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Abstract: Mid- to late-season weeds that escape from the routine early-season weed management 

threaten agricultural production by creating a large number of seeds for several future growing 

seasons. Rapid and accurate detection of weed patches in field is the first step of site-specific weed 

management. In this study, object detection-based convolutional neural network models were 

trained and evaluated over low-altitude unmanned aerial vehicle (UAV) imagery for mid- to late-

season weed detection in soybean fields. The performance of two object detection models, Faster 

RCNN and the Single Shot Detector (SSD), were evaluated and compared in terms of weed detection 

performance using mean Intersection over Union (IoU) and inference speed. It was found that the 

Faster RCNN model with 200 box proposals had similar good weed detection performance to the 

SSD model in terms of precision, recall, f1 score, and IoU, as well as a similar inference time. The 

precision, recall, f1 score and IoU were 0.65, 0.68, 0.66 and 0.85 for Faster RCNN with 200 proposals, 

and 0.66, 0.68, 0.67 and 0.84 for SSD, respectively. However, the optimal confidence threshold of the 

SSD model was found to be much lower than that of the Faster RCNN model, which indicated that 

SSD might have lower generalization performance than Faster RCNN for mid- to late-season weed 

detection in soybean fields using UAV imagery. The performance of the object detection model was 

also compared with patch-based CNN model. The Faster RCNN model yielded a better weed 

detection performance than the patch-based CNN with and without overlap. The inference time of 

Faster RCNN was similar to patch-based CNN without overlap, but significantly less than patch-

based CNN with overlap. Hence, Faster RCNN was found to be the best model in terms of weed 

detection performance and inference time among the different models compared in this study. This 

work is important in understanding the potential and identifying the algorithms for an on-farm, 

near real-time weed detection and management. 

Keywords: CNN; Faster RCNN; SSD; Inception v2; patch-based CNN; MobileNet v2; detection 

performance; inference time 

1. Introduction 

Weeds are unwanted plants that grow in the field and compete with the crops for water, light, 

nutrients, and space. If uncontrolled, weeds can have several negative consequences, such as crop 

yield loss, production of a large number of seeds thereby creating a weed seed bank in the field, and 
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contamination of grain during harvesting [1,2]. Traditionally, weed management programs involve 

the control of weeds through chemical or mechanical means such as the uniform application of 

herbicides throughout the field. However, the spatial density of weeds is not uniform across the field, 

thereby leading to overuse of chemicals which results in environmental concerns and evolution of 

herbicide-resistant weeds. To overcome this issue, a concept of site-specific weed management 

(SSWM), which refers to detecting weed patches and spot spraying or removal by mechanical means, 

was proposed in the early 1990s [3–5]. Weed control early in the season is critical, since otherwise the 

weeds would compete with the crops for resources during the critical growth stage of the crops 

resulting in possible yield loss [6,7]. Therefore, in addition to the application of pre-emergence 

herbicides, the early application of post emergence herbicides is preferred for effective weed control 

and also to reduce the damage to crops. The effectiveness of weed control from post-emergence 

herbicides depends on the timing of application [8,9]. Detection of early season weeds in an accurate 

and timely manner helps in the creation of prescription maps for the site-specific application of post-

emergence herbicides [10–12]. Prescription maps for post-emergence application can also be created 

from late-season weeds detected during the previous seasons [13–17]. Compared to early season 

weeds, late-season weeds do not directly affect the yield of the crop, since it is not competing for 

resources during the critical growth period of the crop. However, if unattended, late-season weeds 

can produce large numbers of seeds creating problems in the subsequent growing seasons. Therefore, 

the detection and control of late-season weeds can be complementary to early season weed control. 

Earlier studies on weed detection often used Color Co-occurrence Matrix-based texture analysis 

for digital images [18,19]. Following this, there were several studies on combining optical sensing, 

image processing algorithms, and variable rate application implements for real-time site-specific 

herbicide application on weeds. However, the speed of these systems was limited by computational 

power constraints for real-time detection, which in turn limited their ability to cover large areas of 

fields [20]. Unmanned aerial vehicles (UAVs) with their ability to cover large areas in a short amount 

of time and payload capacity to carry optical sensors provide an alternative. UAVs have been studied 

for various applications in precision farming such as weed, disease, pest, biotic and abiotic stress 

detection using high-resolution aerial imagery [21–24]. Several studies have investigated the potential 

of using remote sensing to discriminate between crops and weeds for weed mapping at different 

phenological stages and found that results differ based on the phenology [2,10,25–33]. The similar 

spectral signature of the crops and the weeds, occurrence of weeds as small patches and interference 

of soil pixels in detection are the major challenges for remote sensing in early season weed detection 

[2,12]. A common approach is to use vegetation indices to segment the vegetation pixels from the soil 

pixels, followed by crop row detection for weed classification using techniques such as object-based 

image analysis (OBIA) and Hough Transform [29,32,34]. However, crop row detection-based 

approaches cannot detect intra-row weeds. Hence, machine learning based classifiers using features 

computed from OBIA were used to detect intra-row weeds as well [10]. However, the performance 

of OBIA is sensitive to the segmentation accuracy and so optimal parameters for the segmentation 

step in OBIA have to be found for different crops and field conditions [35]. 

With advancements in parallel computing and the availability of large datasets, convolutional 

neural networks (CNN) were found to perform very well in computer vision tasks such as 

classification, prediction, and object detection [36]. In addition to performance, another principal 

advantage of CNN is that the network learns the features by itself during the training process, and 

hence manual feature engineering is not necessary. CNNs have been studied for various image-based 

applications in agriculture such as weed detection, disease detection, fruit counting, crop yield 

estimation, obstacle detection for autonomous farm machines, and soil moisture content estimation 

[37–41]. CNNs have been used for weed detection using data obtained in three different ways—using 

UAVs, using the autonomous ground robot, and high-resolution images obtained manually in the 

field. A simple CNN binary classifier was trained to classify manually collected small high-resolution 

images of maize and weeds [42,43]. The performance of the classifier with transfer learning on various 

pre-trained networks such as LeNet and AlexNet was compared, but this study was limited in 

variability in the obtained dataset and on the evaluation of the classification approach with large 
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images. Dyrmann et al. [23] used a pre-trained VGG-16 network and replaced the fully connected 

layer with a deconvolution layer to output a pixel-wise classification map of maize, weeds, and soil. 

The training images were simulated by overlapping a small number of available images of soil, maize, 

and weeds with various sizes and orientations. The use of an encoder-decoder architecture for real-

time output of pixel-wise classification maps for site-specific spraying was studied. It was found that 

by adding hand-crafted features such as vegetation indices, different color spaces, and edges as input 

channels to CNN, the model’s ability to generalize to different locations and at the different growth 

stages of the crop improved [44–46]. Furthermore, to improve the generalization performance of the 

CNN-based weed detection system, Lottes et al. [25] studied the use of fully-convolutional DenseNet 

with spatiotemporal fusion and spatiotemporal decoder with sequential images to learn the local 

geometry of crops in fixed straight lines along the path of a ground robot. In the case of overlapping 

crop and weed objects, Lottes et al. [15] proposed a key point based feature extraction approach that 

was used to detect weed objects that overlap with the crop. In addition to weed detection, for effective 

removal of weeds using mechanical or laser-based methods, it is necessary to detect the stem location 

of weeds prior to actuation. A fully-convolutional DenseNet was trained to output the stem location 

as well as a pixel-wise segmentation map of crops and weeds [47,48]. 

