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The importance of characterizing, quantifying, and monitoring land cover, land use, and their changes has been
widely recognized by global and environmental change studies. Since the early 1990s, three U.S. National Land
Cover Database (NLCD) products (circa 1992, 2001, and 2006) have been released as free downloads for users.
The NLCD 2006 also provides land cover change products between 2001 and 2006. To continue providing updated
national land cover and change datasets, a new initiative in developing NLCD 2011 is currently underway.We pres-
ent a new Comprehensive Change DetectionMethod (CCDM) designed as a key component for the development of
NLCD 2011 and the research results from two exemplar studies. The CCDM integrates spectral-based change detec-
tion algorithms including aMulti-Index Integrated Change Analysis (MIICA)model and a novel changemodel called
Zone, which extracts change information from two Landsat image pairs. TheMIICAmodel is the coremodule of the
change detection strategy anduses four spectral indices (CV, RCVMAX, dNBR, and dNDVI) to obtain the changes that
occurred between two image dates. The CCDM also includes a knowledge-based system, which uses critical infor-
mation on historical and current land cover conditions and trends and the likelihood of land cover change, to com-
bine the changes fromMIICA and Zone. For NLCD 2011, the improved and enhanced change products obtained from
the CCDMprovide critical information on location,magnitude, and direction of potential change areas and serve as a
basis for further characterizing land cover changes for the nation. An accuracy assessment from the two study areas
show 100% agreement between CCDMmapped no-change class with reference dataset, and 18% and 82% disagree-
ment for the change class forWRS path/row p22r39 and p33r33, respectively. The strength of the CCDM is that the
method is simple, easy to operate,widely applicable, and capable of capturing a variety of natural and anthropogenic
disturbances potentially associated with land cover changes on different landscapes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Global and regional assessments on land cover and land use status
and changes are fundamentally important for climate and environmen-
tal change studies (Foley et al., 2005; Matthews et al., 2004; Turner et
al., 2007). While some changes in land cover, such as long-term
changes, are due to natural causes, human activity increasingly plays
an important role in changing the land cover and land use throughout
the world. The importance of characterizing, quantifying, and monitor-
ing these changes through remotely sensed and geospatial data as a key
component of the land change science has been widely recognized by
global and environmental change studies (Turner et al., 2007).

Digital change detection is a process of determining and quantify-
ing changes based on co-registered, multitemporal remotely sensed
data (e.g., Green et al., 1994; Loveland et al., 2002; Yang & Lo, 2002;
Yang et al., 2003). Many remote sensing change-detection methods
have been developed (e.g., Hansen et al., 2008; Healey et al., 2005;
Huang et al., 2010; Jensen et al., 1995; Jin & Sader, 2005; Kam,
1995; Kennedy et al., 2009; Latifovic & Pouliot, 2005; Lunetta et al.,
2006; Ridd & Liu, 1998; Sader & Winne, 1992; Sohl, 1999) and
reviewed since the late 1980s (e.g., Gong et al., 2008; Jensen et al.,
1995; Kam, 1995; Lu et al., 2004; Ridd & Liu, 1998; Singh, 1989). In
general, two principal approaches are commonly used for change
detection: 1) a spectral-based approach by which simultaneous
analysis of multitemporal and/or multispectral data is conducted,
and 2) a post-classification based approach when independent clas-
sifications aremade and compared to derive information on changes.
A hybrid approach using both 1) and 2) can also be adopted in land
cover change study.
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A general consensus among researchers is that there is no single
method/algorithm that can be universally applicable for change detection
and analyses. This is especially the casewhen large area and regional scale
land cover change detection is involved. Themain challenge is how to ac-
curately extract land cover changeswhile distinguishing them fromother
non-land cover changes caused by natural variability (e.g., weather and
climate conditions) and other extraneous factors. A pressing need is to
develop robust, efficient, and accurate automated or semi-automated
methods necessary for cost effectively monitoring land cover changes at
the regional to global scales. This is an ongoing and challenging research
topic primarily because using remote sensing data alone sometimes falls
short in detecting land cover changes over large geographic regions due
to the “ill-defined” problem (e.g., spectral similarity of different land
cover classes) similar to that faced by remote-sensing-based biophysical
parameter inversion. Hence, it is reasonably concluded that land cover
changes can be better detected and quantified at the global and regional
scales if multi-source data that cover the temporal, spectral, and thematic
domains are to be integrated, analyzed, and interpreted simultaneously.

With a few exceptions, most of the national and regional land cover
change projects detect change by using only one pair of images acquired
from a growing season, so they lack information on the persistence of
changes within and across a season (Pouliot et al., 2009; Zhan et al.,
2000). Recent developments using a trajectory-based change detection
method using a high temporal frequency Landsat imagery stack had
some success (Huang et al., 2008; Kennedy et al., 2010). The approach
is promising but was developed primary for detection of forest changes
and disturbances and has not been tested for other land cover types.
Another challenge is that change detection based on spectral data alone
is often not sufficient to detect many types of land cover changes over a
large geographic area. It is often desirable to incorporate prior knowledge
about land cover and land cover change trajectory along with detected
spectral change to improve detection and analysis of land cover change
(Gong et al., 2008; Latifovic and Pouliot, 2005).

One potential promising approach is to detect land cover changes
using a strategy that integrates a remote sensing technique with a
knowledge-based system. The knowledge-based system embodies
expert opinion and rules on certain types of land cover changes. Ex-
pert knowledge can be expressed as rules and/or attributes derived
and assembled from the spectral, spatial, and temporal domains,
and the geospatial knowledge about land cover change and trajecto-
ries can be built into the system. Within the system, multiple rules
and hypotheses can be linked together that ultimately describe the
target land cover change classes (Shafer & Logan, 1987; Srinivasan &
Richards, 1990).

