














The midgut fungal community was more stable than
the bacterial community and contained a greater per-
centage of OTUs that were detected in all beetle gut
microbiota sampled in this study. For example, gut com-
munities were consistently dominated by ITS amplicons
assigned to the order Hypocreales (Figure 4). Seven OTUs,
including six assigned to the genus Fusarium and a single
OTU assigned to the genus Pichia, were associated with
all A. glabripennis larval midguts sampled in this study.
Fungi belonging to the Fusarium solani species complex 6
(FSSC6) have been consistently detected in the midgut of
several populations of A. glabripennis sampled for sequen-
cing [33]. Further, one of the OTUs detected in this ana-
lysis was 98% similar at the nucleotide sequence level to a
Fusarium solani OTU detected previously from beetles
sampled from the PSU A. glabripennis colony [33], indi-
cating persistent maintenance of these OTUs over mul-
tiple generations, likely through vertical transmission.
Further study is necessary to elucidate whether the con-
sistent association of F. solani with A. glabripennis signi-
fies the importance of this fungus to the beetle’s fitness
and digestive physiology. Phylogenetic analysis under
maximum likelihood inference illustrates that this OTU is
more closely related to an isolate detected in the PSU col-
ony than Fusarium-derived OTUs isolated from A. glabri-
pennis midguts from the Worcester, MA population
(Figure 5) [33]. Six OTUs with highest scoring BLASTN
alignments to Fusarium oxysporum were also detected

through this analysis, which was detected previously in the
A. glabripennis midgut (unpublished data).

Assembly and annotation metrics
Over 65% of the Illumina paired end reads resulting
from sequencing the midgut contents library and over
95% of the reads from the intact midgut library passed
quality filtering. Using Trinity, 161,177 transcript iso-
forms from 97,506 genes ranging in length from 200 nt
to 31,393 nt (N50 contig length: 684 nt) were assembled
from the midgut contents library, while 61,812 transcript
isoforms from 45,418 genes ranging in length from
200 nt to 26,118 nt (N50 contig length: 592) were as-
sembled from the intact midgut library (Table 3).
Of the assembled transcripts, 7,952 (2.7 Mb) and 3,167

(1.42 Mb) were identified as microbial from the midgut
contents and intact midgut libraries, respectively, and
had highest scoring BLASTX alignments to microbial pro-
tein coding genes present in the NCBI non-redundant
protein database at an e-value of 1e-5 or lower, a mini-
mum alignment length of 15 amino acids, and at least a
60% amino acid similarity (Table 4). Relative expression
levels of microbial-derived functional gene categories that
are relevant for survival in woody tissue are presented in
Table 5. Transcripts in the midgut library were assigned to
six bacterial and eight fungal orders, while transcripts in
the midgut contents library were assigned to 14 bacterial
and five fungal orders (Figure 6). In both libraries,

Table 2 Ecological indices for ITS fungal communities sampled from the midguts of each of four individual third instar
larvae of A. glabripennis feeding in the heartwood of sugar maple (Acer saccharum)

Sample Number OTUs Chao Chao 95% CI Ace Ace 95% CI Shannon Shannon 95% CI Simpson Simpson 95% CI

1 20 23 20–37 25 21–45 1.74 1.70–1.79 0.22 0.21–0.23

2 20 20 20–26 22 20–33 2.52 2.44–2.60 0.10 0.09–0.11

3 28 43 32–92 83 57–134 1.89 1.85–1.94 0.22 0.21–0.23

4 15 21 16–53 22 17–39 1.67 1.52–1.82 0.33 0.28–0.39

Figure 3 Rarefaction analysis of ITS fungal amplicons sequenced from the midguts of four individual third instar larvae of A. glabripennis.
Rarefaction curves appeared to reach saturation, indicating sufficient sampling to detect the majority of the fungal community diversity, although
deeper sampling of samples 1 and 3 revealed the detection of 6 and 12 additional OTUs, respectively (dotted line).
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Saccharomycetales was the dominant fungal order, while
the bacterial orders Enterobacteriales and Lactobacillales
were dominant in the midgut contents and intact midgut
libraries, respectively (Additional file 2: Figure S1).

Bacterial 16S and fungal ITS OTUs detected in
metatranscriptome data
Over 500 transcripts were classified as SSU (small ribo-
somal subunit) or LSU (large ribosomal subunit) rRNAs
(Additional file 3: Table S2). The expression of several
persistent OTUs in all beetle midgut communities sam-
pled for sequencing was confirmed. For example, rRNAs
with highest scoring BLASTN alignments to eight
shared OTUs were detected and included OTUs classi-
fied to the genera Novosphingobium, Propionibacterium,
Pseudomonas, Pediococcus, and Staphylococcus; the fam-
ilies Burkholderiaceae and Enterobacteriaceae (2 OTUs);
and the order Actinomycetales. However, the majority of
the identified rRNAs were from OTUs detected in asso-
ciation with the midgut communities of just one or two
of the larvae sampled (Table 6). Interestingly, the major-
ity of the 16S rRNA transcripts constructed from the
Illumina reads did not have significant BLASTN
matches to OTUs documented through community pro-
filing. In some cases, the transcripts originated from a
different region of the 16S rRNA locus than the region
targeted for amplicon sequencing and therefore would
not be expected to align with the OTUs detected in the
amplicon analysis. However, in many cases, the tran-
scripts overlapped the region targeted for amplicon ana-
lysis, but had low sequence identities to the 16S OTUs.
This could be a reflection of the dynamic nature of the
midgut community, as has been observed for the gut
communities of other xylophagous insects [36], or it
could be an artifact of feeding on a non-sterile food
source where DNA from microbes ingested during feed-
ing is more abundant than DNA from microbes that are

truly residents of the midgut. Consistent with the utility
of targeting expressed rRNAs for symbiont community
analysis, the taxonomic classification of the rRNAs that
were assembled from the transcriptome libraries most
strongly resembled the taxonomic assignments obtained
from MEGAN analysis of the microbial protein coding
genes.
Although fungal ITS sequences were not numerous in

the metatranscriptome data (the ITS region is generally
excised from mature rRNAs) they can be present in pre-
ribosomal RNAs. Five complete ITS transcripts were
identified in both the intact midgut and midgut con-
tents. Two of these transcripts had 100% nucleotide
identity to persistent OTUs detected in all midgut com-
munities and both were classified to the genus Pichia.
While transcriptional activities of other fungal OTUs
could not be confirmed, analysis of SSUs and LSUs de-
tected in the metatranscriptome data confirmed that
many of the persistent fungal OTUs identified through
ITS community profiling were transcriptionally active
(e.g., Fusarium and Candida).