In the case of weed detection using UAV imagery, similar to OBIA approaches mentioned above, 

dos Santos Ferreira et al. [3] used a Superpixel segmentation algorithm to segment objects and trained 

a CNN to classify these clusters. They then compared the performance with other machine learning 

classifiers which use handcrafted features. Sa et al. [27] studied the use of an encoder-decoder 

architecture, Segnet, for the pixel-wise classification of multispectral imagery and followed up with 

a performance evaluation of this detection system using different UAV platforms and multispectral 

cameras [49–51]. Bah et al. [29] used the Hough transform along with a patch-based CNN to detect 

weeds from UAV imagery and found that overlapping weed and crop objects led to some errors in 

this approach. It is to be noted that, in this approach, the patches are sliced from the large image in a 

non-overlapping manner. Huang et al. [30] studied the performance of various deep learning 

architectures for pixel-wise classification of rice and weeds and found that the fully-convolutional 

network architecture outperformed other architectures. Yu et al. [52] studied the use of CNN for 

multispecies weed detection in rye grass. 

From the literature reviewed, it can be seen that automated weed detection has been primarily 

focused on early season weeds, since that is found to be the critical period for weed management and 

to prevent crop yield loss. However, it should be noted that mid- to late-season weeds that escape 

from the routine early-season management also threaten production by creating a large number of 

seeds which creates problems for several future growing seasons. With herbicide resistance, escaped 

weeds can proliferate and become difficult to manage. Studies on early season weeds can use 

vegetation segmentation as a preprocessing step to reduce the memory requirements; however, this 

does not apply to mid- to late-season weed imaging with no soil pixels due to canopy closure. 

Furthermore, because of the significant overlap between crops and weeds, it is challenging to find 

the optimal scale and other parameters of segmentation in OBIA to achieve the maximum 

performance. With deep learning-based object detection methods proving successful for tasks such 

as fruit counting—another situation with a cluttered background—it is hypothesized that such 

methods would be able to detect mid- to late-season weeds from UAV imagery. Hence, the objective 

of this study was to evaluate deep learning-based object detection models on detecting mid- to late-

season weeds and compare their performance with patch-based CNN method for near-real time weed 

detection. Near-real time refers to on-farm processing of the aerial imagery on the edge device as it is 

collected. We refer to this as near-real time rather than real-time because there is no real time control 

output generated from the collected imagery and so we refer to near-real time as the completion of 

processing shortly after completion of data collection. The specific objectives of the study are: 

 

1. Evaluate the performance of two object detection models with different detection 

performance and inference speed—Faster RCNN and the Single Shot Detector (SSD) 

models—in detecting mid- to late-season weeds from UAV imagery using precision, recall, 
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f1 score, and mean IoU as the evaluation metrics for their detection performance and 

inference time as the metric for their speed; 

2. Compare the performance of object detection CNN models with the patch-based CNN model 

in terms of weed detection performance using mean IoU and inference time. 

 

2. Materials and Methods  

2.1. Study Site 

The study sites were located in the South Central Agricultural Laboratory of the University of 

Nebraska, Lincoln at Clay Center, NE, USA (40.5751, -98.1309). The two study sites were located 

adjacent to each other. They were different soybean weed management research plots. Figure 1 shows 

the stitched maps of the study sites.  

 

 

Figure 1. Study area at South Central Ag Laboratory in Clay Center, NE 
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2.2. UAV Data Collection 

A DJI Matrice 600 pro unmanned aerial vehicle (UAV) platform (Figure 2) was used with a 

Zenmuse X5R camera to capture aerial imagery. In order to collect data with varying growth stages 

of the crop as well as variations in illumination conditions, the images from study site 1 (shown at 

the top in Figure 1) were collected on July 2nd, 2018 whereas the images from study site 2 (shown at 

the bottom in Figure 1) were collected on July 12th, 2018. The flight altitude in both the cases was 20m 

above ground level. The Zenmuse X5R camera used is a 16 megapixel camera with 4/3” sensor and 

72 degree diagonal field of view. The dimension of the captured images is 4608×3456 pixels in three 

bands—Red, Green, and Blue. To develop an economical solution, this study focuses on only using 

RGB imagery. At a 20-m altitude, for the given sensor specifications, the spatial resolution of the 

output image is 0.5 cm/pixel. DJI Ground Station pro software was used for flight control. Common 

weed species at the experimental site were waterhemp (Amaranthus tuberculatus), Palmer 

amaranthus (Amaranthus palmeri), common lambsquarters (Chenopodiam album), velvetleaf 

(Abutilon theophrasti), and foxtail species such as yellow and green foxtails. The weeds were 

naturally infesting the crop and were forming patches. The two data collections were performed after 

45 to 50 days after soybean planting and 15 to 20 days after post-emergence herbicides were applied 

in most treatments, except in plots where only pre-emergence herbicides were applied and in non-

treated control plots. Soybean was at V6 (six trifoliate stage) to R2 (full flowering) growth stage. 

 

 

Figure 2. DJI Matrice 600 pro UAV platform with Zenmuse X5R camera. 

2.3. Data Annotation and Processing 

The objective of the study is to develop a weed detection system with on-farm data processing 

capability. Since the mosaicking of overlapping aerial images is the time-consuming process in the 

workflow and is not required in this case, overlapping images were removed, and only the non-

overlapping raw images were retained. The original dimension of the raw image is too large to fit in 

the memory for processing so each raw image of size 4608×3456 pixels was sliced into 12 sub-images 

of size 1152×1152 pixels. The weed areas in each sub-image were annotated as rectangular bounding 

boxes using the python labeling tool LabelImg [53]. Only one annotator was involved in the labeling 

process. The annotator was trained to draw rectangular bounding boxes around weed patches. In 

case of weed patches of complex shapes, multiple rectangular bounding boxes were drawn to cover 

such patches. A total of 450 sub-images were annotated manually and were then randomly split into 

90% training images and 10% test images 

2.4. Patch Based CNN. 

Convolutional neural networks (CNNs) are feedforward artificial neural networks with the fully 

connected layers in the input hidden layers replaced with convolutional filters. This reduces the 

number of filters in each layer and enables CNNs to learn spatial patterns in images and other two-

dimensional data. The advantage of a CNN is its ability to learn the features by itself, thereby 
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preventing the need for time-consuming hand engineering of features needed in case of other 

Computer Vision algorithms. CNN architectures have been proposed, and its use in applications, 

such as document recognition by using backpropagation for training, has been studied much earlier 

[54]. However, their applications were limited because of the need for very large datasets to train a 

large number of parameters in deep networks, and also the computational needs for training. In the 

last decade, with advancements in parallel processing capabilities using graphical processing units 

and increases in the availability of large datasets, Krizhevsky et al. [36] showed the potential of CNNs 

in complex multiclass image classification tasks. However, in most cases, it was found that there were 

not enough data available to train a deep CNN from scratch. Transfer learning helped overcome this 

limitation. Transfer learning is the technique of using the weights of pre-trained networks trained on 

very large datasets such as Alexnet or GoogleNet and retraining them with small datasets for other 

applications [55]. This has been found to lead to exceptional classification performance and one 

hypothetical explanation is that the features learned in the initial convolutional layers are global 

features common across various image classification tasks. Several studies have looked at the 

application of neural networks for weed detection, such as [28,56]. 

In this study, a pre-trained network called Mobilenet v2 has been used for transfer learning [57]. 