The primary goal of the research is to develop and evaluate a Com-
prehensive Change Detection Methodology (CCDM) as a key compo-
nent for development of a new generation of the National Land Cover
Database (NLCD) 2011. The objective of NLCD 2011 is to capture the
land cover land use change since previous NLCD 2006 and update
the national land cover map. The objective of the CCDM is to detect
areas of spectral changes between 2006 and 2011 where either a
land cover change or a land disturbance, caused by either a natural
or anthropogenic agent, has occurred. The CCDM integrates spectral
information from multi-date Landsat images, information on land
cover status, and prior knowledge about the trajectory of land cover
trends. It is important for the CCDM to minimize the spurious spectral
changes caused by variation in vegetation phenology and/or the
interannual variability of weather condition, rather than by land
cover changes or land disturbances. For NLCD 2011, the product gen-
erated by CCDM is regarded as the Maximum Potential Change (MPC)
that captures all potential land cover change areas rather than only
areas where actual land cover change occurred, that is, only a portion
of the MPC is related to actual land cover and land use changes (e.g.
land conversion). The final land cover change product of NLCD 2011
is derived by integrating the MPC with the NLCD 2006 and NLCD
2011 land cover classification results. Through this integration, only

those pixels within MPC that observed a real land cover change be-
tween 2006 and 2011 will be retained in the final land cover change
product. Together, the MPC and the final land cover change are the
two separate yet complimentary products of the NLCD 2011.

Given the objective of theNLCD2011, the performance of CCDM is to
be measured and evaluated by comparing change area detected by
CCDM against the independent data of actual land cover and land use
change. The CCDM is a general and robustmethod designed to be appli-
cable to all the WRS path/rows across the conterminous United States.
The CCDM method has been gone through several-stage of test and
evaluation,which involvedfive Landsat path/rowduring an initial strat-
egy development and eight Landsat path/rows during two operational
tests. Those Landsat path/rows cover several ecoregions of the conter-
minous United States where a variety of natural and anthropogenic in-
duced land cover change and disturbances occurred. In this paper, we
describe in detail our comprehensive change method for updating
NLCD 2011 with NLCD 2006 as a base, and illustrate the method with
two case studies.

2. Background

Over the past two decades, one major effort in developing national
land cover characterization and land cover change products for the
United States was made by the Multi-Resolution Land Characteristics
(MRLC) consortium. Through the MRLC (http://www.mrlc.gov/), there
have been three major products released to the public named National
Land Cover Database (NLCD): a circa NLCD 1992 for the conterminous
United States with one thematic layer of land cover (Vogelmann et al.,
2001); a circa NLCD 2001 with three thematic layers including land
cover, percent imperviousness, and percent tree canopy for all 50 states
(Homer et al., 2004, 2007); and a circa NLCD 2006 with three primary
products including land cover, percent imperviousness, and land
cover change from 2001 to 2006. The NLCD 2006 is the first national-
scale mapping project that assessed land cover change for every pixel
of the conterminous United States (Fry et al., 2011) and represents
the shift of emphasis from characterizing land cover alone to monitor-
ing the nation's land cover change.

For developing NLCD 2006 and land cover change product, Xian and
Homer (2009) proposed a method to update NLCD 2001 to a nominal
date of 2006 by using both Landsat imagery and data from NLCD 2001
as the baseline. When the method was developed, free Landsat data
were not available. For the cost effective consideration, the method
was designed to use only one pair of Landsat scenes in each path and
row for change detection. Pairs of Landsat scenes in the same season
in 2001 and 2006 were acquired according to WRS paths and rows
and normalized to allow calculation of change vectors between the
two dates. Conservative thresholds based on Anderson Level I land
cover classeswere used to segregate the change vectors (CV) and deter-
mine areas of change and no-change. This method, while effective in
many applications, is based on only one spectral index (i.e., the change
vector) and the land cover information from NLCD 2001. Therefore, the
method can still yield omission errors because CV is not sensitive to cer-
tain types of land cover changes, such as those near the water bound-
aries and those caused by forest fires on terrain with a certain slope.
The result of themethod also tends to contain substantial commission er-
rors because of the conservative threshold set for detecting changes for
the purpose of reducing omission errors. To correct the commission er-
rors it is often necessary to conduct labor-intensive post-change detec-
tion editing.

To improve the NLCD 2006 operational process, we developed a
Multi-Index Integrated Change Analysis (MIICA) method at the later
stage of the NLCD 2006 project to alleviate commission and omission
errors by using four spectral indices that complement each other. In
addition to change location, the MIICA also generates change direc-
tion information. The operational development of NLCD 2006 showed
that the MIICA, compared to CV, can systematically lower both
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commission and omission errors in detecting land cover changes over
different regions with a variety of landscapes. Hence, for spectral
change detection, the NLCD 2006 adopted the MIICA method as the
operational procedure (Fry et al., 2011) considering the major im-
provements beyond the CV-based approach reported in Xian and
Homer (2009).

In early 2011, the MRLC initiated a research and development
phase for the production of NLCD 2011. A new strategy for NLCD
2011 change detection has been developed by incorporating lessons
learned from the NLCD 2006 production. The new change detection
strategy employs spectral-based change detection algorithms to ex-
tract change information from multitemporal and multispectral re-
motely sensed data, including MIICA and another novel change
method called Zone. In addition, the new strategy also includes a
knowledge-based system that provides critical information on land
cover status and trends and the likelihood of land cover change. For
each Landsat path and row, implementation of the new strategy
uses two image pairs for spectral change analysis in order to reduce
commission and omission errors caused by seasonal and phenology
changes. It is noted that the output of this new spectral change detec-
tion approach is not equivalent to the NLCD 2011 final land cover
change product. Instead, it is one of the intermediate products of
the NLCD 2011 that provides critical and rich information on location
and magnitude of potential change areas and serves as the basis for
characterizing land cover changes for the nation.

3. Methods

3.1. Overview of the comprehensive change detection method (CCDM)

The CCDM (Fig. 1) includes three major components: MIICA (see
Section 3.2), Zone (Section 3.3), and Combination (Section 3.4) of
change results from two Landsat image pairs. The MIICA is a change
detection method that uses four spectral indices to capture a full
range of land cover disturbance and land cover change patterns be-
tween two dates. Zone is a change detectionmethod that is specifical-
ly designed to detect the changes related to forest such as forest
regeneration, forest fire, and forest harvest. Zone is a supplementary
change detection method for MIICA, especially for regions where fre-
quent forest disturbance happens, because Zone is more sensitive to
detecting subtle changes. Both MIICA and Zone will each generate a
change map with two change classes: Biomass Increase (BI) and Bio-
mass Decrease (BD). Because MIICA and Zone will be applied to each
of the two image pairs, a combination strategy is developed to inte-
grate the change results of the two pairs based on a set of logical
rules to reduce commission and omission errors at the same time.