Metabolic capacity of the A. glabripennis midgut
microbiome
The midgut microbiome comprised a much broader rep-
ertoire of genes with predicted involvement in carbohy-
drate digestion and sugar assimilation relative to the A.
glabripennis midgut transcriptome (Additional file 4:
Table S3). Many of these microbial genes could poten-
tially complement A. glabripennis’ existing repertiore of
digestive and nutrient assimilating capacities. This cap-
acity was noted particularly with regard to utilization of
hemicellulosic sugars. For example, insect-derived xyla-
nases, which are hypothesized to release xylose sugars
from the xylan chains that predominantly comprise
hemicellulose found in angiospermous trees, have been
documented in the A. glabripennis midgut through both

Figure 4 Abundance of fungal orders detected in ITS amplicon data sampled from the midguts of four individual third instar larvae of
A. glabripennis. Fungal reads were exclusively classified to phylum Ascomycota. At the ordinal level, the communities were dominated by
Hypocreales and Saccharomycetales.
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transcriptome and zymogram analyses [31,37]. However,
pathways for xylose sugar metabolism and utilization
were not detected in the A. glabripennis transcriptome
[31] and have not been identified in any other insect.
The microbial community of A. glabripennis actively
expressed genes with predicted roles in the assimilation
and metabolism of xylose sugars, which could be used
for energy production or as substrates for various bio-
synthetic pathways (i.e., carbon skeletons of amino acids
or fatty acids). One of the most striking discoveries was
the expression of xylose sugar utilization pathways by
the fungal microbiota via the oxido-reductase pathway,
which is a pathway used to convert xylose to D-xylulose-
5-phosphate that can then enter the pentose phosphate

pathway (Figure 7). In addition, we found lactic acid
bacterial-derived transcripts (e.g. Pediococcus) from the
xylose isomerase pathway that are capable of converting
xylose directly into D-xylulose. It has been previously
hypothesized that xylose-fermenting yeasts commonly
found in the guts of cerambycid beetles play roles in
processing xylose [38,39], converting it into metabolites
that could be used by the host or the microbiota in vari-
ous biosynthetic processes. The expression of yeast-
derived oxido-reductase and bacterial-derived xylose
isomerase pathways in A. glabripennis supports a role for
the gut microbiota in xylose sugar utilization. Whether
these microbes are simply exploiting xylose sugars re-
leased from hemicellulose by beetle-derived xylanases or

Figure 5 Maximum likelihood analysis of fungal ITS amplicon sequences taxonomically assigned to Fusarium solani that were detected
in A. glabripennis larval midguts. The star designates the F. solani derived OTU that was detected in the current study and scale bars represent
the number of substitutions per site. PSU: F. solani isolates cultivated from A. glabripennis larvae reared at Penn State University; MA: represents
F. solani cultivated from A. glabripennis larvae collected from a field site in Worcester, MA; NYC represents F. solani isolated from A. glabripennis
larvae collected from a field site in Brooklyn, NY. MP designates the F. solani mating population number.

Scully et al. BMC Genomics 2014, 15:1096 Page 7 of 21
http://www.biomedcentral.com/1471-2164/15/1096



are actually working “in cooperation” with A. glabripennis
to digest hemicellulose and utilize its metabolites is not
known.
Fungal transcripts predicted to encode glycoside

hydrolase family 28 (GH 28) polygalacturonases and GH
5 cellulases were also expressed in the A. glabripennis
midgut, indicating that the fungal community is capable
of degrading cellulose and other plant polysaccharides in
woody tissue (e.g., pectin). Fungal and bacterial transcripts
predicted to encode ABC transporters, β-glucosidases, β-
xylosidases, major facilitator superfamily transporters, and
phosphotransferase systems, were detected, suggesting
that microbes are also capable of assimilating and me-
tabolizing sugars released from secondary cell wall poly-
saccharides. Of particular interest are the transcripts
predicted to encode components of phosphotransferase
systems since many of these can internalize and metabo-
lize cellobiose, xylose, mannose, galactose, and other
sugars released from woody tissue by beetle-derived cellu-
lases and hemicellulases. While A. glabripennis can en-
dogenously metabolize and use many of the hexose sugar
substrates for energy production, members of the micro-
biota expressed transcripts that could ferment both 5- and
6- carbon sugars, allowing hexoses and pentoses liberated
from the plant cell wall to be converted into substrates

that can be used in various anabolic processes, i.e., amino
acid or fatty acid biosynthesis.
Based on our data, the gut microbial community likely

benefits A. glabripennis by i) increasing it’s capacity to
utilize 5-carbon sugars and ii) by providing biosynthetic
pathways for essential biosynthetic precursors (Figure 8).
For example, while the beetle can metabolize glucose
and fructose into pyruvate, the gut microbiota can con-
vert many other sugar substrates, including pentose
sugars found in hemicellulose from angiospermous trees
into this key metabolic intermediate. This is a potential
mechanism for the conversion of glucose and xylose re-
leased from plant cell walls by beetle digestive enzymes
into essential nutrients by the gut community. Microbial
pathways for the conversion of pyruvate into essential
branched chain amino acids (valine/leucine/isoleucine)
and homocitrate, which is a valuable substrate for lysine
biosynthesis (another essential amino acid), were ex-
pressed in the midgut (Figure 9). Although additional
experimental evidence is needed to validate the micro-
bial conversion of wood sugars into essential nutrients,
biochemical evidence using 13C labeled carbon suggests
a microbial origin of the carbon backbones of several es-
sential amino acids in the A. glabripennis midgut
(Ayayee, in review).
Aside from its potential utility in the biosynthesis of

essential and nonessential amino acids, pyruvate can also
be used to produce substrates for fatty acid biosynthesis.
For example, the gut microbiota can synthesize acetyl
CoA and malonyl CoA from pyruvate, which are re-
quired for biosynthesis of fatty acids and are scarce in
woody tissue, via a transcriptionally active pentose phos-
phate pathway capable of converting five-carbon sugars
(e.g. xylose and arabinose) into intermediates that can be
used in biosynthesis of essential aromatic amino acids by
the shikimate pathway. Full pathways for phenylalanine
biosynthesis and partial pathways for histidine acid bio-
synthesis were detected in the microbial-derived tran-
scripts. Although we did not find pathways in the gut

Table 3 Trinity assembly metrics for A. glabripennis transcripts obtained separately from midgut contents and from
intact midgut transcriptome libraries (see Methods for more information)

Source Number of
transcripts

Minimum
transcript
length (nt)

N80 transcript
length (nt)

N50 transcript
length (nt)

N20 transcript
length (nt)

Maximum
transcript
length (nt)

Total length
of assembled
transcripts (nt)

Midgut contents 161,117 200 323 684 1,945 31,383 90.09 Mb

Midgut contents: Microbial 7,952 200 245 334 546 5,049 2.69 Mb

Midgut contents: Bacterial 3,084 200 247 363 653 5,049 1.12 Mb

Midgut contents: Fungal 4,868 200 242 316 484 2,259 1.58 Mb

Intact midgut 61,812 200 272 592 1,937 26,118 30.6 Mb

Intact midgut: Microbial 3,167 200 266 492 1,271 14,152 1.42 Mb

Intact midgut: Bacterial 2,154 200 294 548 1,445 14,152 1.05 Mb

Intact midgut: Fungal 1,013 200 234 353 799 3,643 0.36 Mb

Table 4 Annotation statistics for microbial transcripts
detected in the A. glabripennis midgut contents and
intact midgut libraries

Midgut
contents

Intact
midgut

Number of rRNAs 182 237

Number of Transcripts with BLASTX Alignments 7,952 3,167

Number of Transcripts with Gene Ontology
Assignments

1,083 1,225

Number of Transcripts with KEGG Assignments 705 1,103

Number of Transcripts with Pfam Assignments 1,686 2,766

Number of Transcripts with KOG/COG assignments 1,554 2,328
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Table 5 Number of transcripts per million mapped reads (TPM) for bacterial and fungal transcripts assembled from the
midgut contents and intact midgut libraries