Mobilenet v2 was developed primarily for use in mobile devices with limited memory capabilities. 

Hence, in order to reduce the number of parameters, each convolutional block of Mobilenet v2 

consists of an expansion layer with a convolutional kernel of window size 1. This layer increases the 

number of channels in the input. This is followed by a depthwise convolutional layer which is then 

followed by a projection layer that consists of a convolutional kernel of window size 1. The depthwise 

convolution layer applies a single convolutional filter per input channel. The 1 × 1 convolutional layer 

that follows is called point wise layer. It reduces the number of channels in the output, thereby 

reducing the number of parameters in the next convolutional block. Hence in each block, feature 

maps are projected to a high dimensional space followed by learning higher dimensional features in 

the depthwise convolutional layer which are then encoded using a pointwise convolutional 

projection layer. The Mobilenet v2 network was trained on the ImageNet dataset containing 1.4 

million images belonging to 1000 classes [57]. This network was then fine-tuned using the training 

patches belonging to both the classes in this study. Initially, for the first 10 epochs, only the classifier 

layer of the network were trained by freezing the weights of all other layers. This was performed to 

use the global features learned on the ImageNet dataset and fine-tune the classifier for this specific 

application. After this, fine-tuning was performed in which all the top layers were unfrozen and to 

allow the network to adapt to this specific application. The fine tuning was performed for 10 epochs 

and, hence, the model was only trained for 20 epochs in total [58]. 

2.5. Object Detection Models 

An object in Computer Vision refers to a connected, single element present in the image. Object 

detection is defined as the problem of finding the class of an object, and also localizing it in the image 

[59]. Hence, for every object in the image, the model is expected to regress the coordinates of the 

bounding box of the object in addition to the class probabilities for classification. Two different 

models have been investigated—Faster RCNN and SSD, both with Inception v2 as a feature extractor. 

Faster RCNN and SSD were chosen since Faster RCNN was found to have better performance, 

whereas SSD was found to have better speed [60]. Several different models trained on Imagenet 

dataset such as Inception v2 [61], Mobilenet v2 [57], Resnet 101 [62], VGG 16 [63] can be used as 

feature extractors for transfer learning. Of these, Inception v2 and Mobilenet v2 have been found to 

be the fastest in terms of inference speed [60] . The objective was to develop a weed detection system 

with on-farm real-time data processing capabilities. Since with similar inference speed, Inception v2 

has better performance than Mobilenet v2 for object detection tasks, Inception v2 was chosen as the 

feature extractor [60]. 

2.5.1. Faster RCNN 
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Faster RCNN is a region proposal method-based object detection algorithm. Region-based CNN 

(R-CNN) was the first region proposal method-based model [64]. However, it was computationally 

expensive since CNN based feature extraction has to be performed for each proposed region. Fast 

RCNN was proposed to reduce the computational time by sharing convolutional features across the 

region proposals [65] . To improve the speed, Faster RCNN was proposed with fully convolutional 

Region Proposal Networks (RPN) that are trained to propose better object regions [66]. The Faster 

RCNN model consists of four sections: the feature extractor, the region proposal network, Region of 

Interest (RoI) pooling, and classification (as shown in Figure 3). 

 

Figure 3. Faster RCNN architecture. 

For feature extraction, the convolutional layers from Inception v2 were used. The advantage of 

the Inception v2 network is its use of wider networks with filters of different kernel sizes in each layer 

which makes it translation and scale invariant. Hence, the Inception v2 architecture outputs a 

reduced-dimensional feature map for the region proposal layer. The region proposal network is 

defined by anchors or fixed boundary boxes at each location. At each location, anchors of different 

scale and aspect ratio are defined, thereby enabling the region proposal network to make scale 

invariant proposals. The region proposal layer uses a convolutional filter on the feature map to output 

a confidence score for two classes; object and background. This is called the objectness score. 

Furthermore, the convolutional filter outputs regression offsets for anchor boxes. Hence, assuming 

there are k anchors at a location, the convolutional filter in the region proposal network outputs 6k 

values, namely 4k coordinates and 2k scores. Two losses are calculated from this output—

classification loss and bounding box regression loss. The bounding box coordinates of anchors 

classified as objects are then combined with the feature map from feature extractor. In the RoI pooling 

layer, bounding box regions of different sizes and aspect ratios are resized to fixed size outputs using 

max pooling. Pooling layer refers to a down sampling layer and in case of max pooling, the down 

sampling is done by maximum of pixels [36]. The max-pooled feature map of a fixed size 

corresponding to each output is then classified, and its bounding box offsets with respect to ground 

truth boxes are regressed. Hence, as in the region proposal layer, two losses are computed at this 

output, namely the classification loss and bounding box regression loss. 
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2.5.2. Hyperparameters of the Architecture 

In the framework that was used, the input images to the Faster RCNN network were resized to 

images of fixed size 1024 × 1024 pixels. At each location in the region proposal layer, 4 different scales 

namely 0.25, 0.5, 1.0, 2.0 and 3 different aspect ratios namely 0.5, 1.0 and 2.0 were used. Hence, in 

total, there were 12 anchors at each location. The model was trained for 25,000 epochs with a batch 

size of 1 using stochastic gradient descent with momentum optimizer. The training dataset was split 

into training and validation datasets and the performance of the model on validation data was 

continuously monitored during training to check if the model starts to overfit. Random horizontal 

flip and random crop operations were performed to augment the training data. The data collected 

had the crop rows always parallel to the horizontal axis of the image, therefore random horizontal 

flip and crop operations augment the training data. 

2.5.3. Single Shot Detector 

The Single Shot Detector (SSD) (Figure 4) model was proposed to improve the inference time of 

objection detection models with region proposal network such as Faster RCNN. The main difference 

in SSD compared to Faster RCNN is the generation of detection outputs without a separate region 

proposal layer. Similar to Faster RCNN, SSD uses a feature extractor which is the Inception v2 

architecture in this case. At each location of the feature map output, the model outputs a set of 

bounding boxes of different scales and aspect ratios. This is very similar to Faster RCNN but the 

difference being the convolutional filter on the feature map directly outputs the confidence scores 

corresponding to the output classes along with regression box offsets. Hence, the class and bounding 

box offsets are output in a single shot as the name suggests. For the model to be scale and translation 

invariant, rather than outputting bounding boxes from only the feature map, extra feature layers are 

added to the feature map output and detection boxes are output at different scales from each output. 

Hence, in total, the SSD model has 6 layers that output detection boxes at different scales [67]. 

 

Figure 4. Single Shot Detector (SSD) architecture. 

2.5.4. Hyperparameters of the Architecture  

In the case of SSD, in the framework that has been used, the input images are always reshaped 

to a fixed dimension of 300 × 300 pixels. After the feature extraction, in 6 different layers that output 

detection boxes, 6 different scales in the range 0.2-0.95 were used. Five different aspect ratios namely 

1.0, 2.0, 0.5, 3.0 and 0.333 were generated at each location. The model was trained for 25,000 epochs 

as in the case of Faster RCNN. A batch size of 24 was used in training and the RMS prop optimizer 

was used. Data augmentation was applied with random horizontal flipping and random cropping of 

images. Validation images were, again, evaluated periodically during the training to check if the 

model is overfitting. 

2.6. Hardware and Software Used 

The models were trained and evaluation of the models was performed on a computer with Intel 

i9 processor with 18 cores and 64 GB of RAM and NVIDIA GeForce RTX 2080 Ti graphics card. 

