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Abstract

Insurance telematics is an emerging and exciting field. It combines the advancements
in GPS tracking, computational analytics, data processing, and machine learning into a
useful tool to help insurance companies make the best product for their consumers. This
is why National Indemnity looked to implement a telematics portion to their business
processes of underwriting insurance policies and sponsored a School of Computing Senior
Design project. In this report, we will first review existing solutions that been used to
solve problems and subproblems similar to that we are given in this project. We then
propose designs for the data pipeline and machine learning model that will optimal in
providing predictions on the risk level of drivers. National Indemnity will be able to use
this project to leverage predictions in order to optimize insurance rates to more accu-
rately account for risk among the insured.

Keywords: Computer Science, Machine Learning, Insurance, Telematics, Data Pro-
cessing, Data Analytics



1 Introduction

In the last twenty years there has been a fast development in the technology being used
for all types of businesses. This had led to ever-increasing competition in the market to
stay up to date with industry standards. The areas that have particularly revolutionized
by technology include data gathering, data processing, and data analysis. Recently,
machine learning had emerged as an important and popular data analysis method. A
broad goal of machine learning is to algorithmically discover hidden trends in datasets.
The improvements in machine learning models and computational efficiency saw machine
learning being used in a variety of contexts. Machine learning began to be applied to
the insurance industry with increasing frequency, including in this project for National
Indemnity Company. But for machine learning to be best applied, it must have quality
data. For this data, it needed to be gained through a source, usually through internal
resources and with third party APIs. The data in this form must then be taken and put
into some sort of data storage, so it can be used later. The data is then processed in
some manner to ready it for the machine learning model which needs uniform data. The
model would need to be trained and evaluated extensively to ensure that the model is
accurate. The goal is to have the model gain insight from the data and make it easier for
the internal insurance writers to write higher quality insurance.

1.1 Challenges for Machine Learning

Some problems for gaining relevant insights from insurance data is that it is constantly
updating. The data must always be gathered to keep up with the large quantity of data
in-flow. The data pipeline and machine learning model should be highly adaptable in
order to keep pace with changing data structure and new technologies. Failure to do
so would lead to performance diminishing as time goes on. As time goes on, new data
sources will become available. These would be beneficial to incorporate making it crucial
that the solution that is implemented is flexible to meet the needs of the highly dynamic
business environment.

2 Research

In order to understand what would work best for our system, we first looked at the
literature of similar projects to see how to best implement the highest quality system.
We will take sources covering a variety of topics from data ingestion, data storage, data
processing, and machine learning models. The majority of the sources used are studies
discussing these features in relation to the insurance industry. There are also textbooks
to give evidence to some of the more general features of a data processing and machine
learning project. The insurance industry provides its own unique issues and circumstances
for learning problems that are handled in a range of complex and unique solutions.

2.1 Data Ingestion

In machine learning, the data is the most crucial part. The data is generated by a variety
of sources and must be ingested into a cohesive system where it can be further processed
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and used later to train the model.
With insurance data, ingestion can be done in a variety of methods. These methods

are determined by what kind of data the pipeline will be handling. The data coming in
is normally through an outside source. The data is then received will be put into data
storage for later use.

Data will also be gathered from several different sources. For insurance, these include
but are not limited to telematics providers, mobile applications, other devices connected
to the internet, and internal data. For ingestion purposes, each source will likely have its
own format and security methods. Security risks on both sides of the connection should
be managed with passwords, API keys, and other various security measures. Each source
will need to be handled individually to ensure that the data is ingested properly.

Several variables should be taken into consideration and those are the data velocity,
size, frequency, and format. These can vary considerably from source to source and a data
ingestion plan should be able to handle these. The plan should also be robust enough to
handle the expected changes of these metrics. The system should be able handle these
metrics so that different formats, evolving and changing applications and data sources,
data compression, and time constraints do not bottleneck any part of the process [MP18].

One thing that must be considered is whether the data pipeline will be ingesting data
in streams or in batches. When the data is streamed in, it is processed as fast as it comes
in. This works best in cases when the application is time-sensitive, and the data must
arrive as soon as possible. In batch processing, the data is processed in larger volumes
at set points in time usually determined by set intervals such as a minute, hour, etc. It
requires fewer computing resources since it can be done offline. Batch processing works
best when it is important that all the volume of the data is processed without urgent
time constraints. Batch processing will also take additional intermediate storage in the
time in between batches [BAL+20].