Class COG assignment TPM midgut contents TPM intact midgut

Actinobacteria Amino acid transport and metabolism 0 0.72

Carbohydrate transport and metabolism 7.43 2.04

Cell motility and secretion 0 1.08

Coenzyme metabolism 0 1.28

Energy production and conversion 0 2.24

Function unknown 0 2.67

Lipid metabolism 0 1.08

Nucleotide transport and metabolism 0 2.01

Alphaproteobacteria Amino acid transport and metabolism 3.28 0

Cell envelope biogenesis, outer membrane 6.47 0

Coenzyme metabolism 3.03 0

Energy production and conversion 5.04 0

General function prediction only 10.17 0

Bacilli Amino acid transport and metabolism 0 326.88

Carbohydrate transport and metabolism 558.13 492.9

Cell envelope biogenesis, outer membrane 1585.16 334.75

Cell motility and secretion 1569.88 41.89

Coenzyme metabolism 0 157

Energy production and conversion 0 232.11

General function prediction only 30.88 568.52

Inorganic ion transport and metabolism 0 257.6

Lipid metabolism 0 95.11

Nucleotide transport and metabolism 0 214.12

Secondary metabolites biosynthesis, transport, and catabolism 0 86.14

Bacteroidetes Energy production and conversion 1.51 0

Function unknown 3.47 0

Betaproteobacteria Coenzyme metabolism 1.94 0

Cell envelope biogenesis, outer membrane 21.71 0

Clostridia Function unknown 342.46 0

Gammaproteobacteria Amino acid transport and metabolism 105.84 1.11

Carbohydrate transport and metabolism 147.84 0.33

Cell envelope biogenesis, outer membrane 304.28 1.96

Cell motility and secretion 111.13 0

Coenzyme metabolism 49.54 0

Defense mechanisms 20.49 1.36

Energy production and conversion 168.14 1.17

Function unknown 189.35 0.24

General function prediction only 187.36 1.94

Inorganic ion transport and metabolism 185.12 0

Lipid metabolism 15.69 0.23

Nucleotide transport and metabolism 81.51 0
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involved in biosynthesis of tryptophan in either the
metatranscriptome or the larval transcriptome, A. glabri-
pennis produces transcripts predicted to encode en-
zymes necessary to convert phenylalanine to tyrosine.
The microbial origin several of essential aromatic and
branched chain amino acids in A. glabripennis was vali-
dated by 15 N enrichment experiments [12]. Although the
beetle is capable of synthesizing several non-essential
amino acids from pyruvate [31], the microbiota also
expressed components of pathways for the synthesis of
several non-essential amino acids, such as asparagine, glu-
tamate, glutamine, and arginine. The synthesis of non-
essential amino acids by gut microbes may contribute to
nitrogen conservation in A. glabripennis.
The gut microbiota can also make contributions to the

nitrogen economy in the midgut by recycling nitrogen-
ous waste products produced either by the beetle or gut
microbes, which is consistent with previous work show-
ing that nitrogen recycled from urea is reincorporated

into both essential and non-essential amino acids in lar-
val A. glabripennis [12]. However, alternate pathways for
recycling nitrogenous waste products were also detected.
For example, transcripts predicted to encode NAD-specific
glutamate dehydrogenases, taurine dehydrogenases, and
glutamine synthetases were expressed by various members
of the gut community. Glutamate dehydrogenase typically
converts glutamate to α-ketogluturate for excretion; how-
ever, it can also catalyze the reverse reaction under
ammonia-rich conditions, recycling α-ketoglutarate waste
products back into glutamate. Glutamine synthetases can
also have integral roles in nitrogen economy by incorpor-
ating ammonia liberated from amino acid and nucleic acid
deamination reactions back into glutamine. Taurine dioxy-
genases may also contribute to nitrogen economy in the
gut because these enzymes can actively break down the or-
ganic acid taurine, which is one of the most prominent
free organic acids in both insect hemolymph and tissues
[40]. Taurine dioxygenases catalyze the conversion of

Table 5 Number of transcripts per million mapped reads (TPM) for bacterial and fungal transcripts assembled from the
midgut contents and intact midgut libraries (Continued)

Saccharomycetes Amino acid transport and metabolism 172.97 0

Carbohydrate transport and metabolism 106.88 0.33

Cell motility 5.21 0

Cell wall/membrane/envelope biogenesis 107.45 0

Chromatin structure and dynamics 32.59 0

Coenzyme transport and metabolism 17.03 0

Defense mechanisms 98.79 0

Energy production and conversion 64.95 0

Extracellular structures 93.48 0

Function unknown 156.44 0

General function prediction only 348.77 0

Inorganic ion transport and metabolism 193.37 0

Lipid transport and metabolism 85.25 0

Nucleotide transport and metabolism 34.03 0.96

Sordariomycetes Amino acid transport and metabolism 10.10 0

Carbohydrate transport and metabolism 7.40 0

Cell wall/membrane/envelope biogenesis 1.47 0

Chromatin structure and dynamics 5.63 0

Coenzyme transport and metabolism 1.02 0

Energy production and conversion 8.14 0

Function unknown 0.56 2.26

General function prediction only 14.59 0

Inorganic ion transport and metabolism 8.62 0

Lipid transport and metabolism 1.47 0

Nucleotide transport and metabolism 3.35 0

Secondary metabolites biosynthesis, transport and catabolism 1.65 0

Class-level taxonomic assignments and COG (Clusters of Orthologous Genes) functional assignments are indicated.
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taurine to sulfite, aminoacetaldehyde, carbon dioxide, and
succinate, allowing it to be used as a source of both nitro-
gen and sulfur. Finally, transcripts containing xanthine
uracil permease domains and phosphoribosyltransferase
domains were found, which participate in the purine sal-
vage pathway and signify a potential microbial role for the
recycling of purine nucleotides.

Potential opportunities for nutrient exchange between
microbes and A. glabripennis
We found numerous opportunities for nutrient and
metabolite exchange between members of the midgut
microbiota and A. glabripennis, which could contribute
to niche expansion by A. glabripennis, represented by its
ability to colonize and thrive in an unusually broad
range of healthy host trees. For example, potential path-
way complementarity was noted with regard to carbohy-
drate digestion. A. glabripennis produces a large number
of transcripts predicted to break down plant cell wall
carbohydrates [31,37], while in contrast, the gut commu-
nity expressed numerous transcripts predicted to assimi-
late and ferment wood sugars (i.e., glucose and xylose).
A. glabripennis also has the capacity to assimilate and
use fermentation products via a diverse repertoire of
insect-derived alcohol dehydrogenases [31].
Complementarity was also noted with regard to amino

acid and vitamin metabolism. The microbiota expressed
full pathways for the biosynthesis of branched chain and
aromatic amino acids, while the beetle expressed full
pathways for the decomposition of branched-chain amino

acids, aromatic amino acids, and lysine [31], thus provid-
ing a direct example of how A. glabripennnis can directly
catabolize nutrients synthesized by the gut microbial com-
munity. While the gut microbiota express transcripts in-
volved in biosynthesis of methionine and vitamins, A.
glabripennis itself expressed transcripts with predicted
roles in recycling these essential nutrients. Further, the
microbiome may augment production of non-essential
amino acids, which may be important for nitrogen conser-
vation in the nutrient poor environment of wood. For ex-
ample, although A. glabripennis can synthesize cysteine,
[31] the low abundance of sulfur in woody tissues may
make cysteine a conditionally essential amino acid in this
system. Therefore, the role of recycled sulfur obtained

Table 6 Taxonomic identity of 16S OTUs supported by
rRNAs assembled from metatranscriptome data for intact
midgut and midgut contents

Classification to lowest
possible taxonomic rank

Percent
nucleotide
identity

Number of
assembled
rRNAs

Persistant?