The CCDM procedures are implemented by mappers for each and
every WRS path/row within U.S. in a consistent way.

As indicated in Fig. 1, two image pairs of circa 2006 and circa 2011,
ideally one leaf-on pair and one leaf-off pair, are selected for each
path/row. All the images are preprocessed following the MRLC 2001
protocol (Chander et al., 2009). Image pairs are geometrically
corrected and converted to top-of-atmosphere reflectance. The top-
of-atmosphere reflectance for all six reflective bands (bands 1–5, 7)
is multiplied by 400 to rescale the data into unsigned 8-bit range.
Clouds and their shadows are masked out for each individual Landsat
image.

3.2. Multi-Index Integrated Change Analysis (MIICA)

TheMIICA (Fig. 2) has been developed to capture a full range of land
cover disturbance and potential land cover change patterns, including
both change spatial location and change direction (BI and BD). Recog-
nizing the complementary nature of the multiple spectral indices in
detecting different land cover changes, we integrated four indices into
the MIICA model to more accurately detect true land cover changes be-
tween two dates. The four indices are the differenced Normalized Burn
Ratio (dNBR), the differenced Normalized Difference Vegetation Index
(dNDVI), the Change Vector (CV), and a new index called the Relative
Change Vector Maximum (RCVMAX) (Eqs. (1)–(4)).

dNBR ¼ B14−B17ð Þ= B14 þ B17ð Þ− B24−B27ð Þ= B24 þ B27ð Þ ð1Þ

dNDVI ¼ B14−B13ð Þ= B14 þ B13ð Þ− B24−B23ð Þ= B24 þ B23ð Þ ð2Þ

CV ¼ ∑i B1i−B2ið Þ2 ð3Þ

RCVMAX ¼ ∑i B1i−B2ið Þ=max B1i;B2ið Þ2
h i

ð4Þ

where B1i (i=1…5, 7) denotes the ith band of the early date Landsat
image, B2i (i=1…5, 7) means the ith band of the late date Landsat
image, and max(B1i, B2i) means the maximum value of B1i and B2i.

These four indices complement each other. The CV captures the
absolute value of total spectral change between two dates and likely
shows the general change pattern (i.e., higher CV value reflects larger
spectral change which indicates a higher possibility of change in land

Fig. 1. Flowchart of general change detection strategy in the study. Fig. 2. The flowchart of the MIICA model.
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cover type), yet the magnitude of CV is heavily affected by the land
cover and land use types. For example, agriculture lands tend to be
highlighted using CV alone due to distinct seasonal and phenology
changes and frequent crop rotations even though the land use re-
mains unchanged; in contrast, change of water tends to be difficult
to detect by CV because of the low spectral reflectance of water. The
RCVMAX measures the relative total spectral change between two
dates. RCVMAX can quantify the magnitude of relative change and
shows a general change pattern. A greater RCVMAX indicates a higher
possibility of change. For example, it can detect changes that occurred
atwater boundaries verywell. However, both RCVMAX and CV can gen-
erate some noise (false changes) because of the impacts by terrain,
atmosphere, and phenology and may not be optimal for detecting cer-
tain types of disturbances; neither will provide information on change
direction. Because of the limitation, two other commonly used spectral
indices, NBR and NDVI, are adopted to complement the CV and
RCVMAX. The NBR has been widely used for monitoring fire distur-
bance, and NDVI is used for monitoring vegetation condition and
vigor. Both NBR and NDVI are less sensitive to topographic and radio-
metric effects than individual bands because they are ratios of spectral
bands. Both indices are believed to be associated with some important
biophysical parameters and are more sensitive to forest regeneration
and disturbances such as forest harvest and forest fire. The differences
between two date NBR and NDVI (i.e., dNBR and dNDVI) will indicate
not only the change magnitude but also the change direction. A greater
positive value indicates a higher possibility of biomass decrease (i.e.,
lower greenness in a later date image) and a greater negative value in-
dicates a higher possibility of biomass increase (i.e., higher greenness in
a later date image).

Here, a multi-index threshold approach (i.e., MIICA) was devel-
oped to define pixels of either BI or BD by simultaneously examine
the multiple thresholds as determined by the magnitude of each
change index described in Eqs. (1)–(4). The use of multiple thresh-
olds is necessary to examine the consensus of change determined
by all spectral change indices. The MIICA model calculates global
means and standard deviations for dNBR, dNDVI, CV, and RCVMAX,
then sorts each index into several ranks/classes according to the spec-
tral distance from their global means using the standard deviation as
a measure unit. Next, a set of specific thresholds for the four indices
and integration rules are used to determine the change location and
direction between the time periods. For this study, the thresholds
are determined empirically through a comprehensive test in areas
with diverse land cover and land use types within the conterminous
U.S.

Within theMIICAmodel, the integration rules (i.e. conditional state-
ments) are designed to take advantage of the strength from each index
with the goal of minimizing the omission error in detecting real land
cover changes while limiting the commission error. For example, one
integration rule requires CV be greater than its global mean, RCVMAX
be greater than its global mean plus 0.75 times its global standard devi-
ation, and dNDVI be less than its global meanminus 0.5 times its global
standard deviation to label a pixel as BI class. Another example of the in-
tegration rule to labels a pixel as BI is that if the pixel's CV is greater than
its global mean, RCVMAX is greater than its global mean plus 3.0 times
its global standard deviation, and dNDVI is less than its global mean.

3.3. Zone of dNBR and dNDVI change detection method

The ultimate goal of MIICA model is to capture a full range of land
cover disturbance patterns to update the land cover and land use con-
dition. However, in its current form, the MIICA may fail to capture
subtle or gradual change such as forest regeneration, especially for re-
gions with a fast forest succession. As a result, it can miss partially or
entirely some changed patches. To compensate for the weakness of
the MIICA, a Zone method is introduced by using dNBR and dNDVI
only. The dNBR and dNDVI are not only sensitive to the magnitude

of the related forest change but also to the direction of the change,
and both indices reflect those changes for forest in the same system-
atic way, which is not always the case for agricultural lands and
water. We used these characteristics and developed a model, called
“Zone,” to strengthen mapping forest regeneration and disturbances
including forest harvest, forest fire, and other agent that may lead to
land cover conversion from the forestland.