For most applications, it would be too expensive to produce a data ingestion pipeline
completely from scratch. Many applications simply use a pre-built application that can
be used to speed up development. Tools include DataFactory, Kafka, Flume, NiFi,
Hadoop, and Sqoop among many others. This is much less time consuming than manu-
ally programming the ingestion and will usually fit the needs of the organization. Though
each respective application has its own advantages depending on the ingestion method
[MP18, ARGAT20].

2.2 Data Storage

Data in large quantities is stored by various means. To have an efficient system, the
data storage mechanism must be well optimized for the data and for what the data will
be used. These require careful tuning to build complex storage architectures. Common
structures include data warehouses and data lakes. Additionally, there are additional
architecture types such as NoSQL, SQL, and cloud storage.

Data warehouses are best practice when there is a large majority of structured data.
This would be data that all comes in the same forms such as CSV or another rigidly
structured data type. The data is typically stored in tables like formats and have strict
relationships with other tables. This allows for higher speeds but lower flexibility. Data
lakes are better when the data contains semi-structured or unstructured data. This would
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be for file types that have little to no structure like JSON or text documents. Data lakes
are best for these data types because they allow for more flexibility with data types.
Structured data is also allowed in data lakes but would have less efficient access. Data
lakes are best for handling raw and heterogeneous data [MPT20].

There is also the distinction between SQL and NoSQL data storage. NoSQL data
solutions come in several different data models. These are key-value stores, columnar
stores, document databases, and graph databases. Each of these data models is best
suited for certain types of data and the application that will be accessing them. In
general NoSQL uses fewer standard queries compared to relational databases seen with
SQL databases. This makes the databases less able to port to other service providers and
integrate with certain data types [MK19].

Cloud storage is another potential solution for data storage. Storing data on the cloud
allows for easy and scalable storage for a company’s data. It also allows efficient access
from multiple locations at once. One downside is potential latency as the data is being
accessed through an outside network. It is much more dependent on a larger external
network. Additionally, entrusting data on an outside network with another company can
be a security concern in some instances [KSF+20].

2.3 Data Processing

As data is first ingested into the system, it often comes in a raw format. Most machine
learning models will not be able to handle this raw data. The raw data typically has a
number of quality issues. Data can often be heterogeneous, inconsistent, and containing
lots of noise. These issues vary greatly between datasets, so the solutions have a wide
variance as well. There needs to be a number of steps in order to get this data ready for
training and testing for the machine learning model.

The information in this section was sourced from the Data Mining textbook Data
Mining: Know It All [Cea09].

The first step to transforming the data is to get it into the right format. This can
be done efficiently with a number of algorithms to get the data into a proper format
for the respective machine learning model that is going to be used. Incoming data is
classified as structured, semi-structured, and unstructured data. When incoming data is
unstructured, there is no standard method of converting this to model-usable data. This
must be done on a case-by-case basis such as parsing through text files for a specific input.
Machine learning models can often take in as input semi-structured data such as JSON
or CSV with little to no overhead. This can be done as a temporary solution, but data
performance is most efficient when it is converted into structured data that can go into a
data warehouse. If incoming data is already in a structured format, then the only need
would be to convert to a structured data type that best fits the specific implementation
of the machine learning model.

Most data coming from real world sources will have some missing or incomplete data.
This happens when there was some error in data collection, and it comes into the data
pipeline as a null value or a zero when it does not make sense for there to be. There are
several methods for handling these errors. The first and simplest method is to remove the
entire instance of data. This is done to remove any instances that could cause incorrect
results. This method can be problematic by removing too many instances since it has the
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potential to drastically reduce the dataset. The other method is to replace this missing
value with some sort of average value. This can be the mean, median, or mode of the
entire dataset or a subsection of it. This method is helpful because it will retain average
values for each field. One issue with this method is it could bias the results to favor the
more heavily favor average cases resulting in biased results. The last common method is
to copy the value of the instance above or below. This method will keep the randomness
but could bias the results since it could result in uncommon values being duplicated
more. Another method would be to remove the entire column. This method would be
good only in cases where there are many missing values in the field. In this scenario,
all other methods would result in biased results so it can be concluded that the column
cannot add any value to the model.