Tensorflow object detection API [61] in Python was used to train and evaluate Faster RCNN and SSD. 
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Tensorflow tutorial on transfer learning [58] was used to train the MobileNet v2 architecture for 

patch-based CNN. 

2.7. Evaluation Metrics 

Precision, recall, f1 score, and Intersection over Union (IoU) are the evaluation metrics used in 

this study. 

Precision = 
��

�����
 (1) 

Recall = 
��

�����
 (2) 

F1 score = 
�×���������×������  

��������� ������� 
 (3) 

Here TP refers to True Positive, FP refers to False Positive, and FN refers to False negative. 

Moreover, mean Average Precision (mAP) is another metric that is commonly used in object detection 

problems [68][59]. It is the mean of the average precision at all recall values at different IoUs for 

prediction and ground truth thresholds from 0.5 to 0.95. It should be noted that these metrics were 

primarily formulated for object detection. Even though, in this study, we use object detection models, 

the objective is not to find weed objects rather all the area covered by weeds for management 

purposes. In case of a deep learning-based object detection model, multiple objects with their 

bounding box are predicted. Of these, only the boxes which have IoU with the ground truth greater 

than threshold and class score (probability of that object being in each class) greater than confidence 

threshold are considered positive prediction boxes. Among these, only the box with highest class 

score is considered as the true positive and other positive boxes are considered as false positives. In 

our case, for a weed patch that is marked as a ground truth box, the model might have multiple 

positive weed boxes corresponding to that one ground truth box. However, only one of those would 

be considered as true positive and other boxes are false positives. As can be seen in the following 

Figure 5, the output of this image has two prediction boxes covering the weed area in the left but in 

the ground truth it was marked as one bounding box. Hence, if precision is used as the evaluation 

metric, the box on the bottom will be regarded as False Positive even though that box adds to more 

weed area being detected. Therefore, the Intersection over Union (IoU) of binary output image 

representing weed and background pixels with the ground truth binary image is used as the primary 

evaluation metric. The binary output images corresponding to prediction outputs and ground truth 

are obtained by considering pixels representing weed objects as 1 and other areas as 0. The 

intersection and union of the two binary images obtained are then used to find the IoU ratio. Hence, 

IoU here represents the ratio between the intersection of all positive prediction boxes (true positive 

and false positives in object detection terms) and all ground truth boxes in an image. 

IoU = 
���� �� �������  

���� �� ����� 
 (4) 
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Figure 5. Example output image showing a weed patch annotated with single box in ground truth 

image detected as two boxes in output. This will lead to lesser precision as only the bigger box is 

considered true positive and therefore IoU is a better evaluation metric for this problem. 

To evaluate the patch-based CNN on the sub-image, an overlap slicing approach is used. The 

sub-image of size 1152 × 1152 pixels is sliced into patches of size 128 × 128 pixels with a stride of 32 

on the horizontal and vertical. Therefore, the sliced patches have 75% horizontal and vertical overlap. 

Hence, each small area of size 32 × 32 is part of 8 patches and the class with maximum votes from the 

4 patches is assigned as the class of the small area. To evaluate this result with ground truth and to 

compare with the results of Faster RCNN and SSD, IoU is used as the evaluation metric. 

3. Results and Discussion 

3.1. Training of Faster RCNN and SSD 

Figure 6 shows the training graph for Faster RCNN and SSD. The decrease in training loss and 

the increase in mAP of the validation data with training epochs can be seen. By the end of the training, 

very little difference in the mAP of Faster RCNN and the SSD validation data was obtained. Faster 

RCNN converged faster than SSD. The training process of Faster RCNN might appear to oscillate 

more than SSD, which could be due to the different batch sizes and optimizers being used by the two 

models. However, it should be noted that the scale of the two loss plots was different. The different 

batch size and optimizer could also be the reason for the Faster RCNN model converging to high 

validation mAP earlier than SSD, since a batch size of 1 for Faster RCNN leads to 24 times more 

gradient updates than SSD with a batch size of 24. 
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Figure 6. Change in training loss and Validation Mean Average Precision with number of epochs of 

(a) Faster RCNN and (b) SSD. 

3.2. Optimal IoU and Confidence Thresholds for Faster RCNN and SSD 

In order to find the optimal threshold for IoU of the prediction boxes and ground truth boxes 

that would result in best performance of the model, precision recall curves were drawn using various 

confidence thresholds from 0 to 1 at various IoU thresholds ranging from 0.5 to 0.95 (Figure 7). 

 

Figure 7. Precision-recall curve at different thresholds for IoU of the predicted box and ground truth 

box (a) Faster RCNN and (b) SSD. 

It can be seen that the area under the precision-recall curve is almost the same in case of Faster 

RCNN and SSD which explains the fact that the validation mAP during the final epochs as seen from 

the training graph was very similar (0.63 in Faster RCNN and 0.62 in SSD). Furthermore, both Faster 

RCNN and SSD achieved the maximum area under the precision-recall curve at an IoU threshold of 
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0.5 for the prediction box and ground truth box. Hence, for each ground truth box, among all 

prediction boxes with a confidence score greater than the threshold for confidence score, the 

prediction box with the highest value of IoU with the ground truth box and also whose IoU with 

ground truth box is greater than the threshold for IoU was considered a true positive. All prediction 

boxes that were not a true positive with any ground truth box are regarded as false positives. The 

number of false negatives is equal to the number of ground truth boxes that do not have a 

corresponding true positive. With the optimal IoU threshold found for Faster RCNN and SSD, the 

following graph (Figure 8) was plotted to find the optimal confidence threshold for Faster RCNN and 

SSD that results in the best performance. 

 

Figure 8. Change in IoU of output binary image and ground truth binary image as well as f1 score 

with change in recall. 

Figure 8 shows the change in f1 score and the mean IoU of the output binary image of the model 

with the ground truth binary image with change in recall. From the figure, the recall value which 

results in the best IoU and F1 score was found using the peak. The recall at which the best mean IoU 

and f1 score were observed was around 0.7 and its corresponding confidence threshold for class 

scores was 0.6 in the case of Faster RCNN, and 0.1 in the case of SSD. It is to be noted that mean IoU 

here refers to the Intersection over Union of the whole binary model output image with the ground 

truth binary image whereas the IoU mentioned earlier was the Intersection over Union of individual 

prediction bounding boxes with individual ground truth bounding boxes. 

3.3. Comparison of Performance of Faster RCNN and SSD 

Table 1 shows the precision, recall, f1 score, and mean IoU of the model output binary image 

and the ground truth binary along with the inference time for a 1152 × 1152 image. The precision, 

recall, f1 score, and mean IoU of both the models were similar but the SSD model was slightly faster 

in execution than Faster RCNN. It should be noted that the above performance was in the case that 

the Faster RCNN network outputs 300 proposals from the region proposal network. However, Huang 

et al. [36] found that by reducing the number of proposals output by Faster RCNN, the inference time 

of Faster RCNN can be improved with a slight cost in precision, recall, and f1 score. Therefore, 

experiments were conducted to study the change in inference time, precision, recall, f1 score and 

mean IoU, by varying the number of proposal boxes from the Faster RCNN network from 50 to 300 

and the results are plotted in Figure 9. 
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Table 1. Performance of test data in Faster RCNN and Single Shot Detector (SSD). 