Acinetobacter 97 1 No

Actinomyces 100 1 No

Actinomycetales 95 2 No

Actinomycetales 96 2 Yes

Actinomycetales 96 1 No

Bacteria 96 1 No

Burkholderiaceae 97 1 Yes

Caryophanon 100 1 No

Cellovibrio 98 2 No

Curtobacterium 97 1 No

Enterobacteriaceae 99 2 No

Enterobacteriaceae 97 3 No

Enterobacteriaceae 96 4 No

Enterobacteriaceae 98 1 Yes

Enterobacteriaceae 95 1 Yes

Novosphingobium 96 1 Yes

Pasteurellaceae 95 1 No

Pediococcus 95 1 Yes

Propionibacterium 99 1 Yes

Pseudomonadaceae 100 1 No

Pseudomonadaceae 97 1 No

Pseudomonas 97 1 Yes

Sphingobacterium 98 1 No

Staphylococcus 99 1 Yes

Streptococcus 98 1 No

Ribosomal RNAs assembled from the intact midgut and midgut contents
metatranscriptome data were compared to the OTUs detected in the 16S
amplicon data using BLASTN to determine which OTUs were transcriptionally
active in the midgut. 16S OTUs were considered persistant if they were
detected in ≥ 3 A. glabripennis midgut communities in the current study.

Figure 6 Bacterial and fungal classes detected in A. glabripennis
larval intact midgut and midgut contents metatranscriptome
assemblies through MEGAN analysis of putative protein coding
genes.
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from taurine or other insect-derived compounds could
also be critical for the synthesis of cysteine, methionine,
and other sulfur-containing essential nutrients. The A.
glabripennis transcriptome contains a larger repertoire of
expressed peptidases and amino acid ligases relative to
transcriptomes compiled from the guts of other phytopha-
gous insects [31]. While the source of nitrogen used by
larvae as they feed in the high C:N heartwood of their host
trees is uncertain, this analysis suggests that the micro-
biota can provide a suitable store of amino acids and pro-
teins that could be assimilated by A. glabripennis and its
gut microbes.

Potential contributions of microbial OTUs to A. glabripennis
digestive physiology
In all beetle gut communities in this study we found
rRNAs from several bacterial and fungal taxa that were
taxonomically classified to the genera Fusarium, Pichia,
and Pediococcus. Although these taxa all expressed
transcripts that could serve key roles in the digestive
and nutritional physiology of A. glabripennis, some of
the potential contributions to metabolism were parti-
tioned differently among taxa. For example, all three
taxa expressed genes with predicted involvement in
plant cell wall digestion (i.e. cellulases, β-glucosidases,
β-xylosidases), nitrogen uptake and recycling, and de-
toxification. Transcripts with predicted involvement in
xylose utilization were taxonomically assigned to Pedio-
coccus and Pichia. However, several functions were dif-
ferentially partitioned among these taxa. For example,
the lactic acid bacterium Pediococcus had predicted
roles in xylose utilization, sugar fermentation, aromatic
amino acid biosynthesis, and vitamin biosynthesis, while
genes involved in sterol biosynthesis were exclusively
assigned to the fungal taxa.

Figure 7 Putative pathways for xylose utilization based on
BLASTX annotation of transcripts sampled from the midgut
microbiota of larval A. glabripennis. Xylose can be shuttled into
the pentose phosphate pathway by two different routes detected in
the metatranscriptome: the oxoreductive pathway and the
isomerase pathway. Transcripts originating from the oxoreductive
pathway were from yeasts while transcripts originating from the
isomerase pathway were from lactic acid bacteria. Both pathways
lead to the production of xylulose-5-phosphate, which is shuttled
into the pentose phosphate pathway and is used to produce
pyruvate and shikimate. These compounds serve as key intermediates
in the synthesis of essential branched chain amino acids and essential
aromatic amino acids, demonstrating how these wood sugars can be
used by the gut microbiota to produce essential nutrients that are
otherwise lacking from the A. glabripennis diet.

Figure 8 Pathways for pyruvate utilization detected in the A. glabripennis larval midgut microbiome. The gut microbial community has
an expanded capacity to synthesize pyruvate from pentose sugars found in hemicellulose and convert pyruvate to essential branched-chain
amino acids and homocitrate, an essential component of the lysine biosynthetic pathway.
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Potential nutrition provisioning roles of Fusarium solani
OTUs taxonomically classified to the genus Fusarium
are consistently found in the A. glabripennis larval mid-
gut [20,33] and are capable of secreting numerous plant
cell wall degrading enzymes, detoxification enzymes, and
laccases with putative involvement in lignin degradation
[32]. Over 200 transcripts assigned to the genera Fusar-
ium or Nectria (Family Nectriaceae) were detected in
the gut contents library and many of these transcripts
were classified as glycoside hydrolases (GH) based on
Pfam domain annotations. One of the most striking
findings was the presence of over 30 transcripts pre-
dicted to originate from GH 28 polygalacturonases,
which have predicted involvement in degradation of pec-
tin. While pectin is not prevalent in woody tissue, it is
periodically deposited in secondary growth and represents
stores of galactose sugars and essential minerals (e.g., cal-
cium) [41] that could be assimilated by the beetle or gut
fungi. A single transcript predicted to encode a GH 5 cel-
lulase was also detected. While its ability to catalyze endo-
or exo- type glucanase reactions could not be predicted
based on in silico annotations alone, it could work in col-
laboration with beetle-derived cellulases to facilitate cell
wall digestion [20,27]. In addition, it was previously hy-
pothesized that F. solani could play a key role in lignin
degradation in the midgut [42]; several secreted laccases
were detected previously through MudPIT shotgun prote-
omic analysis [32]. Although no known lignin peroxidase
transcripts were detected in this analysis, Fusarium-
derived transcripts with predicted involvement in me-
tabolizing aromatic compounds were detected that
could play accessory roles in processing the lignin bio-
polymer. For example, several transcripts were detected
that are predicted to encode phenolic acid decarboxy-
lases, aromatic ring hydroxylases, cytochrome P450s,
and alcohol and aldehyde dehydrogenases, which can
enhance oxidation of inter-phenylpropanoid linkages in
lignin in the presence of other lignin degrading en-
zymes [43] or have roles in detoxification.
Non-entomopathogenic fungi associated with insects

are also hypothesized to serve key roles in nutrient

provisioning, including (but not limited to) sterol syn-
thesis and nitrogen concentration [44]. Several tran-
scripts derived from Fusarium spp. with predicted
involvement in amino acid salvage and recycling of ni-
trogenous waste products were detected. These included
nitrate transporters and xanthine/uracil family perme-
ases, which can assimilate uric acid, xanthine, cysteine
and other nitrogenous waste products. Additionally,
transcripts linked to sterol biosynthetic pathways were
detected and included transcripts with highest scoring
BLASTX alignments to 3-keto sterol reductases, sulfa-
tases, sterol regulatory element-binding protein (SREBP)
cleavage-activating proteins, and di-trans-poly-cis-deca-
prenylcistransferases, which produce key intermediates
in the biosynthesis of terpenoids.