For a lot of insurance data, there will likely be several data types including strings
and integers. Machine learning models cannot process strings on their own so they must
be transformed into integers. The strings in these scenarios are usually representative of
certain categories. These categories can be encoded as numbers. The simplest method of
encoding these would be to assign an integer value to each category and give each string
value to its corresponding integer value. This is referred to as ordinal encoding. This
method retains the number of fields which helps keep down computation. One issue with
ordinal encoding is that machine learning models will treat the categories as numbers so
they will essentially be ranked. If the data type is not in a ranked order, this method
should not be used. The next method is one-hot encoding. In this method, each category
is given its own field and will be given a 0 or 1. This method provides better accuracy
when considering categorical fields. The issue is this could bloat computation with more
fields. Since only one of these new fields will have a nonzero value, there is going to be a
lot of excess computation, especially in cases with many fields. Another common method
used for encoding is called target encoding. This works by calculating the average value
of the target variable based on each category in the dataset. This average value is used
instead of the string. This method works well by not inflating the number of fields while
also adding information on how the categories relate to one another. The drawback of
this method is that the averaging could introduce extra bias into the dataset [sci].

For large data models, there is often extraneous and duplicate data. Keeping all this
data in can lead to a bloated and slow model. One key step to inputting data is to
reduce the size of the data. This will boost computation speed but could lead to less
accurate results. The key to reducing data is to find a method that extracts relevant
data while discarding extraneous data. There are three broad categories to reduce data
size. They are dimensionality reduction, numerosity reduction, and data compression.
Dimensionality reduction is done to reduce the number of fields input to the model to
reduce the computational burden of the model. The most common methods are Princi-
pal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Generalized
Discriminant Analysis (GDA). PCA uses orthogonal mapping to map a large dimension
dataset to a lower dimension set. It is good to be used for mapping relationships between
variables. The goal of PCA is maximize variance across the dataset. The next most
common method is LDA. It works by projecting a dataset onto a lower set of variables.
It is quite similar to PCA but has a goal of maximizing differences between classes. This
allows the ML model to more easily determine classes. In numerosity reduction, the data
is represented in smaller forms to reduce the volume of the data. Numerosity reduction
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methods are split into parametric and non-parametric methods. Parametric methods
replace the actual data with parameters using a model. Non-parametric methods do not
use parameters and include histograms and clustering. Data compression uses algorithms
to apply transformations to the data so that it takes less storage. Compression techniques
are also split into two categories. The first is referred to as lossless and is when the trans-
formations can be reversed with no information lost. It is referred to as lossy when the
data reduction loses some information in the process.

Another important step to preprocess large data is to transform it. This can be done
with methods such as smoothing, attribute construction, aggregation, and normalization.
Smoothing is done with a variety of methods to reduce noise in the data in order to better
estimate the trends of the data. Attribute construction is done to add new features are
added to the dataset to extract more information from the data. Normalization is the
process of converting the data to be within a smaller numerical range. This is done with
a variety of techniques to standardize the data so that it is weighted properly.

2.4 Machine Learning Models

There are several types of machine learning models that are prevalent in different areas
of industry and research. The next subsection gives a brief overview of some of the
most common machine learning models. The section following gives an analysis of model
performance in the insurance industry.

Model Overviews

The majority of the content in this section is sourced from the Introduction to Machine
Learning textbook by Ethem Alpaydin [Alp20].

One method is to use a clustering model to group the client data into groups. Clus-
tering is an unsupervised machine learning technique that does not need labeled data to
make inferences. After the clustering, there are a number of different models to be used.
There can be decision trees, neural networks, or others. The advantage of this method
is that the results are better in clusters. Some disadvantages are multiple distinct stages
that will take more computing power to train and run as well as harder to tune the
hyperparameters of multiple models. This method will best work for data that has more
distinctive clustered groups. This method is our proposed method of operation for our
data. We would like to identify different risk categories that can be grouped into clus-
ters. The extra method on top of that would be to predict a risk score or an estimated
insurance premium.