Model Precision Recall F1 Score Mean IoU 
Inference Time of 1152 × 

1152 Image in Seconds 

Faster 

RCNN 
0.65 0.68 0.66 0.85 0.23 

SSD 0.66 0.68 0.67 0.84 0.21 

 

Figure 9. Change in evaluation metrics and inference time of Faster RCNN model with increase in 

number of proposals. 

The inference time of Faster RCNN had a linear time complexity with the number of proposal 

boxes output from the region proposal network. It can be seen that, from 200 to 300 proposals, there 

was no change in performance of the model but the inference time decreased. Hence, 200 proposals 

was selected as the optimal number of proposals for this dataset. At 200 proposals, the inference time 

of Faster RCNN was 0.21 seconds, which was the same as SSD. In the case of constraints in 

computational power, using 100 proposal boxes would result in significant compute savings with 

minimal loss in mean IoU. Hence, no difference in performance was found between Faster RCNN 

with 200 proposals and SSD in terms of the evaluation metrics used in this study. However, it is to be 

noted that, even with the same performance metric, Faster RCNN output weed objects with high 

confidence compared to SSD, since the confidence threshold being used for Faster RCNN was 0.6, 

whereas it was a very low 0.1 for SSD. Though this threshold might result in the best performance 

with the current validation test, it might affect the generalization performance of the model in the 

case of a test dataset from a different location or from a field with different management practices. In 

such cases, the low threshold might lead to reduced precision. 

On visual observation of the outputs of all the 44 test images, it was found that in 41 images, 

both the networks detected all the weed areas. Hence, in these images, the difference in IoU between 

the model output and the ground truth is only because of the slight displacements of the boundaries 

of the bounding boxes from each other. As mentioned in Section 2.7,the low values of precision, recall, 

and f1 score obtained are primarily because of the way these metrics are calculated, since only one 

bounding box is considered as a true positive for one ground truth box, whereas the model in case of 

some weed areas with slight discontinuities outputs multiple prediction boxes to detect those areas. 

Therefore, the mean IoU of the binary output image with the binary image of the ground truth is the 

appropriate metric. In three of the test images (shown in Figure 10), there was a difference in the 

output of Faster RCNN and SSD. In the output image 1, Faster RCNN failed to detect a small strip of 
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weed between the crop rows, but this was detected by SSD. However, by looking at the confidence 

score of the weed object from SSD, it can be understood that SSD was only able to detect this weed 

object because of the very low confidence threshold set for it. Whereas in output image 2, SSD 

misclassified a row of soybean crops with herbicide drift injury as weeds. Moreover, in case of output 

image 3, SSD could not detect the weeds on the left vertical border of the image. With both the failure 

areas being present in the border of the images, this might show the susceptibility of the SSD model 

in the image border. This could be due to the architecture of SSD that does detection of objects and 

classification into its class in a single shot, unlike Faster RCNN. Another possible reason could be 

that, by default, the API used to train both the models was resizing the input images of Faster RCNN 

to 600 × 600 whereas in case of SSD it was resized to 300 × 300. Therefore, this further loss of detail in 

the input image compared to the Faster RCNN input image might have led to the misclassifications 

in the border. Hence, further study with the same input image resolution is needed for a fair 

comparison. 

 

Figure 10. Output images with discrepancies between Faster RCNN and SSD and their corresponding 

ground truth. 
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Other than the above-mentioned three images, Faster RCNN, as well as SSD, performed 

exceptionally well in detecting weed objects of various scales as seen in Figure 11. As mentioned 

earlier, it can be seen that though SSD detected all the weed objects that were detected by Faster 

RCNN, the confidence of many of those predictions were very low and ended up as true positive 

because of the low confidence threshold. Since, by reducing the number of proposals to 200, Faster 

RCNN can be as fast SSD in terms of inference time, it can be concluded that Faster RCNN has better 

speed performance tradeoff. 

 

Figure 11. Example output images with good model performance. 

3.4. Comparison of Performance of Faster RCNN and Patch-Based CNN 

The Mobilenet v2 network trained on the training patches showed very high performance in 

classifying test patches with an f1 score of 0.98. However, in order to evaluate its performance in 

detecting the weed objects in the sub-image and compare its performance with the Faster RCNN 

object detection model, the overlapping approach explained earlier was used. Table 2 shows the mean 

IoU of the output binary image from Faster RCNN and patch-based CNN with the ground truth 

binary image. Furthermore, the table shows the time taken to evaluate one sub-image by both the 

models. 

Table 2. Performance of Faster RCNN and patch-based CNN in test sub-images. 

Model Mean IoU 
Inference Time in Seconds for 

each Sub-image (1152×1152) 

Faster RCNN with 200 proposals 0.85 0.21 

Patch based CNN sliced with 

overlap 
0.61 1.03 

Patch based CNN sliced without 

overlap 
0.6 0.22 
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Faster RCNN had better performance than patch-based CNN with overlap, both in terms of 

mean IoU and inference time. However, patch-based CNN without overlap has an inference time 

which is almost the same as Faster RCNN. The low values of IoU of patch-based CNN without 

overlap were because of the coarse nature of this algorithm. Since each sub-image was split into 81 

patches in this approach, weeds that were smaller in size would not be detected in this approach. 

Furthermore, because of the way the patches were sliced, there could be a lot of patches with weeds 

and background in equal proportion, whereas the Mobilenet v2 model had only been trained with 

patches that contained only weed or only background, and hence the model was prone to error in 

this approach. To reduce this error, the slicing with overlap approach was tested. Since, for each small 

block within a patch, the class was determined by majority vote in eight patches, the problem of 

mixed patches was solved to some extent. Still, the similar IoU of slicing with overlap and without 

overlap is because the ground truth binary image represents weed objects as rectangular boxes 

whereas output binary images from the patch-based overlap approach consist of weed objects, which 

are polygonal in nature because of the majority vote as can be seen in Figure 12. Therefore, patch-

based CNN with overlap has better performance than the IoU value with ground truth image 

suggests. However, the drawback of this approach is the very high inference time compared to Faster 

RCNN and patch-based RCNN without overlap. Further studies can be done with different levels of 

horizontal and vertical overlap and its influence on the inference time of this approach. However, 

with the inference time of Faster RCNN being the same as the patch-based CNN without overlap, 

any amount of overlap would lead to more patches to be evaluated than the non-overlap approach 

and hence greater inference time. Therefore, among the approaches investigated in this study, Faster 

RCNN had the best overall performance. It would be interesting to study a modified Fast RCNN 

architecture with the region proposal part replaced with an image analysis method that selects 

polygons. This could achieve faster computational speed as well as better performance for a patch-

based CNN method. 

In order to implement this system for on-farm detection, further evaluation of the performance 

of these approaches at higher altitudes is needed. At the altitude of 20m at which these data were 

collected, it is practically impossible to cover the large soybean fields with the current limitations on 

the battery capacity of UAV systems. Therefore, the evaluation of the performance of these models at 

low-resolution images from high altitude is needed for practical adoption of these systems. Like SSD, 

it can be seen that there is a higher misclassification rate of patches in the border of the images. In this 

case, it is suggested to collect images with some overlap, such as 15%, so that weed objects present in 

the border of one image end up in the interior of the next image. Furthermore, it is to be noted that 

the dataset used to train the models in the study was only collected on two different days. Therefore, 

the differences in phenological stage of the crop and the weed and lighting conditions are limited 

within the dataset. Further experiments with wide variations in lighting conditions, flight altitudes, 

different phenological stages are needed to analyze and compare the generalizability of performance 

of these models in varying conditions in the field. In addition, since the manual labeling of bounding 

boxes used in this study was labeled by one annotator, it is possible that there is error due to bias of 

the observer. Therefore, further studies using multiple annotators for labeling data with more 

variations as mentioned above is needed to remove bias and study the generalizability of the model. 