To implement the Zone model (Fig. 3), we divide dNBR (and
dNDVI) into four zones according to its magnitude (standard devia-
tion from mean) and direction (positive or negative deviation from
mean). The four zones are: 1) pixels with biomass decrease and the
dNDVI (or dNBR) exceeds its mean and is less than its mean plus
0.5 standard deviation, 2) pixels with biomass increase and the
dNDVI (or dNBR) is less than or equal to its mean and greater than
its mean minus 0.5 standard deviation, 3) pixels with biomass de-
crease and the dNDVI (or dNBR) exceeds its mean plus 0.5 standard
deviation, and 4) pixels with biomass increase and the dNDVI (or
dNBR) is less than its mean plus 0.5 standard deviation. The zones
from dNBR and dNDVI are then combined to obtain an image with a
total of 16 zones. We then designate the zone with high-order magni-
tude and the same positive direction from both dNBR and dNDVI as
BD class (i.e., zone 44) and the zone with high-order magnitude and
the same negative direction from both dNBR and dNDVI as BI class
(i.e., zone 33).

3.4. Combination of change outputs

3.4.1. Knowledge-based combination
As discussed in Sections 3.2 & 3.3, for each Landsat path/row foot-

print, four change maps from two image pairs are generated by the
MIICA and Zonemodels. This section addresses the issue of how to com-
bine those changes to obtain a reasonable change map without intro-
ducing large commission errors while minimizing omission errors.

Fig. 4 shows a flowchart for the combination procedure. During
the combination process, we stratified land cover types into “stable”
and “dynamic” groups based on the prior knowledge of land cover
land use change history to assist reasonable integration. Some spec-
tral changes shown in stable group are likely associated with phenol-
ogy or seasonal change, but unlikely the true land cover change if the
spectral change is identified by only one change pair. In contrast,
spectral changes shown in dynamic group are likely to reflect true

Fig. 3. The flowchart of Zone model.
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land cover change if the change is identified by either change pair.
Therefore, two general rules are created for different cases based on
land cover types (group). The general rule “AND,” which requires both
change pairs to agree (as changes), will be used for combining changes
for the “stable” group (likely phenology and seasonal changes) to min-
imize commission errors. The general rule “OR,”which counts a pixel as
a change if change is detected from either pair, will be used for combin-
ing changes for the “dynamic” group (likely true land cover change) to
minimize omission errors.When “OR” is applied, the change direction is
determined by the early-date change pair first, then by the late-date
change pair. Here, the early date is determined by the images of circa
2006.

We use NLCD 2006 to categorize the land cover into the above two
groups. The “dynamic” group includes forests, shrub, herbaceous, and
woody wetlands, and the “stable” group includes the rest of the land
cover classes. For some regions, especially the western United States,
there are large areas of persistent herbaceous and shrub classes rather
than the intermediate successional stage of forests seen in the eastern
United States. These two persistent herbaceous and shrub classes are
likely to experience phenology or seasonal changes but unlikely to
have true land cover changes; therefore, they are more appropriately
included in the “stable” group. To define this particular group, we add
NLCD 2001 in addition to NLCD 2006 to create a mask of persistent
herbaceous and shrub classes. The herbaceous and shrub areas
where both NLCD 2001 and NLCD 2006 agree are counted as persis-
tent herbaceous and shrub classes. For change analysis in many
areas in the western United States, we recommend to use this revised
category.

As mentioned in Section 3.3 that the Zone model was particularly
designed for forest-related change as a complementary method for
MIICA, therefore we use the “dynamic” group to create a thematic
mask to derive changes for related forest classes. We also mentioned
in Section 3.3 that the Zone method is sensitive to subtle change and
especially suitable for area with fast-growing vegetation; therefore,
change results from the Zone model are strongly recommended to
be combined with MIICA change map for those regions, e.g. for the
southeastern United States. Users have the option not to use Zone
according to the condition of each study area.

3.4.2. Trajectory-based combination

3.4.2.1. Combination rule. Logical trajectory information, in addition to
land cover condition, is another natural choice to be employed to as-
sist reasonable integration for change detection (Fig. 5). Commission
errors in change detection can be further reduced by the logical anal-
yses using the trajectory information. For example, if a pixel was cor-
rectly classified as forest type in NLCD 2006 and identified as BI class
between 2006 and 2011, it is likely that the land cover type of the
pixel should remain as forest for NLCD 2011. However, this is based
on the assumption that the land cover label from NLCD 2006 is

correct, which may or may not be always true. To ensure that we
did not omit real change due to a possible labeling error in NLCD
2006 (base error), we introduced a concept using the Normalized
Spectral Distance (NSD) to identify the potential base error from
NLCD 2006. The NSD represents the spectral distance of each Landsat
pixel to the mean spectral signature of a land cover type it belongs to
(see Section 3.4.2.2 for detail). Specifically, for a given forest pixel that
has been identified as BI from 2006 to 2011, only when it is highly un-
likely to be mislabeled in NLCD 2006 (i.e., both NSDs from two
Landsat images of circa 2006 are lower than a set of threshold), we
then apply the logical trajectory information and convert the pixel
from the change class back to no-change class. The same rule is ap-
plied to the woody-wetland class. For the persistent herbaceous and
shrub classes in the western United States, most spectral changes
are likely to be caused by phenology and weather, which is not neces-
sarily related to real land cover change. In this case, we use not only
two NSDs from 2006 to ensure that no base error from NLCD 2006
is involved but also two NSDs from 2011 to further confirm that
those areas can still be reasonable classified as herbaceous or shrub
classes in 2011. Four NSDs are used to remove spurious changes relat-
ed to persistent herbaceous and shrub in the western United States. A
final maximum potential spectral change map is produced after the
trajectory-based combination for a Landsat path/row and to be used
for the NLCD 2011 second stage (classification) process.

3.4.2.2. Normalized Spectral Distance (NSD). NSD represents the spec-
tral distance of each Landsat pixel to the mean spectral signature of
a land cover type it belongs to (Eq. (5)):

NSD ¼ ∑i Bi−μ icð Þ=σ ic½ �2 ð5Þ

where i is band number, c is the land cover type, Bi is the ith band of
Landsat image, and μic and σic are the mean and standard deviation of
the ith band of the Landsat image over the c land cover type area,
respectively.