Clustering can be done in a multitude of ways too. K-means clustering is a method
that is tried and true but would take a lot of tweaking to get the right number of clusters
for optimal performance. Like any machine learning algorithm, there are hyperparameters
that need to be manually adjusted and we must use the literature and trial and error
methods in order to find what best works for our individual project. Fuzzy clustering is
a method that builds off traditional k-means clustering to have instances that can be in
multiple clusters.

Clustering can also be used as part of the preprocessing process to reduce or transform
the data. Clustering is an immensely helpful and versatile tool that can be used in a
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variety of use cases for machine learning.
After clustering or without clustering, there are numerous methods to use. They all

include some level of supervised learning. Some common methods are using decision
trees, random forests, boosting, support vector machines, neural networks, and k-nearest
neighbors.

One of the simplest machine learning models is the decision tree. This works by
training the model to divide a dataset in a hierarchical manner until a subset of the data
is uniform enough to make an accurate prediction. The simplicity of this model allows it
to be more easily understood. It is very efficient to train. The simplicity of decision trees
does have a drawback in that it can only handle relatively simple problems. It is often
prone to overfitting on training data and thus having inaccurate results when applied to
other data. There are a number of ways to reduce overfitting in individual decision trees
but those require more complex implementations.

Ensemble methods are powerful techniques for enhancing predictive performance by
combining multiple simpler models. One category of ensemble methods are random forest
models. These work by using many decision trees. They are able to harness the simplicity
of decision trees and scale it to larger and more complex data. The training set is split up
between the models so that each tree is trained on a different subset of the data. When
the model is run, it obtains a prediction from each individual tree. These predictions are
aggregated and averaged to give a single prediction. When splitting data between the
trees, the randomness is increased. This makes it so that the overall prediction avoids
overfitting and biased data.

Boosting, a popular ensemble method, sequentially trains a series of weak learners,
each focusing on the instances misclassified by its predecessors. Through this iterative
process, boosting aims to improve the overall predictive accuracy of the model. One
well-known ensemble method is the random forest algorithm. Random forest constructs
a multitude of decision trees during training, where each tree is trained on a random
subset of the data and features. The final prediction is then determined by aggregating
the predictions of all individual trees, typically through voting (for classification) or
averaging (for regression). Ensemble methods like boosting and random forest often
outperform individual models by leveraging the strengths of multiple base learners and
mitigating their weaknesses. They are robust to overfitting and noise. Due to this, they
can handle high-dimensional data effectively. However, ensemble methods may require
more computational resources and parameter tuning compared to single models. Despite
these considerations, boosting and random forest are widely used in practice due to
their versatility and ability to deliver high-quality predictions across various domains
and datasets.

Support Vector Machines (SVMs) are another method of machine learning that is
used extensively in the insurance industry. They work by mapping out the data points in
an n-dimensional space. The goal of classification is to find a plane that can separate the
points of classes with as much distance between the classes as possible. This can be done
in n-dimension, but more accurate results are procured in higher dimensions. Modern
SVM models work by applying kernels to transform the data to a higher dimensional
space so that the classes are more easily separable. SVMs can produce very accurate
results but can also be computationally intensive. They are particularly useful in cases
where the dataset has a high number of dimensions. SVMs also need added complexity
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when dealing with regression or classification problems with more than two classes.
Neural networks represent a class of machine learning models inspired by the structure

and function of biological neural networks in the human brain. These models consist of in-
terconnected layers of artificial neurons, organized in a hierarchical fashion. Each neuron
receives input signals, processes them through an activation function, and generates an
output signal that is passed to the neurons in the next layer. Neural networks are capable
of learning complex patterns and relationships in data through a process called training,
where the model adjusts its parameters iteratively to minimize the difference between
its predictions and the actual targets. This training process involves forward propaga-
tion to compute predictions, followed by backward propagation of errors to update the
model’s parameters using optimization algorithms like gradient descent. The most widely
used neural network architecture is the feedforward neural network, where information
flows in one direction, from input to output layers. Additionally, deep neural networks,
with multiple hidden layers, have gained popularity for their ability to learn intricate
features from high-dimensional data. Neural networks have demonstrated remarkable
success in various domains. However, they also have a high computational complexity
and consequentially need substantial amounts of computational resources. These models
also require large amounts of labeled training data to have accurate results. Results can
also drastically vary depending on many different hyperparameters and model architec-
ture. Despite these challenges, neural networks are a state-of-the-art technology that can
produce extremely accurate results.