With the manual annotation of images being a time-consuming process, use of multiresolution 

segmentation approaches from OBIA could help in automating this. In that case, OBIA could help 

generate polygon labels from which rectangular bounding box labels can be generated for object 

detection tasks. 

  



Remote Sens. 2020, 12, 2136 17 of 22 

 

 

 

Figure 12. Output images of patch-based CNN and Faster RCNN. 

4. Conclusions 

In this study, Faster RCNN and SSD object detection models were trained and evaluated over 

UAV imagery for mid- to late-season weed detection in soybean fields. The performance of two object 

detection models, Faster RCNN and the Single Shot Detector (SSD) models, as well as the 

performance of object detection CNN models with the patch-based CNN model, were evaluated and 

compared in terms of weed detection performance using mean IoU and inference speed. 

It was found that the Faster RCNN model with 200 box proposals had a similar weed detection 

performance to the SSD model in terms of precision, recall, f1 score, and IoU as well as similar 

inference time. The precision, recall, f1 score and IoU were 0.65, 0.68, 0.66 and 0.85 for Faster RCNN 

with 200 proposals, and 0.66, 0.68, 0.67 and 0.84 for SSD respectively. However, the optimal 

confidence threshold of SSD was found to be 0.1, indicating the lower confidence of this model in the 

case of weed objects detected, whereas the optimal confidence threshold was found to be 0.6 in the 

case of Faster RCNN, meaning higher confidence in the weed objects detected. In addition, SSD was 

susceptible to misclassification in the border of some test images. These findings indicate that SSD 

might have lower generalization performance than Faster RCNN for mid- to late-season weed 

detection in soybean fields using UAV imagery. Hence, Faster RCNN was determined to be the better 

performing model among the two in this study. Between Faster RCNN and patch-based CNN, Faster 

RCNN had better weed detection performance than patch-based CNN with overlap as well as 

without overlap. The inference time of Faster RCNN was similar to patch-based CNN without 

overlap, but significantly less than patch-based CNN with overlap. Hence, Faster RCNN was found 

to be the best model in terms of weed detection performance and inference time among the different 

models compared in this study.  
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Future work can evaluate the performance variation of models in different weed species. In 

addition, the performance of Faster RCNN at different altitudes by resampling high-resolution 

images to low-resolution images can be studied. Furthermore, the inference time experiments at 

different altitudes should be performed on low computational power devices such as regular laptops 

and mini-PCs used for the flight control of UAV systems. Inference time experiments should also be 

performed on low cost hardware accelerators available for edge computing such as the Intel Neural 

Compute Stick or Google Coral. This would help understand the potential of using such devices for 

on-farm, near real-time data processing and actuation. In addition, the effect of model compression 

techniques and approximation algorithms developed for neural networks can be studied to 

understand the limit of edge computing for in-field near real-time weed detection. Moreover, further 

work can be performed on using the RTK GPS data of individual images and their corresponding 

IMU data to orthorectify the image and find the geolocation of the weed patches detected by the 

object detection models. In addition, the performance of object detection models for weed detection 

can be compared between raw individual images as used in this study and stitched mosaic maps. 

With the manual annotation of images being a laborious part of the process, using techniques such 

as self-supervised learning [69] and active learning [70] to reduce the amount of manual labeling for 

this task can be studied. Furthermore, few-shot learning algorithms can be studied to investigate the 

transfer learning of this algorithm to other crops and weed species by training with a few labeled 

instances from those crops and weed species. 

Author Contributions: Conceptualization, Y.S. and E.P.; methodology, A.N.V.S., Y.S. and S.S.; data acquisition, 

A.N.V.S. and J.L.; software, analysis and evaluation, A.N.V.S.; writing—original draft preparation, A.N.V.S.; 

writing—review and editing, Y.S., E.P., S.S, A.J.J., J.D.L. and J.L.; project administration, Y.S.; funding 

acquisition, Y.S., E.P. and A.J.J. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the Nebraska Research Initiative (NRI) Collaboration Initiative Seed Grant 

2132250011, the Nebraska Corn Board, and the Nebraska Agricultural Experiment Station through the Hatch Act 

capacity funding program (Accession Number 1011130) from the USDA National Institute of Food and 

Agriculture. 

Acknowledgments: Thanks to Jonathan Forbes for their assistance in data collection. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to 

publish the results. 

References 

1. dos Santos Ferreira, A.; Matte Freitas, D.; Gonçalves da Silva, G.; Pistori, H.; Theophilo Folhes, M. Weed 

detection in soybean crops using ConvNets. Comput. Electron. Agric. 2017, 143, 314–324, 

doi:10.1016/J.COMPAG.2017.10.027. 

2. Thorp, K.R.; Tian, L.F. A Review on Remote Sensing of Weeds in Agriculture. Precis. Agric. 2004, 5, 477–

508, doi:10.1007/s11119-004-5321-1. 

3. Weis, M.; Gutjahr, C.; Rueda Ayala, V.; Gerhards, R.; Ritter, C.; Schölderle, F. Precision farming for weed 

management: Techniques. Gesunde Pflanz. 2008, 60, 171–181, doi:10.1007/s10343-008-0195-1. 

4. Christensen, S.; SØgaard, H.T.; Kudsk, P.; NØrremark, M.; Lund, I.; Nadimi, E.S.; JØrgensen, R. Site-

specific weed control technologies. Weed Res. 2009, doi:10.1111/j.1365-3180.2009.00696.x. 

5. Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 

2002, 36, 113–132, doi:10.1016/S0168-1699(02)00096-0. 

6. O’Donovan, J.T.; De St. Remy, E.A.; O’Sullivan, P.A.; Dew, D.A.; Sharma, A.K. Influence of the Relative 

Time of Emergence of Wild Oat ( Avena fatua ) on Yield Loss of Barley ( Hordeum vulgare ) and Wheat ( 

Triticum aestivum). Weed Sci. 1985, doi:10.1017/s0043174500082722. 

7. Swanton, C.J.; Mahoney, K.J.; Chandler, K.; Gulden, R.H. Integrated Weed Management: Knowledge-Based 

Weed Management Systems. Weed Sci. 2008, doi:10.1614/ws-07-126.1. 



Remote Sens. 2020, 12, 2136 19 of 22 

 

8. JUDGE, C.A.; NEAL, J.C.; DERR, J.F. Response of Japanese Stiltgrass (Microstegium vimineum) to 

Application Timing, Rate, and Frequency of Postemergence Herbicides 1. Weed Technol. 2005, 

doi:10.1614/wt-04-272r.1. 

9. Chauhan, B.S.; Singh, R.G.; Mahajan, G. Ecology and management of weeds under conservation 

agriculture: A review. Crop. Prot. 2012, 38, 57–65. 

10. de Castro, A.I.; Torres-Sánchez, J.; Peña, J.M.; Jiménez-Brenes, F.M.; Csillik, O.; López-Granados, F. An 

automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using 

UAV imagery. Remote. Sens. 2018, doi:10.3390/rs10020285. 

11. Fernández-Quintanilla, C.; Peña, J.M.; Andújar, D.; Dorado, J.; Ribeiro, A.; López-Granados, F. Is the 

current state of the art of weed monitoring suitable for site-specific weed management in arable crops? 