Potential nutrition provisioning roles of yeasts in the
A. glabripennis midgut
OTUs derived from yeasts are consistently detected in
the midgut of A. glabripennis from field and laboratory
reared larvae (unpublished data). The association of
yeasts with beetle larvae has been extensively studied in
a variety of cerambycids [7,45,46] and the importance of
fungal enzymes to plant cell wall degradation in several
cerambycid species has been demonstrated [47]. Previ-
ously, it was hypothesized that yeasts associated with the
guts of multiple species of cerambycids ferment xylose
[38] and the detection of transcripts derived from the
xylose isomerase and various fermentation pathways
provide support to this hypothesis. However, additional
yeast-derived transcripts detected in this study suggest
that these microbes could have roles in digestion and
nutrient biosynthesis beyond xylose fermentation. Sev-
eral yeast-derived transcripts annotated as multicopper
oxidases, laccases, and Cα –dehydrogenases were de-
tected. Although yeasts are not known to degrade lignin
and laccases and Cα dehydrogenases are often involved
in detoxification processes in yeasts, similar genes in
other bacterial and fungal taxa can expedite oxidation of
linkages in lignin, enhancing the degradation of lignin in
the presence of other lignin degrading enzymes [48,49].

Figure 9 Partial pathways for aromatic amino acid biosynthesis detected in the A. glabripennis larval midgut microbiome. In some
cases, pathways encoded by the gut microbiota can be complemented by transcripts derived from A. glabripennis. For example, gut microbes
encoded full pathways for the biosynthesis of the essential aromatic amino acid phenylalanine, while A. glabripennis produces the enzymes
necessary to convert phenylalanine derived from microbes into tyrosine.
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To our knowledge, the ability of yeast laccases and Cα

dehydrogenases to participate in lignin degradation has
not been directly tested.
Yeasts associated with the beetle midgut also have the

potential to produce enzymes with pivotal roles in nitro-
gen recycling. In addition to the glutamate dehydrogen-
ase and taurine dioxygenase transcripts, which were
derived predominately from yeasts, several transcripts
annotated as putative uricases and ureases were de-
tected, suggesting that yeasts associated with the midgut
can also decompose and recycle nitrogenous waste prod-
ucts. Transcripts that encode essential nutrient biosyn-
thetic pathways were also associated with yeasts, such
as those involved in the synthesis of methionine,
branched chain amino acids, aromatic amino acids, and
α-ketoglutarate, suggesting that yeasts could also play
roles in essential amino acid biosynthesis.
Several enzymes with predicted involvement in ergos-

terol biosynthesis were detected; it has been hypothe-
sized that insects can utilize ergosterols produced by
fungal symbionts for production of pheromones and
cholesterol and, in some cases, biochemical evidence
supports the utilization of fungal ergosterols [50]. Fungi
associated with the midgut also produced transcripts
that are predicted to encode enzymes involved in the
biosynthesis of several vitamins, including riboflavin,
thiamine, and thiazole, which are all deficient in woody
tissue.

Potential nutrient provisioning roles of lactic acid bacteria
By far, the most abundant microbial transcripts detected
in the A. glabripennis midgut were taxonomically classi-
fied to the genus Pediococcus (Family Lactobacillaceae).
This taxon has been previously detected in association
with the A. glabripennis midgut [27] and lactic acid bacter-
ial reads taxonomically classified to the genus Leuconostoc
were previously detected through shotgun metagenomic
and 16S rDNA amplicon analyses of beetles collected
from another population of A. glabripennis [20]. Although
no major pathways for carbohydrate digestion were associ-
ated with this taxon, pathways for the assimilation and
utilization of β-1,4 linked di- and oligo-saccharides (e.g.
cellobiose, β-1,4-linked xylose, arabinose, galactan, and
rhamnose), N-acetylglucosamines (e.g., chitin and other
aminosugars), and α-1,3 and α-1,6 linked mannose oligo-
mers were highly expressed. This suggests that these bac-
teria metabolize and utilize the products of larger scale
degradative processes catalyzed by either the beetle or
other members of the gut community. The overabundance
of β-glucosidases and cellobiose phosphotransferase sys-
tems associated with this genus and with the gut commu-
nity in general can partially explain the enhanced cellulase
complex activity in the presence of diverse gut microbial
communities previously observed in the A. glabripennis

midgut [27]. Heightened β-glucosidase activities could re-
duce the impact of end product inhibition of cellulases.
Aldose epimerases were also detected in association with
this taxon, which can catalyze the inter-conversion of
α-D-glucose and β-D-glucose. This may explain the over-
abundance of α-glucoside transporters in the A. glabripen-
nis midgut transcriptome [31] relative to the microbial
community since the beetle may acquire some of its car-
bon sources from α-D-glucose synthesized by various
members of the midgut community. Aldo-keto reductases
(AKR) and laccases associated with the genus Pediococcus
were also highly abundant. AKRs were highly abundant in
both the A. glabripennis larval midgut transcriptome [31]
and larval midgut metagenome [20] where they were hy-
pothesized to serve key roles in lignin degradation because
they can enhance the cleavage of β-aryl ether linkages in
the presence of other lignin degrading enzymes. Aside
from lignin degradation, aldo-keto reductases can be inte-
grally involved in detoxification, metabolism of monosac-
charides, and a variety of other diverse oxidoreductive
processes; thus, the roles of these transcripts in the midgut
could be diverse. Finally, many transcripts were detected
with predicted roles in the biosynthesis of vitamins, in-
cluding folate, coenzyme A, and thiamine in the biosyn-
thesis of branched chain amino acids, lysine, asparagine,
arginine, aspartate, and aromatic amino acids.
Previous analysis of metagenomic DNA predicted to

originate from bacteria assigned to the genus Leuconos-
toc detected in A. glabripennis midguts collected from
an established population in Worcester, MA indicated
that these lactic acid bacteria have a similar metabolic
potential as the Pediococcus-derived transcripts detected
in the current study [20]. Currently, the relationship be-
tween A. glabripennis and these lactic acid bacteria is
uncharacterized; however, the conversion of xylose
sugars released by insect-derived xylanase and the syn-
thesis of essential amino acids and other nutrients that
are generally deficient from woody tissue suggests that
these bacteria could be beneficial.