One popular method for making predictions based on existing data is the k-nearest
neighbors (KNN) algorithm. KNN is a simple, yet effective supervised machine learning
technique used for classification and regression tasks. In KNN, each data point is classi-
fied based on the majority class of its k nearest neighbors in the feature space. The ”k”
in KNN represents the number of nearest neighbors considered for classification, and it
is a hyperparameter that needs to be specified by the user. The algorithm calculates the
distance between the query instance and all the training samples to find the k nearest
neighbors. Once the neighbors are identified, the algorithm assigns the most common
class label (for classification) or the average of the values (for regression) among these
neighbors to the query instance. One advantage of KNN is its simplicity and ease of im-
plementation. Additionally, KNN can be robust to noisy data and can handle non-linear
decision boundaries. One drawback is that this model may perform worse in cases of high
dimensionality, particularly when the number of features is large. Another issue is that
the choice of the value of ”k” and the distance metric used can significantly impact the
performance of the algorithm as do many hyperparameters in other models. Therefore,
careful parameter tuning is essential for optimal results. Despite its limitations, KNN
can be particularly useful for datasets with well-defined clusters or when the decision
boundary is complex and difficult to capture with other algorithms.

In the Insurance Industry

In a 2016 study, researchers sought to find the best model to predict the profitability of in-
suring customers. The researchers used a metric called the customer lifelong profitability
computation model to determine the profitability of customers. They used random forest,
a generalized boosting model, linear regression, a support vector machine, and a decision
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tree. Using the Root Mean Squared Error they measured performance. They found that
the order of performance from highest to lowest performing was random forest, gener-
alized boosting machine, support vector machine, decision tree, and linear regression.
[FJS16]

In a 2019 study, researchers used XGBoost and logistic regression to predict claims oc-
currences. The dataset used in the study was gleaned from telematics data that contained
information on driving behaviors. The dataset also contained information on what claims
the drivers had made. Upon obtaining results, they found that XGBoost performed far
better on accuracy, specificity, and sensitivity [PNGA19].

In a 2020 study, researchers tried Naive Bayes, neural network, J48 (a decision tree
algorithm), and XGBoost models to predict the likelihood that an insured driver will
submit a claim. They used online data from Kaggle. They used various preprocessing
techniques like imputation, discretization, encoding, and standardization before the data
was ran on the models. They found that XGBoost and J48 performed the best on the
given task. They had the highest accuracies and were the quickest to train [AEA20].

In a 2021 study, it was investigated which machine learning model would work best on
predicting claims insurance. The study uses data from Porto Seguro, a major Brazilian
insurance firm, aiming to develop a machine learning model for assessing driver risk.
Emphasizing the importance of model generalization for reliable predictions, the study
addresses binary classification scenarios where claims are categorized as either 1 (will file
a claim) or 0 (will not file a claim). By exploring various classification algorithms, the
research aims to identify the most effective approach for accurate claim prediction, aiding
insurance companies in risk assessment and policy customization. They looked at various
models including random forest, several decision tree algorithms, XGBoost, KNN, and
Linear Regression. They found random forest, C50 (a decision tree algorithm), XGBoost,
and J48 to be the best performing. They evaluated using accuracy, error rate, kappa, area
under the receiver operating characteristic curve (AUC), sensitivity, specificity, precision,
recall, and F1. Their RF model performed the best on every metric except for specificity.
C50 was the next best performing on most metrics. XGBoost and J48 consistently were
the next best models [HM21].

In a 2023 study, a team looked into forecasting auto insurance claims. The dataset
they use is from various sources in Athens, Greece over a period of 12 years. In addition
to claims data, they used multiple independent variables including weather data and car
sales to predict the mean motor insurance cost. They used support vector machines,
random forests, and XGBoost to predict this value. They determined the fifteen most
relevant variables and trained the models with only those fifteen and another time with all
the variables. They found the models performed best with only the fifteen most relevant
variables. They found that the random forest model with a limited depth performed the
best, with XGBoost achieving the second highest performance [PGPZ23].