Weed Res. 2018, 58, 259–272. 

12. López-Granados, F. Weed detection for site-specific weed management: Mapping and real-time 

approaches. Weed Res. 2011, doi:10.1111/j.1365-3180.2010.00829.x. 

13. Barroso, J.; Fernàndez-Quintanilla, C.; Ruiz, D.; Hernaiz, P.; Rew, L.J. Spatial stability of Avena sterilis ssp. 

ludoviciana populations under annual applications of low rates of imazamethabenz. Weed Res. 2004, 

doi:10.1111/j.1365-3180.2004.00389.x. 

14. Koger, C.H.; Shaw, D.R.; Watson, C.E.; Reddy, K.N. Detecting Late-Season Weed Infestations in Soybean 

(Glycine max) 1. Weed Technol. 2003, doi:10.1614/wt02-122. 

15. de Castro, A.I.; Jurado-Expósito, M.; Peña-Barragán, J.M.; López-Granados, F. Airborne multi-spectral 

imagery for mapping cruciferous weeds in cereal and legume crops. Precis. Agric. 2012, doi:10.1007/s11119-

011-9247-0. 

16. de Castro, A.I.; López-Granados, F.; Jurado-Expósito, M. Broad-scale cruciferous weed patch classification 

in winter wheat using QuickBird imagery for in-season site-specific control. Precis. Agric. 2013, 

doi:10.1007/s11119-013-9304-y. 

17. Castillejo-González, I.L.; López-Granados, F.; García-Ferrer, A.; Peña-Barragán, J.M.; Jurado-Expósito, M.; 

de la Orden, M.S.; González-Audicana, M. Object- and pixel-based analysis for mapping crops and their 

agro-environmental associated measures using QuickBird imagery. Comput. Electron. Agric. 2009, 

doi:10.1016/j.compag.2009.06.004. 

18. Meyer, G.E.; Mehta, T.; Kocher, M.F.; Mortensen, D.A.; Samal, A. Textural imaging and discriminant 

analysis for distinguishing weeds for spot spraying. Trans. Am. Soc. Agric. Eng. 1998, 

doi:10.13031/2013.17244. 

19. Burks, T.F.; Shearer, S.A.; Payne, F.A. Classification of weed species using color texture features and 

discriminant analysis. Trans. Am. Soc. Agric. Eng. 2000, 43, 411. 

20. Wang, A.; Zhang, W.; Wei, X. A review on weed detection using ground-based machine vision and image 

processing techniques. Comput. Electron. Agric. 2019, 158, 226–240. 

21. Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; Vandemark, G.J.; Miklas, P.N.; 

Carter, A.H.; Pumphrey, M.O.; Knowles, N.R.; et al. Low-altitude, high-resolution aerial imaging systems 

for row and field crop phenotyping: A review. Eur. J. Agron. 2015, 70, 112–123, 

doi:10.1016/J.EJA.2015.07.004. 

22. Rasmussen, J.; Nielsen, J.; Streibig, J.C.; Jensen, J.E.; Pedersen, K.S.; Olsen, S.I. Pre-harvest weed mapping 

of Cirsium arvense in wheat and barley with off-the-shelf UAVs. Precis. Agric. 2019, doi:10.1007/s11119-018-

09625-7. 

23. Casa, R.; Pascucci, S.; Pignatti, S.; Palombo, A.; Nanni, U.; Harfouche, A.; Laura, L.; Di Rocco, M.; Fantozzi, 

P. UAV-based hyperspectral imaging for weed discrimination in maize. In Proceedings of the Precision 

Agriculture 2019—Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019, 

Montpellier, France, 8–11 July 2019; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; 

pp. 365–371. 

24. Sánchez-Sastre, L.F.; Casterad, M.A.; Guillén, M.; Ruiz-Potosme, N.M.; Veiga, N.M.S.A.; da Navas-Gracia, 

L.M.; Martín-Ramos, P. UAV Detection of Sinapis arvensis Infestation in Alfalfa Plots Using Simple 

Vegetation Indices from Conventional Digital Cameras. AgriEngineering 2020, 2, 206–212, 

doi:10.3390/agriengineering2020012. 

25. Peña-Barragán, J.M.; López-Granados, F.; Jurado-Expósito, M.; García-Torres, L. Spectral discrimination of 

Ridolfia segetum and sunflower as affected by phenological stage. Weed Res. 2006, doi:10.1111/j.1365-

3180.2006.00488.x. 



Remote Sens. 2020, 12, 2136 20 of 22 

 

26. Gray, C.J.; Shaw, D.R.; Gerard, P.D.; Bruce, L.M. Utility of Multispectral Imagery for Soybean and Weed 

Species Differentiation. Weed Technol. 2008, doi:10.1614/wt-07-116.1. 

27. Martin, M.P.; Barreto, L.; RiañO, D.; Fernandez-Quintanilla, C.; Vaughan, P. Assessing the potential of 

hyperspectral remote sensing for the discrimination of grassweeds in winter cereal crops. Int. J. Remote. 

Sens. 2011, doi:10.1080/01431160903439874. 

28. De Castro, A.I.; Jurado-Expósito, M.; Gómez-Casero, M.T.; López-Granados, F. Applying neural networks 

to hyperspectral and multispectral field data for discrimination of cruciferous weeds in winter crops. Sci. 

World J. 2012, doi:10.1100/2012/630390. 

29. Peña, J.M.; Torres-Sánchez, J.; de Castro, A.I.; Kelly, M.; López-Granados, F. Weed Mapping in Early-Season 

Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images. PLoS ONE 2013, 8, 

e77151, doi:10.1371/journal.pone.0077151. 

30. Torres-Sánchez, J.; López-Granados, F.; De Castro, A.I.; Peña-Barragán, J.M. Configuration and 

Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management. PLoS ONE 

2013, 8, e58210, doi:10.1371/journal.pone.0058210. 

31. Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-temporal mapping of the 

vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 

doi:10.1016/j.compag.2014.02.009. 

32. Pérez-Ortiz, M.; Peña, J.M.; Gutiérrez, P.A.; Torres-Sánchez, J.; Hervás-Martínez, C.; López-Granados, F. A 

semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop 

row detection method. Appl. Soft Comput. 2015, 37, 533–544, doi:10.1016/J.ASOC.2015.08.027. 

33. Castaldi, F.; Pelosi, F.; Pascucci, S.; Casa, R. Assessing the potential of images from unmanned aerial 

vehicles (UAV) to support herbicide patch spraying in maize. Precis. Agric. 2017, doi:10.1007/s11119-016-

9468-3. 

34. López-Granados, F.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.I.; Mesas-Carrascosa, F.-J.; Peña, J.-

M. Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment 

maps against weed thresholds. Precis. Agric. 2016, 17, 183–199, doi:10.1007/s11119-015-9415-8. 

35. Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations Assessing object-based 

classification: Advantages and limitations. Remote. Sens. Lett. 2010, doi:10.1080/01431161003743173. 

36. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural 

networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, 

USA, 3-6 December 2012; pp. 1097–1105. 

37. Steen, K.; Christiansen, P.; Karstoft, H.; Jørgensen, R.; Steen, K.A.; Christiansen, P.; Karstoft, H.; Jørgensen, 

R.N. Using Deep Learning to Challenge Safety Standard for Highly Autonomous Machines in Agriculture. 