Conclusions
The midgut microbiome of A. glabripennis is enriched
in biosynthetic pathways for the synthesis of essential
amino acids, vitamins, and sterols. Consequently, mi-
crobes can provide A. glabripennis with essential nutri-
ents that the beetle cannot obtain directly from its
woody diet, or synthesize itself. The gut microbiota also
produces its own suite of transcripts that can enhance
lignin degradation, degrade hemicellulose, and ferment
xylose and wood sugars. An abundance of cellulases
(from several glycoside hydrolase families) plus transcripts
that allow the beetle to convert microbe-synthesized es-
sential amino acids into non-essential amino acids are
expressed by the beetle. The beetle and its gut microbiota
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likely collaborate to digest carbohydrates and convert re-
leased sugars and amino acid intermediates into essential
nutrients otherwise lacking from woody plants. Further,
the nutritional provisioning capabilities of the A. glabri-
pennis gut microbiome may contribute to the unusually
broad host range of this invasive beetle species.
Many studies have sought to characterize the micro-

biota associated with xylophagous insects to determine
how they are able to thrive in woody tissue and to help
develop targets for biological control. The challenge is
that these communities are taxonomically diverse, tem-
porally dynamic and composed of large numbers of fac-
ultative microbial taxa, fueling debate about whether
such microbes enhance fitness or are transient commen-
sals [7,8,51]. The presence of some of the same microbial
taxa in the midguts of A. glabripennis and exemplars of
other beetle lineages that contain large numbers of tree-
feeding species (e.g., the Buprestidae [8] and Scolytinae),
in addition to the apparent importance of certain OTUs
(e.g., Fusarium solani and yeasts) to the nutritional ecol-
ogy of A. glabripennis and other wood-feeding beetles
(e.g., (Scarabaeidae) [52]; (Passalidae) [38]; (Curculionidae)
[53]), suggests that indepedently-derived partnerships with
microbes may be common facilitators of taxonomic and
ecological diversification in beetles, as they are in certain
other groups of insects (e.g., aphids [11]). These partner-
ships likely facilitate access to novel food sources through
enhanced nutritional provisioning capabilities. Interest-
ingly, several expressed rRNAs and mRNAs predicted to
originate from rare OTUs were also detected in this study,
indicating that persistence and abundance are not neces-
sarily correlated with transcriptional activity and that even
rare microbial taxa can express genes integral to nutri-
tional ecology.
Microbes associated with xylophagous insects have

been hypothesized to have primary involvement in the
degradation of woody tissue; however, our analyses dem-
onstrate that pathways for the synthesis of essential nu-
trients, including aromatic and branched chain amino
acids, sterols, and vitamins, and for recycling of nitro-
genous waste products, are relatively more abundant,
suggesting that the majority of the microbial community
may be more important for nutrient provisioning. In
addition, the A. glabripennis microbiota produce tran-
scripts with predicted roles in pentose sugar fermenta-
tion and utilization, which could allow xylose to be used
as a substrate for energy production and essential and
non-essential amino acid biosynthesis.
Although no canonical lignin degrading genes were

detected, several enzymes with axillary roles in this
process were identified, including Cα dehydrogenases,
multicopper oxidases, laccases, and aldo-keto reductases,
suggesting that the gut microbiota can facilitate the
degradation of lignin [42]. In contrast, A. glabripennis

produces several endogenous cellulases, xylanases, β-
glucosidases, and other cell wall degrading enzymes,
suggesting that the beetle has a primary role in digesting
plant polysaccharides and its interactions with microbes
could augment these processes. Therefore, disrupting
microbes with predicted involvement in essential nutri-
ent biosynthesis, such as lactic acid bacteria and yeasts,
could have deleterious phenotypic impacts on A. glabri-
pennis and serve as a viable approach for controlling
populations of A. glabripennis and other wood-feeding
beetles.
Many of the same bacterial genera detected in the A.

glabripennis midgut are shared among all life stages of the
phloephagous emerald ash borer (Buprestidae: Agrilus pla-
nipennis) [8]. Agrilus planipennis and A. glabripennis have
different biologies (feeding primarily in phloem and xylem,
respectively) and are very distantly related (last common
ancestor ~200 MYA) [54], suggesting that their wood-
feeding habits evolved independently. Similarly, the bark
beetle Dendroctonus ponderosae, which last shared a com-
mon ancestor with A. glabripennis ~170 MYA [55], pro-
duces different types of cell wall degrading enzymes than
A. glabripennis, suggesting that these beetles, while mem-
bers of sister superfamilies, also likely have independently
evolved to feed in trees. No well-resolved and/or compre-
hensive higher-level molecular phylogenies are available
for Cerambycidae or their closest relatives and few data
are available about their gut microbiota, making it difficult
to speculate on the timing and number of phylogenetic
origins of xylophagy in longhorned beetles or in Chry-
someloidea as a whole. Nonetheless, through multiple
comparisons of microbial communities associated with
xylophagous beetles, it should be possible to characterize
similarities and differences in microbial community com-
position and function and genetic/physiological adapta-
tions associated with xylophagy within the species rich
family Cerambycidae, and also within other families of
Coleoptera with xylophagous members.
While this study demonstrates that various members

of the gut microbiome express genes that can comple-
ment the beetle’s existing repertoire of digestive and nu-
trient scavenging capabilities, more research is needed to
determine which of these symbionts are required for
survival in woody tissue. However, experiments to ma-
nipulate the composition of the gut community in A.
glabripennis and other phloephagous and xylophagous
beetles to demonstrate the impact of disruption of select
microbes on fitness and digestive physiology have been
impeded by the difficulty of rearing these insects on
anti-microbial free artificial diet. Also, the composition
of the gut microbial community and the genes expressed
by its members were sampled only at a single life stage
in this study (third instar) and therefore, this analysis
cannot account for shifts in community composition
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and its metabolic potential that may occur as the larvae
feed in different tissues of the tree throughout their life
cycle.
Rarefaction curves computed for the 16S bacterial

communities were not completely saturated, indicating
that OTUs present in lower relative abundances in the
midgut may not have been sampled for sequencing. Al-
though deeper sequencing and a more comprehensive
survey of the microbial genes expressed in the gut would
allow us to identify additional microbial contributions to
digestive physiology and more opportunities for nutrient
exchange, it is often difficult to achieve complete satur-
ation in complex communities with large numbers of
rare OTUs as has been previously observed in A. glabri-
pennis [17,27,31] and other wood-feeding insects [56].
Both the community and the expression of various di-
gestive and nutrient scavenging genes are dynamic;
therefore, this survey is not exhaustive and additional
bacterial and fungal OTUs and microbial contributions
to digestive physiology will likely be identified with fur-
ther study.