The concept of NSD is the same as Z-statistic. Z-statistic compares
the pixel's actual spectral value with the “expected” value. All pixels
belong to a particular class are collected to determine the expected
average spectral response and standard deviation of the class. We
used NLCD 2006 to segregate a circa 2006 Landsat image into distinct
class zones. A high NSD will occur when a pixel appears very different
from the class average and is, therefore, highly likely to have been
classified wrong. The NSD is used to identify potential/suspicious
base error of NLCD 2006.

3.5. Accuracy assessment method

To evaluate the output of the maximum potential spectral change
map derived from the CCDM process, an accuracy assessment was

Fig. 4. The flowchart of the knowledge-based combination of change maps derived from the MIICA and Zone methods.
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conducted including a statistical sampling procedure, an interpretation
protocol for selected samples, and computation of accuracy parameters.

An equalized random sampling procedure was applied to obtain
samples for the assessment, in which two strata (change and no-
change) were formed. Fifty sample units (3 by 3 Landsat pixel kernel)
were randomly drawn from each stratum and used to assess the qual-
ity of the change detection results. For each sample unit, visual inter-
pretation by two trained persons was conducted by examining 2006
and 2011 Landsat images and corresponding high resolution images
(from Google Earth and United States Department of Agriculture Na-
tional Agriculture Imagery Program images) to determine if land
cover had changed from 2006 to 2011. Our protocol for assessing
the change and no-change accuracy of the change product is based
on change of land cover type rather than the spectral change. There-
fore, a change sample can be counted as correct only when actual land
cover type change occurs. In some cases, the difference in image ac-
quisition time and year between high-resolution and Landsat images
can affect the decision for labeling the land cover of the sample unit.
In such cases, interpretation from the Landsat images was used as the
primary source to determine the final land cover label for that sample.

The results from the sampling and interpretation process provide
a complete reference dataset for accuracy assessment. This reference
dataset was then used to compute the accuracy parameters for each
of the two study areas.

4. Application of the CCDM and results

4.1. Study area, data, and general procedures for change detection

To demonstrate the performance of the comprehensive change
detection method, we showcase the results from two Landsat path/
rows (p22r39 and p33r33), which are different in landscapes and rep-
resent the two different yet complete set scenarios (i.e. decision
rules) designed in the CCDM. The first Landsat path/row (22/39) is lo-
cated in Louisiana and Mississippi (Fig. 6), and the center coordinates
of the scene are 30° 17′ 42.48″ N and 90° 08′ 43.50″ W. According to
NLCD 2006, the area is dominated by woody wetlands (23.56%), open
water (20.46%), and evergreen forest (13.05%). Agriculture, urban,
shrub, and herbaceous account for 10.33%, 8.20%, 8.07%, and 2.82%
of the area, respectively. Forest vegetation in this area often experi-
ences fast growth with a short harvest cycle because of high temper-
ature and humidity during most of the year. For this path/row, Zone
change detection results in addition to MIICA were combined to de-
rive the maximum potential spectral change map.

The second Landsat path/row (p33r33) is located in Colorado. The
center coordinates of the image are 38° 53′ 52.47″ N and 104° 39′
58.55″ W. The area is dominated by herbaceous (53.71%), evergreen
forest (20.93%), and shrub (10.82%). Urban, agriculture, wetland,
and water account for 6.57%, 4.34%, 1.43%, and 0.31% of the area,

respectively. The majority of herbaceous and shrub are persistent
late successional vegetation rather than early succession stage of the
forests. The forests experience slow growth and the main disturbance
of the forests is from wildland fire without much forest harvesting ac-
tivity. Vegetation phenology can vary significantly from year to year
depending on temperature and precipitation. Hence, for this area, re-
sults from Zone were not used to compensate for the MIICA results,
and four NSDs were used to assist in reducing commission errors.

4.2. Change detection results

4.2.1. Landsat Path22/Row39
The two Landsat image pairs selected for p22r39 were acquired on

2005/02/11 vs. 2009/02/06, and on 2006/10/28 vs. 2010/11/08. Fig. 7
shows the intermediate and final results from the comprehensive
change detection methodology for the subset-1 area, which is domi-
nated by forests and woody wetland. Specifically, Fig. 7 comprises
two Landsat change pairs, four indices calculated from each change
pair, two MIICA and two Zone change maps, NLCD 2006, NSDs, and
combined change maps. Forest related changes, such as forest harvest
and regrowth, are the primary changes that occurred between the
two time periods for the subset-1 area. CV and RCVMAX characterize
change magnitude in one direction, i.e. a higher value indicates larger
spectral change and, therefore, a higher possibility of change. Both CV
and RCVMAX highlight the general change pattern, and RCVMAX
seems to show the related forest change more apparently than CV.
Both dNBR and dNDVI demonstrate a very similar change pattern
and show both magnitude and direction of change (high value for
BD and low value for BI).

Because a large proportion of forest harvest occurred between
2005/02/11 and 2006/10/28, the MIICA and Zone change map of the
early-date pair shows the opposite change direction to the change de-
rived from the late-date pair for those change areas (Fig. 7). For the
same area, BD seems to be more readily captured than BI because the
change magnitude of BD is larger than BI. For those gradual forest
changes, the Zonemodel captures the change patchesmore completely
than the MIICA. Therefore, the related forest changes from the Zone
model are integrated with MIICA results to reduce omission errors for
this Landsat scene. The land cover fromNLCD2006matches the Landsat
image of 2005/02/11 better than the Landsat image of 2006/10/28 for
this subset area, which is indicated by NSD. NSD of the 2006/10/28
image shows that several big patches are not likely to be in forest
stage, which can be interpreted from the two Landsat images of circa
2006 (areas harvested in between 2005/02/11 and 2006/10/28). We
noted that NLCD 2006 for the path/row p22r39 was derived using an
image acquired between 2005/02/11 and 2006/10/28. The final maxi-
mum spectral change map (combined_2MIICA_2Zone_2NSD) removes
the majority of white pixels (i.e., forest in 2006 and biomass increase
during the period) from the change map of combined_2MIICA_2Zone,
because the combined NSD does not identify those pixels as being likely
misclassified.