3 Data Pipeline Implementation

This section will give a description of the implementation used in this project to ingest
and prepare the data for use in the machine learning model.
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3.1 Data Ingestion

This project required large amounts of data from third party providers. Agreements were
made with the companies and relevant credentials were given to be used in the project.
Since the data was coming from different providers, different data ingestion pipelines will
be used to get the data into data storage. For data storage, see section 3.2 for more
information on implementation.

There are generally two categories of data ingestion implementations. The first is to
stream in the data. This means that data is ingested in real time from the provider. This
is done when a project is time-sensitive and a delay in input would have a significant
negative impact on the project. The second category is to ingest the data in batches.
This method does not ingest data as soon as it is ready, rather it processes data at set
intervals.

This project was better suited to ingesting data in batches. The machine learning
model was not trained in real-time. It did not need the data as soon as possible. Addi-
tionally, the amount of data ingested from the providers would be more than what would
be cost-effective for a streaming method. Streaming adds a much higher degree of com-
plexity to the implementation. Batch ingestion allows for relatively standard processing
times, data size, and frequency. This allowed for an optimal ingestion method for this
project.

For this project, the data used had already been gathered without a set ingestion
scheme. It will be up to future projects to fully realize the implementation of the ingestion.

Since the project did not require any complex ingestion method, the common appli-
cations for data ingestion more than sufficed. Azure DataFactory was the best for this
project as it allowed for seamless integration to other Azure products that were used in
the later parts of the pipeline.

3.2 Data Storage

For companies like National Indemnity that are not in the tech industry, it is common to
use third parties for data storage as it is extremely expensive to establish their own servers
and operating systems. National Indemnity has the preference of Azure and Microsoft
services so that is the primary software lender the project used.

For insurance data for our machine learning system, a data lake was the best option.
The data consisted of text documents, tables, and third-party telematics data in JSON
format. The data was also coming into our system raw and unprocessed, so our system
needed to be able to handle the storage of all the stages of the data in the pipeline. A
data lake was the best option for our project because data lakes can handle the input
data is given, as well as handling the data in intermediary processing steps. The data
lake would also be able to store the testing results without being constrained by a strict
data format.

Since the project did not have fully integrated ingestion, the data storage was also
not fully implemented. This will also be done by future projects to ensure efficient use
of data within the project. The best option for this would be using Azure Data Lake
Storage as it would provide the necessary resources to build an efficient data lake that
can be integrated well with the data ingestion and other systems operated by National
Indemnity.
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3.3 Data Processing

One of the biggest issues with machine learning models is not the models themselves but
the data that they need to function. Most data collected in the real world will not fit
the format necessary to give the models quality results. The data in this project was
collected primarily by third party sources with telematics technology. This data is given
to the system in JSON format and will be stored in the data ingestion phase.

Once the raw data is captured, the data must be transformed into usable data that
can be used to train the ML model with. This involves the processes of imputing, text
processing, grouping, outlier detection, event monitoring, feature engineering, data split-
ting, normalization, dimensionality reduction, duplicates, noise reduction, and handling
time series data.

The data for the projects came from various sources so there are differences between
the formats. The first step of the processing was to get the data organized and in a
format that can be efficiently modified and analyzed in later steps. There are three main
types of data. There is summary trip data, telematics data, and claims data. All these
kinds of data may be separated based on the provider of the data. The files would be
read and joined using the Pandas library to create new JSON files with all the relevant
data. These files are saved to the database for later processing.

The next step was imputing data. There are several different methods of imputation.
There are a variety of methods of dealing with missing data. Many of the rows may have
missing values in one column due to the different service providers reporting distinct kinds
of data. The best course of action in this scenario was to drop these columns from the
data since filling in these values could result in extreme bias when there is the number of
rows is so significant. Some columns were crucial to later processing and the model. These
include fields like the vehicle identifier. This information could not be inferred without
inducing noise in the results, so these rows were dropped. For less crucial missing values,
the field was imputed by calculating the average between thirty neighboring rows. This
number was chosen to reduce randomness in the imputed value but also low enough to
still be able to compute it quickly.

