energy are
expended during nest guarding (Gillooly and Baylis, 1999; Hinch and
Collins, 1991), especially in the presence of nest predators (Steinhart
et al., 2004). Further studies are needed to elucidate the importance
of differential movement patterns between sexes among smallmouth
bass.

Movement into deeper water observed during post-spawn could
also be attributed to changing thermal regimes (Suski and Ridgway,
2009) such as the formation of a deep thermocline layer (Gorham
and Boyce, 1989); in these situations, smallmouth bass may move
into deeper water as a result of thermal preference. Cole and Moring
(1997) suggested smallmouth bass may be integrated into the off-
shore food web in a deep oligo-mesotrophic lake in Maine and may
compete with offshore fishes for available resources to some extent.
The offshore movement observed in the current study averaged
1000 m offshore (mean=4.5 m in depth), which is still considered
near shore in Lake Michigan due to its wide ranges of depth. As a
result, smallmouth bass are most likely not competing with offshore
fishes (e.g., Pacific salmon) for available food resources or fully inte-
grated in the Lake Michigan offshore food web.

Based on other studies (Barthel et al., 2008; Ridgway et al., 1991),
we expected all the males to return to within 1200 m of previous nest
sites. During the spawn period, all males failed to exhibit site fidelity.
The closest a male returned to the 2007 spawning site was 6.3 km.
However, approximately half of the females did exhibit annual site
fidelity in 2007 and 2008 with many located within the same grid
as found in the previous year. All males occupied different nesting
sites within different bays in 2008 compared with 2007. These
males could have been reproductively unsuccessful and abandoned
their nest during 2007 and as a result nested in a different location
the following year. Females in this study that did exhibit spawning
site fidelity could be selecting larger males not tracked in our study
who do exhibit spawning site fidelity.

Post-spawn site fidelity may be more important than site fidelity
during the spawn period, as indicated by the number of individuals
exhibiting post-spawn site fidelity. A majority of both males and
females were located in the same location during post-spawn in 2007
vs. 2008. Smallmouth bass during post-spawn are likely recovering
from high energy losses due to spawning and preparing for overwin-
tering by consuming large amounts of food. Post-spawn foraging
success in previous years may result in the return to these sites each
year since individuals are more likely to stay in an area that will max-
imize their fitness and alternatively abandon sites that will decrease
their fitness (Railsback et al., 1999). Smallmouth bass within this sys-
tem may be achieving increased fitness each year due to the tendency
for these individuals to exhibit post-spawn site fidelity.

This study suggests that large smallmouth bass may move greater
distances in larger aquatic systems but may have similar daily move-
ment rates compared to smaller aquatic systems (Cole and Moring,
1997). Daily movement rates appear more variable among the various
lake sizes (Table 2); however, a positive relationship exists between
lake size and maximum distance traveled (Fig. 3). Because Lake
Michigan is three times as large as any other lentic system investigated,
it may have undue influence in the correlation analysis; however, a
significant relationship remains between lake size and maximum

distance moved on smaller lentic systems (Fig. 3). Smallmouth bass
movement may be system-specific to some extent, with maximum ex-
cursion distances only limited by the size of the lake occupied. For ex-
ample, a smallmouth bass in a small lake may travel the same
distance per day on average as a smallmouth bass found in a larger
lake, but the latter has the ability to travel much farther due to a more
expansive habitat from which to select.

In summary, the results of this study provide information regard-
ing smallmouth bass daily movement patterns, site fidelity across two
different seasons, and maximum distance traveled in a smallmouth
bass population in northern Lake Michigan where this information
is lacking. Information gained via this study will allow biologists to
make more informed decisions concerning management of this and
other Great Lakes populations; for example, deciding on the appropri-
ate scale for management actions targeting Great Lakes smallmouth
bass. In addition, by estimating daily movement patterns and site
fidelity tendencies, specific areas can be identified for management
as important smallmouth bass habitat. These results also reflect the
need to study movement patterns and site fidelity of smallmouth
bass in multiple systems as these patterns may differ across habitat
type and the size of aquatic system inhabited.
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