The subset-2 area (Fig. 8) demonstrates the change-detection
method and procedures for a landscape mixed with forest, woody
wetland, and agricultural land cover types. MIICA and Zone capture
changes that occurred in forest and woody wetland areas pretty
well and show a similar pattern; however, the change patches
detected by Zone are slightly fuller than the changes patches from
MIICA. The early-date and late-date pairs show different change pat-
terns and compensate for each other. For example, the BD patch in
the lower-left corner is detected in the early-date pair but missed in
the late-date pair, and a sliver of BD change of woody wetland
(left-center) is missed in the early-date pair but picked up as BI in
the late-date pair. Using the “OR” combination rule for forest area,
the omission error was reduced by combining two change outputs
from the MIICA. For agricultural lands that likely have large spectral
change but not real land cover change, use of “AND” combination

Fig. 5. The flowchart of trajectory-based combination.
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rule reduced commission error by combining two outputs from the
MIICA. There are two big white patches (forest or woody wetland in
2006 and biomass increase during the time period) in the change map
of Combined_2MIICA_2Zone. One (upper-left corner of the subset-2)
is removed and the other one (lower-left) is kept through the NSD inte-
gration procedure because NSD only identifies the lower-left patch as
most likely being misclassified in NLCD 2006 but not the upper-left
one (classified as woody wetland in NLCD 2006). Fig. 9 shows the tran-
sitional change for these two patches using aerial photos from the Goo-
gle Earth. Both patches experienced BI change between 2006 and 2010;
however, the upper-left patch was harvested before 2005 and the
lower-left patch was harvested between 2005 and 2006. NSD was not
able to distinguish the upper-left patch possibly because the vegetation
grew back a little after harvest and the woody wetland class has a wide
spectral range.

The subset-3 area (Fig. 10) is mainly composed of cultivated crops,
water, woody wetland, and urban. Agriculture areas are likely to be
identified as change because of large spectral change due to crop ro-
tation, irrigation, and seasonality. Each MIICA captures those appar-
ent spectral changes on agriculture lands, and those spurious land
cover change pixels are greatly reduced after the combination of the
two MIICA outputs. CV is not sensitive to water turbidity and has a

low value for water bodies, which helps in identifying the water
boundary, while RCVMAX shows a large variation within water bod-
ies. Water boundary change is kept but the woody wetland change
due to variation in moisture is removed through the NSD integration
step.

4.2.2. Landsat Path33/Row33
The two Landsat image pairs selected for p33r33 were acquired on

2005/10/22 vs. 2011/10/23, and on 2007/09/26 vs. 2011/08/20. Fig. 11
shows the intermediate and final results from the comprehensive
change detection methodology for a subset area, which is dominated
by persistent grassland and forests. A major proportion of the subset
area was identified as change either by MIICA or Zone, which is likely
caused by phenology difference between two time periods. Zone
changewas not included in the final change because the grassland con-
dition in the western United States is sensitive to weather and seasonal
variations, and many spectral changes are not associated with real land
cover change. The combination of two MIICAs kept the overlap change
area from each individual MIICA and reduced a large amount of com-
mission errors compared to the single MIICA output of the early-date
pair. The use of four NSDs derived from the four Landsat images further
removed a large portion of spurious changes according to the logical

Fig. 6. Locations of p22r39 and p33r33 with NLCD 2006 shown for the two path/rows. Three red boxes in p22r39 indicate three subsets that were selected for demonstration in
Figs. 7–10. The first subset is the box with a red center, the second one is the box with a yellow center, and the third one is the box with a green center. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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trajectory integration rules. Fig. 12 shows a subset area with a fire dis-
turbance that occurred between 2007 and 2011. The patch that experi-
enced fire disturbance survived through all the change detection steps,
whilemany spurious change pixelswere removed through the process-
ing procedure.

4.3. Accuracy assessment results

Table 1 shows the accuracy assessment results for p22r39. A total of
100 sampling units (3∗3 pixel kernel) were randomly drawn from the
two strata (i.e., change and no change), 50 units from each stratum. The
land cover types of these 100 units are mainly forests, woody wetland,
herbaceous, and water classes. The majority of the samples from the
change stratum are located in forested and herbaceous lands, which in-
dicates that the main change process observed from this Landsat path/
row is related to forest harvest and regrowth. Among the 50 samples
from the change stratum, nine were considered to have no real land
cover (or land use) change during the time period 2006–2011. All 50
samples drawn from the no-change stratum were identified as no
land cover change, so there is no omission error.

As discussed in the Methods section, our protocol for assessing the
change and no-change accuracy of the MIICA change product is based
on change of land cover type rather than the spectral change alone.
Therefore, a change sample is counted as correct only when actual
land cover type change occurs. This protocol has some limitations be-
cause it does not account for some gradual changes due to forest succes-
sion, treatment and harvest processes (e.g., regrowth, commercial
thinning, or partial cut). In fact, we noted that 7 out of 9 samples of
change that were identified as incorrect (no land cover change) could
be considered correct if gradual changes are counted. Fig. 13 shows
two examples from these seven “incorrect” samples. Sample A shows
very recent plantations (classified as shrub based on height) in 2006
which grewmuch taller and denser in 2010; however, it is still classified
as shrub based on height. Sample B shows a dense forest in 2006 which
was thinned in 2010; however, it is still a forest cover type despite ob-
vious change spectrally. The remaining two samples from the nine sam-
ples identified as incorrect are located within a grassland and a hay/
pasture field. For this path/row p22r39, there is 100% agreement be-
tween the CCDM mapped no-change class and the reference dataset,
18% disagreement for change class, and the overall agreement is 91%.
If we count these seven samples as correct, the disagreement for the
change class will decrease from 18% to 4%.

Table 2 shows the accuracy assessment results for p33r33. There is
100% agreement for no-change class, and 88% disagreement for the
change class. In this path/row footprint, there is little change in land
cover and the vegetation growth rate is generally low. Fourteen out of
sixteen herbaceous samples and all seventeen agriculture samples for
change class were identified as no change in terms of land cover/land
use change. The change method did capture several fire disturbances,
forest thinning events, and vegetation regrowth over the fire scar areas.