Methods
Fungal and bacterial communities of the A. glabripennis
midgut
We characterized the bacterial and fungal communities
associated with the A. glabripennis midgut by high-
throughput sequencing of 16S bacterial rRNA and fungal
ITS amplicon libraries. Larval A. glabripennis were reared
on living, potted Acer saccharum (sugar maple) in a
USDA-approved quarantine greenhouse as described pre-
viously [27,31]. A. glabripennis adults and larvae used in
these experiments were reared in colony at The Pennsyl-
vania State University. This colony is of mixed ancestry
from several invasive populations of A. glabripennis ob-
tained within the U.S. and has been in culture for over
10 years, but field-collected insects from regulated areas
in the U.S. are routinely added to the colony to maintain
genetic diversity. In brief, potted A. saccharum trees were
grown at an outdoor nursery until they were 3–4 years
old. Several weeks before use, trees were moved into the
quarantine greenhouse to allow for acclimation to green-
house conditions. Three trees were placed in a walk-in in-
sect cage (~3 m high, 3 m long, and 2 m wide) and five
mating pairs of A. glabripennis adults were placed in the
cage and allowed to mate and lay eggs.
After 8 weeks of feeding in trees, larvae were removed

and surface sterilized with two washes of 70% ethanol
followed by a single wash in sterile distilled water to re-
move residual ethanol. Larvae were dissected and their
midguts removed for DNA extraction using the PowerSoil
DNA Isolation Kit (MoBio, Carlsbad, CA). DNA integrity
and concentration were verified using a NanoDrop spec-
trophotometer (Thermo-Fisher, Pittsburgh, PA) and the

Quant-It dsDNA assay (Life Technologies, Carlsbad, CA),
which was analyzed on a Qubit fluorometer (Life Tech-
nologies). DNA collected from each midgut was used to
construct partial 16S bacterial amplicon libraries, ranging
from position 27 F to 907R, and full ITS amplicon librar-
ies, ranging from ITS5 to ITS4. 454 multiplex identifiers
(MIDs) and 454 Titanium library adapters were directly
incorporated into the primer sequences as described pre-
viously [20]. In brief, 100 ng of DNA were added to a PCR
reaction mixture containing 1.0 μL 10X Buffer Mix
(Roche, Branford, CT), 2 mM dNTPs (Roche), 0.5 U Taq
polymerase (Roche), 5 μM forward primer (27 F: 5’-
AGAGTTTGATCMTGGCTCAG-3’) and 5 μM reverse
primer (907R: 5’-CCCCGTCAATTCMTTTGAGTTT-3’)
[57]. PCR cycling conditions were as follows: initial de-
naturation for 3 minutes at 94°C, 30 cycles of 94°C for
15 seconds, 55°C for 45 seconds, and 72°C for 1 minute,
and a final extension at 72°C for 8 minutes. The PCR reac-
tion mixture and thermal cycling conditions for the ITS
amplicon library were identical to those used to generate
the bacterial library except that the 5 μM forward primer
(ITS5: 5’-GGAAGTAAAAGTCGTAACAAGG-3’) and the
5 μM reverse primer (ITS4: 5’- TCCTCCGCTTATTGA
TATGC-3’) [58] were substituted and 35 PCR cycles were
used. PCR products were evaluated using agarose gel elec-
trophoresis and bands corresponding to the sizes of the
desired products were eluted from the gel using the
Agarose Gel Extraction Kit (Roche). For the 16S amplicon
libraries, products of approximately 900 bp in size were
eluted from the gel. Since the length of the ITS region var-
ies in different fungal taxa, PCR products ranging in size
from 500 bp to 1800 bp were eluted from the gel and were
used for library preparation. Libraries were quantified
using the Qubit dsDNA assay (Invitrogen), samples were
multiplexed, and library titers were calculated using
quantitative PCR against a library standard (Kapa Bio-
systems, Woburn, MA). Approximately 5,000 reads
were sequenced from each 16S bacterial library and
1,000 reads were sequenced from each ITS fungal li-
brary using 454 Titanium XLR chemistry. Raw reads
from each 16S and ITS library were deposited in the
NCBI Sequence Read Archive (SRA) under the accession
numbers SRX367813 and SRX369139, respectively. These
reads are associated with BioProjects PRJNA222386 and
PRJNA222384, respectively.

Operational taxonomic unit-based analysis of microbial
16S and ITS amplicons from the A. glabripennis midgut
16S amplicons were assigned to OTUs using the program
Mothur (version 1.32.0). Pyrosequencing flowgrams were
denoised to reduce the impact of 454 homopolymer errors
on OTU categorization [59,60] and low quality amplicons
with ≥ 80% of the bases containing a quality score of less
than 25 were removed from the dataset. Chimeras were
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detected and removed with the program UCHIME [61],
high quality reads greater than 700 bp in length were clus-
tered into OTUs at 97% similarity; rarefaction curves,
richness estimates, and other indices of ecological diversity
were computed using Mothur [62]. Bacterial OTUs were
classified to higher taxa using the Ribosomal Database
Project (RDP) Classifier [63], with an 80% confidence
threshold for taxonomic classifications [60]; sequences
classified as mitochondrial, chloroplast, or eukaryotic in
origin were omitted from the analysis. Before calculating
richness and diversity metrics, the 16S and ITS amplicon
libraries were normalized by randomly subsampling (with-
out replacment) the same number of reads from each li-
brary to equalize sampling depth across communities.
For analysis of ITS amplicons, flowgrams were denoised

and low quality reads discarded as described above. High
quality reads ranging from 450 bp to 850 bp in length
were clustered into OTUs at 97% sequence similarity.
However, ITS is highly prone to indel events, making it
difficult to accurately align across distantly related taxa
[64], leading to artificial inflations in richness calculations
and estimates when using alignment-based methods for
OTU classification [65]. Therefore, instead of implement-
ing Mothur’s alignment based approach for OTU assign-
ment, amplicons were clustered into OTUs at 97%
sequence similarity using the program CD-HIT-EST [66].
The program UCHIME [61] was used to detect putative
chimeras using the more highly abundant OTUs as a ref-
erence, since templates for chimera detection were not
available for the ITS region. Taxonomic classification of
ITS OTUs was conducted by first comparing representa-
tive sequences from each OTU to NCBI’s non-redundant
nucleotide database using BLASTN [67] to identify plant
or insect derived ITS amplicons. After excluding these,
fungal OTUs were classified to higher taxa using the
UNITE database [68] at a 90% confidence level and diver-
sity and richness indices were computed using Mothur. A
higher confidence threshold was used for fungal classifica-
tion to ensure accurate taxonomic assignment despite the
relative underrepresentation of fungal taxa in NCBI data-
bases. As in the 16S analysis, the ITS amplicon libraries
were normalized by randomly subsampling the same
number of reads from each library before computing and
comparing diversity indices. To determine which OTUs
were transcriptionally active in the midgut, rRNAs and
fungal ITS sequences assembled from the Illumina data
were also compared to representative sequences derived
from each 16S or ITS OTU detected through amplicon se-
quencing via BLASTN. Due to potential homopolymer er-
rors in OTU sequences derived from 454 amplicons,
rRNA and ITS sequences from the transcriptome data
were considered to have a significant match if they were ≥
95% identical at the nucleotide level to an OTU detected
through 454 amplicon sequencing.

Metatranscriptome sequencing of the A. glabripennis
midgut
Larvae feeding in A. saccharum for 8 weeks were re-
moved from the tree and midguts collected from 10 in-
stars. RNA was sampled from two gut locations. First,
total RNA was sampled from the midgut contents col-
lected from five larvae to identify genes from transcrip-
tionally active microbes associated with the food bolus.
Second, total RNA was sampled from intact midguts re-
moved from four larvae to capture RNAs expressed by
microbes that may be associated with the gut tissue.
This is of significant interest because microbes are often
observed in the epithelium of the A. glabripennis midgut
and are poised to directly interact with host cells. One
shortfall of the previous metagenomic survey of the A.
glabripennis midgut microbiota [20] was that only mi-
crobes associated with the midgut contents were sam-
pled and sequenced, and microbes associated with the
midgut epithelial cells could have been missed.