Another action taken in the preprocessing stage was aggregation. This is the process
of taking a summary of a certain portion of the data. The project did this on the
telematics data. This data had a multitude of rows since it was collected in real time
with coordinates, speed, and direction among other fields at short intervals. There were
a number of these rows for each vehicle’s trip. We aggregated this data by finding several
different metrics that can be pulled from this telematics data. This process could also
be considered to be feature engineering. Speeding events were used from the telematics
data. This was done by comparing the speed to the speed limit. If a driver is over
the speed limit excessively or for an extended period of time, they will have reported
speeding events. Additionally, harsh acceleration and deceleration events were captured
and reported. This was to determine if a driver brakes hard or speeds up quickly. These
trends are pulled from this data so the model will have more to analyze. These features
were pulled from the telematics data to accurately depict the information described so
the model can better understand the trends in the data.

In addition to the features engineered from the telematics data, there was additional
feature engineering being done. Processing was done to determine the percentage of time
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a driver drives at night compared to during the day which would likely affect the average
risk since there would be lower visibility. Several other features were used by connecting
with open-source APIs. It was determined where a driver is likely to stop for extended
periods of time which is recorded as a garaging location. This garaging location is then
inputted into these APIs which will determine the amount of vehicular crime and natural
disasters in that area. These were used to give the model data that could be used to infer
risk.

After the features were created, the data then needed to be normalized. This involved
making the integer values fit in a set range of values. For this project, several columns
were normalized to a range of 0 and 1 on a linear scaling. This was done so the range of
values are standard across fields. This prevented bias between fields with different ranges
of values.

Several fields in the data were strings in their raw form. Outside of some natural
language processing models, these fields need to be converted into numerical data before
being inputted into the model. For several applicable fields, we directly converted the
field to an integer value that corresponds with the ranking of the string using ordinal
encoding. Since our dataset did not have many non-numerical fields that could not be
directly converted to a single integer, we found it best to use one-hot encoding. This
preserved the semantic value of the field. Due to a lower number of fields that this was
done to and a small number of options per field, the computational slowdown due to
increased dimensions is limited.

Once all of the steps of the preprocessing are finished, the data is ready to be used in
the model.

4 Machine Learning Model Implementation

Machine learning is a broad field with a variety of different models to choose from. Each
model has its own unique benefits and challenges. Every problem in the real world
contains its own unique circumstances that must be carefully considered. The model
must be chosen to best fit the problem. Additionally, there is a multitude of further
adaptations and hyperparameters to choose from that make the decision extremely hard
to get right.

The goal of this project was to determine the risk of a given driver. The dataset used in
the project contained speed, direction, time, and other telematics data. After processing,
the data is ready to be fed to a model. Since the project was looking to predict a data
point, that narrows down the models to supervised models. Purely unsupervised models
like clustering were ruled out. The most commonly used models for similar problems are
decision trees, random forests, boosting, support vector machines, and neural networks.

Though a purely clustering model would not be useful for the current project, using
a clustering model and then a supervised model on top would be possible. This option
would first group the dataset into related groups. Then a supervised model could be
trained on each of the clusters individually, providing more tailored results on each cluster.
The issues with this approach would be that it could result in overfitting since each model
instance would only be trained on a small subsection of the data. This method could
also be computationally expensive as well as disjointed by breaking up training into
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unsupervised and supervised on multiple clusters. This approach was deemed to be not
optimal for this project.

Support Vector Machines are efficient models that can be used in a variety of appli-
cations in the insurance industry. They are typically highly accurate, especially in high
dimensional spaces. The dataset used in this project had a number of dimensions but
does not have such a high amount that support vector machines would be able to provide
a relative advantage to other models. Support vector machines can also be expensive,
especially on multiclass problems. The project will predict a risk score which would need
additional complexity in a support vector machine. A support vector machine would not
be the best choice for a problem like this.

Neural networks are good for the project because they are typically highly accurate.
The issues with them are that they are typically costly in terms of time and energy. The
project does not need to train the model frequently but keeping cost low is always a high
priority. Additionally, neural networks are hard to understand. They work as a black
box that takes in inputs and does a number of intermediary steps before outputting a
prediction. While the input and output layers are well defined and easy to understand,
everything that happens in between is largely incomprehensible for a human. This means
neural networks are hard to fine tune if the model is not performing up to standards.
This lack of understanding also poses a problem to the business aspect since it is hard to
explain to non-technical users what the model is doing.