5. Discussion

From this research, a comprehensive change detection method
(CCDM) was designed and implemented to capture a full range of
land cover land use changes, including disturbances and alteration

of land use practices, which can lead to many land cover changes. Fur-
thermore, we also intend to capture the gradual or subtle changes
(e.g., regeneration after forest harvest) for two reasons. First, some
of those gradual changes could eventually lead to land cover changes
under certain conditions. Second, the information on gradual changes
can be of great value to some data users and has been and will contin-
ue to be made available as a component of the NLCD product (e.g., a
maximum potential spectral change product in NLCD 2006). This
maximum potential spectral change product has been integrated
with land cover classification results to derive a final thematic land
class change product.

Cohen et al. (2010) stated that change detection using Landsat im-
agery is undergoing a major paradigm shift due to the convergence of
a need for more temporally detailed information over larger areas,
the free availability of Landsat data from the U.S. archive, and the
emergence of automated Landsat time series algorithms. Automated
algorithms like LandTrendr (Kennedy et al., 2010) and Vegetation
Change Tracker (VCT) (Huang et al., 2010) have been successfully de-
veloped to exploit the Landsat archive by taking advantage of high
temporal densities of data that enhance a relatively low signal-to-
noise ratio commonly associated with comparing lower temporal
density datasets. However, both LandTrendr and VCT were initially
targeted primary for forest-related disturbances and are not designed
for detecting all land surface changes of many other terrestrial eco-
systems (e.g., shrub, herbaceous, cropland). For NLCD 2011 national
implementation that will update land cover condition and provide in-
formation on land cover changes between 2006 and 2011, we need a
simple but comprehensive semi-automated change detection method
to achieve the efficiency in operation while maintaining quality of the
products.

The CCDM developed through this research comprises three parts:
MIICA, Zone, and Combination. Among them, the MIICA is the core
module of the change detection strategy and uses four spectral-based
indices (CV, RCVMAX, dNBR, dNDVI) to generate a change product be-
tween two image dates. Comparing results obtained using a single CV
(see Xian & Homer, 2009), we concluded that the MIICA approach has
significantly reduced commission error while increasing the sensitivity
to real disturbances. This conclusion is supported by results from both
this pilot study and those from the NLCD 2006 production operation
throughout the conterminous United States (Fry et al., 2011). The two
case studies shown in the paper indicate that theMIICA is robust in cap-
turing various types of land disturbance processes with very low omis-
sion errors. However, sometimes substantial areas of solid change
patches detected by MIICA involve only spectral change without actual
land cover and land use change between two dates, which more likely
occur on certain landscapes (e.g. cultivated crop class with corn in an
early date and soybean in a late date) and changingweather conditions
(e.g. grassland in a very wet date and a very dry date). The main
strength of MIICA is that it can capture the full suite of disturbances
that occur within a variety of ecosystems in one simple and efficient
process without introducing large commission errors. The MIICA is
easy and efficient to operate. One weakness of the MIICA is that it may
miss some subtle changes because of the general threshold values set
for balancing the commission and omission error. Another weakness
is its sensitivity to vegetation phenology and certain land cover types
because it is a spectral-based method. The quality of the change

Fig. 7. The change detection procedure is demonstrated for subset-1 area: a) Landsat image of 2005/02/11 (shown as R4G3B2 composite, the early image of the early-date change
pair), b) Landsat image of 2009/02/06 (the late image of the early-date change pair), c) Landsat image of 2006/10/28 (the early image of the late-date change pair), d) Landsat
image of 2010/11/08 (the late image of the late-date change pair), e) CV derived from the early-date change pair (a & b), f) RCVMAX derived from the early-date change pair,
g) CV derived from the late-date change pair (c & d), h) RCVMAX derived from the late-date change pair, i) dNBR derived from the early-date change pair, j) dNDVI derived
from the early-date change pair, k) dNBR derived from the late-date change pair, l) dNDVI derived from the late-date change pair, m) MIICA change map (green: biomass increase;
red: biomass decrease) derived from the early-date change pair, n) Zone change map derived from the early-date change pair, o) MIICA change map from the late-date change pair,
p) Zone change map from the late-date change pair, q) NLCD 2006, r) Combined change map from two MIICA maps (m & o), s) Combined change map from two Zone maps (n & p),
t) combined change map (white: biomass increase of forest and woody wetland classes in 2006) from the combined MIICA (r) and the combined Zone (s), u) NSD of Landsat image
of 2005/02/11 with NLCD 2006 as the land cover, v) NSD of Landsat image of 2006/10/28 with NLCD 2006 as the land cover, w) Combined high-base error-map (white: high- base
error areas of forest and woody wetland classes in NLCD 2006, gray: high-base error areas of the other classes in NLCD 2006) of two NSD (u & v), x) maximum potential spectral change
map after the combination of MIICA, Zone, and NSD. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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detection output is also affected by the quality of the Landsat images se-
lected. Results from the MIICA alone may include some spurious land
cover changes in addition to real changes.

The other two parts of the CCDM (Zone and Combination) have
been developed through this study to mitigate the weakness of the
MIICA. The Zone uses harmonized sensitivity of dNBR and dNDVI to
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vegetation change to improve detection of forest changes. The con-
cept of Zone is simple but efficient and was shown to be more sensi-
tive than MIICA in capturing a variety of forest-related changes,
including regeneration and regrowth. However, Zone was also

sensitive to phenology/seasonal change and changes caused by varia-
tions in weather conditions such as a drought. In some of the western
United States where grassland and shrubland are the dominant land
cover and are less likely to have large area of land cover changes,

Fig. 8. The change detection procedure is demonstrated for subset-2 area. The images are arranged in the same order as Fig. 7.
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we cautioned the use of the Zone in the area in order to avoid having
too much commission error. Nevertheless, the strength of the Zone is
to capture vegetation changes including subtle changes; therefore, it
has great potential in applications in studying forest disturbance
and succession such as forest harvest, forest fire, forest insect infesta-
tion, and forest regeneration.

This study shows that using two pairs of Landsat images within a
season can complement each other and provide additional information
for better detecting real land cover change while reducing spurious
changes caused by factors such as seasonal change, cloud, snow, and
image acquisition time. For example, as shown in the p22r39 subset-2
area (Fig. 8), the early-date pair captured a change patch that occurred
between 2005 and 2009, located at the lower-left corner of the subset
area, whichwasmissed by the late-date pair because vegetation started
to regrow between 2009 and 2010. The additional image pair may pro-
vide different information even when the disturbances that occurred
between the image dates of the additional pair are the same as another
image pair. For example, in the p33r33 subset areas where real change
and no change pixels are very similar for two image pairs, the results of

MIICA and Zone from the early-date pair are quite different from the re-
sults from the late-date pair.