J. Imaging 2016, 2, 6, doi:10.3390/jimaging2010006. 

38. Song, X.; Zhang, G.; Liu, F.; Li, D.; Zhao, Y.; Yang, J. Modeling spatio-temporal distribution of soil moisture 

by deep learning-based cellular automata model. J. Arid Land 2016, 8, 734–748, doi:10.1007/s40333-016-0049-

0. 

39. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. 

Front. Plant. Sci. 2016, 7, 1419, doi:10.3389/fpls.2016.01419. 

40. Kuwata, K.; Shibasaki, R. Estimating crop yields with deep learning and remotely sensed data. In 

Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 

Italy, 26–31 July 2015; pp. 858–861. 

41. Rahnemoonfar, M.; Sheppard, C.; Rahnemoonfar, M.; Sheppard, C. Deep Count: Fruit Counting Based on 

Deep Simulated Learning. Sensors 2017, 17, 905, doi:10.3390/s17040905. 

42. Andrea, C.-C.; Mauricio Daniel, B.B.; Jose Misael, J.B. Precise weed and maize classification through 

convolutional neuronal networks. In Proceedings of the 2017 IEEE Second Ecuador Technical Chapters 

Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017; pp. 1–6. 

43. Dyrmann, M.; Mortensen, A.; Midtiby, H.; Jørgensen, R. Pixel-wise classification of weeds and crops in 

images by using a fully convolutional neural network. In Proceedings of the International Conference on 

Agricultural Engineering, Aarhus, Denmark, 26–29 June 2016; pp. 26–29. 

44. Milioto, A.; Lottes, P.; Stachniss, C. Real-Time Semantic Segmentation of Crop and Weed for Precision 

Agriculture Robots Leveraging Background Knowledge in CNNs. In Proceedings of the 2018 IEEE 

International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21-25 May 2018; pp. 

2229–2235. 



Remote Sens. 2020, 12, 2136 21 of 22 

 

45. Lottes, P.; Behley, J.; Milioto, A.; Stachniss, C. Fully Convolutional Networks With Sequential Information 

for Robust Crop and Weed Detection in Precision Farming. IEEE Robot. Autom. Lett. 2018, 3, 2870–2877, 

doi:10.1109/LRA.2018.2846289. 

46. Lottes, P.; Khanna, R.; Pfeifer, J.; Siegwart, R.; Stachniss, C. UAV-based crop and weed classification for 

smart farming. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation 

(ICRA), Singapore, 29 May–3 June 2017; pp. 3024–3031. 

47. Lottes, P.; Behley, J.; Chebrolu, N.; Milioto, A.; Stachniss, C. Robust joint stem detection and crop-weed 

classification using image sequences for plant-specific treatment in precision farming. J. F. Robot. 2020, 37, 

20–34, doi:10.1002/rob.21901. 

48. Sa, I.; Chen, Z.; Popovic, M.; Khanna, R.; Liebisch, F.; Nieto, J.; Siegwart, R. WeedNet: Dense Semantic Weed 

Classification Using Multispectral Images and MAV for Smart Farming. IEEE Robot. Autom. Lett. 2018, 3, 

588–595, doi:10.1109/LRA.2017.2774979. 

49. Sa, I.; Popović, M.; Khanna, R.; Chen, Z.; Lottes, P.; Liebisch, F.; Nieto, J.; Stachniss, C.; Walter, A.; Siegwart, 

R.; et al. WeedMap: A Large-Scale Semantic Weed Mapping Framework Using Aerial Multispectral 

Imaging and Deep Neural Network for Precision Farming. Remote Sens. 2018, 10, 1423, 

doi:10.3390/rs10091423. 

50. Bah, M.D.; Dericquebourg, E.; Hafiane, A.; Canals, R. Deep Learning Based Classification System for 

Identifying Weeds Using High-Resolution UAV Imagery; In Intelligent Computing. SAI 2018; Advances in 

Intelligent Systems and Computing: Cham, Switzerland, 2019; Volume 857, pp. 176–187. 

51. Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Zhang, L. A fully convolutional network for weed mapping 

of unmanned aerial vehicle (UAV) imagery. PLoS ONE 2018, 13, e0196302, 

doi:10.1371/journal.pone.0196302. 

52. Yu, J.; Schumann, A.W.; Cao, Z.; Sharpe, S.M.; Boyd, N.S. Weed Detection in Perennial Ryegrass With Deep 

Learning Convolutional Neural Network. Front. Plant. Sci. 2019, 10, doi:10.3389/fpls.2019.01422. 

53. Tzutalin LabelImg. LabelImg 2015. Available online: https://github.com/tzutalin/labelImg (accessed on 

06/30/2020) 

54. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. 

Proc. IEEE 1998, 86, 2278–2324. 

55. Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and 

Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264. 

56. Karimi, Y.; Prasher, S.O.; McNairn, H.; Bonnell, R.B.; Dutilleul, P.; Goel, P.K. Classification accuracy of 

discriminant analysis, artificial neural networks, and decision trees for weed and nitrogen stress detection 

in corn. Trans. Am. Soc. Agric. Eng. 2005, doi:10.13031/2013.18490. 

57. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear 

Bottlenecks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, Salt Lake City, UT, USA, 18–23 June 2018, pp. 4510–4520. 

58. Chollet, F. Transfer Learning Using Pretrained ConvNets. Available online: 

https://www.tensorflow.org/alpha/tutorials/images/transfer_learning (accessed on 06/30/2020). 

59. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft 

COCO: Common objects in context. In Computer Vision—ECCV 2014; Lecture Notes in Computer Science: 

Cham, Switzerland, 2014; pp. 740–755, doi:10.1007/978-3-319-10602-1_48. 

60. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Murphy, K. Speed/accuracy trade-offs for 

modern convolutional object detectors. In Proceedings of the IEEE conference on computer vision and 

pattern recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7310–7311. 

61. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for 

Computer Vision. In Proceedings of the IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016, pp. 2818–2826. 

62. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 

June 2016; Volume 2016, pp. 770–778. 

63. Liu, S.; Deng, W. Very deep convolutional neural network based image classification using small training 

sample size. In Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition, ACPR 2015, Kuala 

Lumpur, Malaysia, 3–6 November 2015; pp. 730–734. 



Remote Sens. 2020, 12, 2136 22 of 22 

 

64. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object 

Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158, 

doi:10.1109/TPAMI.2015.2437384. 

65. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, 

Santiago, Chile, 7–13 December 2015. 

66. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region 

Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149, 

doi:10.1109/TPAMI.2016.2577031. 

67. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox 

Detector. In Computer Vision—ECCV 2016; Lecture Notes in Computer Science: Cham, Switzerland, 2015; 

doi:10.1007/978-3-319-46448-0_2. 

68. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes 

(VOC) challenge. Int. J. Comput. Vis. 2010, 88, 303–338, doi:10.1007/s11263-009-0275-4. 

69. Doersch, C.; Gupta, A.; Efros, A.A. Unsupervised visual representation learning by context prediction. In 

Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 

2015. 

70. Brust, C.A.; Käding, C.; Denzler, J. Active learning for deep object detection. In Proceedings of the 

VISIGRAPP 2019—14th International Joint Conference on Computer Vision, Imaging and Computer 

Graphics Theory and Applications, Prague, Czech, 25–27 February 2019; SciTePress: Setúbal, Portugal, 

2019; Volume 5, pp. 181–190. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


	Comparison of Object Detection and Patch-Based Classification Deep Learning Models on Mid- to Late-Season Weed Detection in UAV Imagery
	
	Authors

	tmp.1602692355.pdf.mVInW