Decision trees have the advantage of being simple and easy to train. The simplicity
of these models makes them impractical for a high dimensional dataset and complex
problem like the one in this project.

Though singular decision trees are impractical for use in this project, the random forest
model has been used in many different applications in the insurance industry. Several
models like J48 and C50 are the most common. They work by producing multiple decision
trees and training each one on subsets of the overall dataset. This provides randomness
across the models which reduces overfitting and increases accuracy. Random forest models
provide some of the highest accuracies in many machine learning studies in the insurance
sector. Random forests maintain the simplicity and efficiency of training individual trees.
This makes random forests one of the most adaptable and widespread models in use.
Training a random forest model can take a long time unless it can take advantage of
parallel computing resources.

Gradient boosting models are some of the most commonly used methods in the insur-
ance industry. XGBoost stands out as the most popular among these models. It was used
in many recent studies involving similar problems to the one in this project. XGBoost
and other ensemble methods were usually at or near the top in terms of performance. It
is highly accurate, and due to the nature of its training, is faster than most other models.
The nature of its training also allows it to be more easily understood. It can be more
finely tuned to suit the needs of the project by determining what parts of the training to
focus on. The combination of the quickness and versatility of this model allows potential
non-technical members of the company to be able to use the model to suit their needs
based on updating driver habits, and changes in the business.

We found that gradient boosting and random forests to be the best choices to develop
a model on. In studies that covered machine learning models on similar issues as in this
project, the top performing models were these two models. These performed the best
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in most categories measuring accuracy. They were the best fit to handle the complex
dataset of this project while also providing efficient training times.

We chose XGBoost model because it can provide the fastest training times using
boosting techniques that allow it to better learn the trends in the data. The project will
also be modified frequently in the future by non-technical users at the company, which
made interpretability to be a principal factor in our decision making. We found that
XGBoost would allow users the most intuitive way of adjusting parameters to train the
model how they best see fit. It would allow them to specify what parts of the dataset
the model should focus its training efforts on so that the users who are experts in their
respective field can apply their knowledge without dealing with complex machine learning
concepts as might be the case with tuning other models.

The XGBoost model that has been created takes in the processed data from previous
steps and trains on various features to be able to get the best results. It can accurately
predict a driver risk score. The model can be tuned so that it focuses more on features
like location, speeding, or braking that would need to be changed depending on what the
user finds valuable given the context of the business and other environmental factors.

The project consisted of a graphical user interface that could be used by those at
National Indemnity to train the model. The interface allowed the user to choose the data
that the model will train on. Additionally, the user could change the parameters to the
model to finely tune the model to the specific dataset of the user. The flexibility and
interpretability of XGBoost allows the interface to take advantage of this to make it so
that non-technical users can adequately harness the power of the model.

5 Conclusion

In this paper, we outlined the implementation of an effective data pipeline and machine
learning model for assessing driver risk in the auto insurance industry. Through efficient
data ingestion, storage, and processing stages, we ensured that raw data from a multitude
of sources was able to be transformed into a usable format for training our machine
learning model.

We prepared a rich dataset capable of feeding into our machine learning model effec-
tively. To do this we utilized a data lake for storage and employed processing techniques
including imputation, aggregation, feature engineering, and normalization,

In selecting a suitable machine learning model, we evaluated various options includ-
ing clustering, support vector machines, neural networks, gradient boosting machines,
decision trees, and random forests. Ultimately, we determined that gradient boosting
and random forests, with XGBoost as our preferred implementation, offered the optimal
combination of accuracy, efficiency, and interpretability for our project’s needs.

The XGBoost model developed in this study not only demonstrates accuracy in assess-
ing driver risk but also provides a user-friendly interface for non-technical stakeholders
to fine-tune parameters based on their domain expertise. This adaptability ensures that
the model remains relevant and effective amid evolving business requirements and envi-
ronmental factors for the company.

By integrating robust data pipeline implementation with a sophisticated machine
learning model, this project lays a foundation for enhancing risk assessment strategies
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in the insurance industry, contributing to improved decision-making and operational ef-
ficiency within the field.
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