The addition and use of the combination method aims at retaining
more complete disturbance information and further removing the spu-
rious changes from the two change pairs generated from MIICA, i.e.
decrease commission and omission errors at the same time.We catego-
rized the land cover types into two groups: the “stable” group—likely
phenology or seasonal change but unlikely true land cover change;
and the “dynamic” group—likely true land cover change. Accordingly,
we combined change results from two change pairs using either AND
orOR rules tomeet the goal ofminimizing commission and omission er-
rors. The results from our test have demonstrated the benefits of
combining change results from the two change pairs. Overall, this com-
bination approach is simple and logical and can produce reasonably ac-
curate change product, even though it is not perfect and may lose some
real changes (on stable-group Land cover) and/or contain some spuri-
ous changes (on dynamic-group land cover). The method does require
a good quality land cover baseline dataset available to be used in the
combination process.

20090517

20060625

20060625

20090712

Fig. 9. Aerial photos from Google Earth for the two white patches within subset-2.
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An approach using knowledge-based trajectory information in addi-
tion to the combination procedure was also explored and is effective in
reducing commission errors. To minimize the change detection error
whichmight be caused byNLCD2006base error, anNSDmetricwas de-
veloped to identify areas with potential land cover label errors in NLCD
2006. The NSD represents the spectral distance of each Landsat pixel to

the mean spectral signature of the land cover type it belongs to. High
NSD reflects the incompatibility between the Landsat spectral value
and the land cover type. As shown in an example (Fig. 8), NSD derived
from the Landsat image of 2006/10/28 highlighted several patches
where forests were harvested between 2005/02/11 and 2006/10/28.
Later, it was confirmed that a Landsat image of 2005 was used for

Fig. 10. The change detection procedure is demonstrated for subset-3 area. The images are arranged in the same order as Fig. 7.
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NLCD 2006 mapping for p22r39. The NSD provides a reasonable over-
view of areas with a high risk of being classified incorrectly; however,
NSD can be of limited use for some land cover types that exhibit a

wide spectral range (e.g., agricultural classes). After excluding the
high-risk areas using NSD, some change pixels were removed through
the logical trajectory analysis, which indicates the area that land cover

Fig. 11. The change detection procedure is demonstrated for a subset of p33r33.
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changes were unlikely to occur. In p33r33, for example, we observed
that a large amount of spurious change pixels were removed while
the true land cover changes were preserved.

Capturing land cover change information accurately with remote
sensing over many types of ecosystems and large area geographies
remains a very complex task. While not entirely automated yet, we

Fig. 12. The change detection procedure is demonstrated for another subset area of p33r33.
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believe CCDM offers an important evolution in the advancement of
large area change detection with remote sensing. CCDM strives to bal-
ance the sometimes conflicting spectral trajectories and patterns of
different land cover classes in an overall algorithm that remains effec-
tive at national scales. While the development of CCDM has provided
significant gains in mapping efficiencies and accuracy improvement,
we caution that some human interpretation and judgment is still nec-
essary to finalize the land cover change products. Our goal has been to
optimize the amount of human interpretation required to produce
our products, not try to eliminate it.

6. Conclusions

For development of NLCD 2011, we designed, implemented, test-
ed, and evaluated a new Comprehensive Change Detection Method
(CCDM). The CCDM integrates spectral information from multi-date

Landsat images, information on land cover status, and prior knowledge
about the trajectory of land cover trends to obtain amaximumpotential
spectral changemapwith the goal ofminimizing omission errorwithout
introducing large commission error. The CCDMmethod has been tested
covering a footprint of thirteen Landsat path/row that cover many
ecoregions of the conterminous United States with a variety of natural
and anthropogenic induced land cover change and disturbances.

Results from the two exemplar study areas (two Landsat path/rows)
reported in this paper show100% agreement for the no-change class, and
18% and 88% disagreement for change class for p22r39 and p33r33, re-
spectively. Despite the fact that the maximum potential spectral change
map is not the final land cover change product, we used the criteria of
land cover change to assess the accuracy of this spectral change map to
be consistentwith the ultimate goal of detecting real land cover changes.
The strength of the CCDM is that it is simple, easy to operate, robust, and
capable of capturing different disturbances on a variety of landscapes.

Table 1
Accuracy assessment results of 100 samples for p22r39.

NLCD2006 (class name/code) Number of samples Change between 06 and 11 No change between 06 and 11

Sample # Disagreement # Sample # Disagreement #

Water (11) 15 0 0 15 0
Urban (21, 22, 23, 24) 5 0 0 5 0
Forests (41, 42, 43) 24 21 4 3 0
Shrub/scrub (52) 7 6 1 1 0
Grassland/herbaceous (71) 16 16 2 0 0
Pasture hay (81) 6 0 0 6 0
Cultivated crops (82) 4 1 1 3 0
Woody wetlands (90) 17 6 1 11 0
Emergent herbaceous wetlands (95) 6 0 0 6 0
Sum 100 50 9 50 0
Disagreement percentage 18% 0%
Overall agreement 91%

Fig. 13. Two typical examples of 7 sampling points (forest related) identified as change in the change map, but there was no land cover type change during the change period of
2006–2011. The top row aerial photos are from 2006 (obtained from Google Earth) and the bottom row photos are 2010 NAIP images.
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Some weaknesses of the CCDM are that it detects change for only one
time period (focus on land cover shifting disturbance) and can still
have a certain amount of commission errors.

The core module of the CCDM method is MIICA, which was
employed to produce NLCD 2006 change products (published online
and freely available to download). With the additional Zone model
and combination strategy, we believe that the NLCD 2011 products de-
veloped from CCDM will have higher quality and require much less
workload with regard to manual editing and pre- and post-processing
for a national implementation. In general, the MIICA and Zone models
have great potential to be applied to other regional or global projects
that use remote sensing data for monitoring and mapping land cover
and land surface changes. Our NSD concept can be used to identify
base-error in the historical land cover data sets and to detect changes
of certain land cover typeswith a tight spectral signature range. Overall,
the CCDM presents a sound change detection framework for national
land cover updating and land cover change monitoring.
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