Shotgun sequencing of mRNA from A. glabripennis
midgut contents
Third instars of A. glabripennis were reared in potted A.
saccharum, then collected and dissected under sterile
conditions as described above, except in this case the
peritrophic matrix was removed to enrich the sample for
microbial cells associated with the food bolus. Midgut
contents were flash frozen in liquid nitrogen and total
RNA was immediately extracted using the FastRNA Spin
Kit for Soil (MP Biomedicals, Solon, OH). A post-RNA
extraction clean-up was performed using RNA Clean &
Concentrator (Zymo Research, Irvine, CA) to remove re-
sidual salts and phenolics; the sample was also treated
with DNase I (Zymo Research, Irvine, CA). Sample in-
tegrity was verified using the RNA Pico Assay (Life
Technologies, Carlsbad, CA) and Nano Drop (Thermo-
Fisher), while the sample concentration was determined
with the Quant-It RNA Assay (Life Technologies). Re-
moval of DNA was confirmed using the Quant-iT High-
Sensitivity DNA Assay (Life Technologies, Carlsbad, CA).
Insect- and microbe-derived rRNAs were depleted from
the sample as described previously [31].
The total RNA recovered from the midgut contents

was of relatively low quality (RNA integrity score of 5,
on a scale ranging from 1 to 10) and the amount of re-
covered RNA was low due to the presence of nucleases
and harsh conditions within the midgut lumen. To ob-
tain sufficient RNA for sequencing, 20 ng of enriched
mRNA was amplified using Ovation RNA Seq (NuGEN,
San Carlos, CA) to produce 2 μg of double-stranded
cDNA. The library was sheared using a Covaris Focused-
ultrasonicator (Covaris, Woburn, MA), enriched for 175 nt
fragments, and prepared using TruSeq Genomic DNA li-
brary adapters (Illumina, San Diego, CA). Approximately
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40 million 130 nt paired end reads (a total of 10.6 Gb se-
quence data) were obtained using the Illumina GAIIx
platform. An overlapping paired end library enriched for
175 nt fragments was constructed so that a longer con-
tiguous sequence of this length could be constructed by
merging a single read pair, thus reducing the likelihood
of cross-assembling reads derived from orthologous
genes from different microbial taxa [69]. The raw Illu-
mina reads were deposited in NCBI’s SRA under the ac-
cession number SRX352195 and are associated with
Bioproject PRJNA219402.

Shotgun sequencing of mRNA collected from A. glabripennis
midgut tissue
Four individual third instars of A. glabripennis were dis-
sected and their midguts removed, pooled, total RNA
extracted, and ribosomal RNA depleted, as described
above. The quality and concentration of RNA recovered
from the intact midguts were high relative to the above-
mentioned gut contents library, so amplification prior to
library construction was not necessary. Approximately
200 ng of enriched RNA was used for library preparation
with the TruSeq RNA Library Prep Kit (Illumina), omit-
ting the polyA enrichment step to enhance recovery of
non-polyA bacterial mRNA. The library was enriched
for 175 nt fragments so that paired end reads overlapped
by ~30 nt. Approximately 130 million 101 nt paired end
reads (36 Gb) were generated using the Illumina HiSeq
2000 platform. Raw reads were deposited in NCBI’s SRA
under the accession number SRX265389 and are associ-
ated with Bioproject PRJNA193436.

Assembly of the A. glabripennis larval midgut
metatranscriptome
Due to differences in library construction between the
whole gut and gut contents libraries, the two libraries
were quality filtered and assembled separately. Low qual-
ity reads or reads with ≥ 20% of the bases possessing
quality scores less than 20 were filtered from the dataset
using the FastX Toolkit and residual library adapters
were removed using Cutadapt [70]. Remaining read pairs
and orphans were assembled with the Trinity de novo as-
sembler [71] in paired-end mode. To reduce the cover-
age of highly expressed genes and to improve the ability
to assemble transcripts and transcript isoforms originat-
ing from lowly expressed genes, k-mers (k = 25) from
quality filtered Illumina paired end reads were reduced
to ≤ 30X coverage using digital normalization [72]. Nor-
malized reads were assembled with Trinity (version
r2012-10-05) [71]. We used Trinity for assembly due to
its ability to discriminate and assemble gene isoforms
and splice variants in data from Eukaryotes [71]. We antic-
ipated that Trinity’s ability to distinguish between isoforms
from the same gene would prevent cross-assembling reads

originating from orthologous genes from different micro-
bial taxa and/or strains.

Annotation of metatranscriptome genes and isoforms
Transcripts assembled by Trinity from both the midgut
tissue and midgut contents libraries were used in down-
stream annotations and analyses. Since transcript iso-
forms could be derived from orthologous genes from
closely related bacterial species or strains, they were not
collapsed to the gene level prior to in silico functional
annotation. SSU (small subunit) and LSU (large submit)
rRNAs were detected and removed with HMMer [73]
using profiles for prokaryotic, eukaryotic, and archeael
SSU, LSU, and 5.8S/8S rRNAs [74]. Bacterial, fungal, in-
sect, and tree SSU and LSU rRNAs detected in the tran-
scriptome were taxonomically classified by comparison
to the Silva database, a manually curated collection of
high-quality, full length SSU and LSU ribosomal RNAs
from all domains of life [75]. The remainder of the iso-
forms were annotated by a BLASTX comparison [67] to
the NCBI non-redundant protein database and were
taxonomically classified using MEGAN metagenomic
analyzer [76] to identify transcripts that were likely mi-
crobial in origin. Microbial transcripts were functionally
grouped into Gene Ontology terms [77] and mapped
onto KEGG pathways [78] using the Trinotate pipeline
and the KAAS server [79], respectively. BLASTX results
were corroborated and glycoside hydrolase (GH) family
assignments were computed by scanning for Pfam A do-
mains [80] using HmmSearch [81]. Transcripts were also
aligned to the A. glabripennis genome using BLASTN to
ensure that they did not arise from genes that were lat-
erally transferred from microbes to A. glabripennis.

Comparison of microbial and insect annotations
To determine how the gut microbiota can augment and
complement A. glabripennis’ endogenous digestive rep-
ertoire, annotations of microbial genes assembled from
the intact midgut and midgut contents libraries were
compared to annotations of insect-derived genes that
were previously assembled and annotated from the A.
glabripennis midgut [33]. The full genome sequence of
A. glabripennis is available pre-release and was used to
confirm the absence of various host digestive genes and
metabolic pathways.

Availability of supporting data
Raw reads from each 16S and ITS library were depos-
ited in the NCBI Sequence Read Archive (SRA) under
the accession numbers SRX367813 and SRX369139, re-
spectively. These reads are associated with BioProjects
PRJNA222386 and PRJNA222384, respectively. Barcoding
information is presented in Additional file 5: Table S4.
Raw Illumina reads from the whole midgut library were
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deposited in NCBI’s SRA under the accession num-
ber SRX265389 and are associated with Bioproject
PRJNA193436. The raw Illumina reads for the midgut
contents library were deposited in NCBI’s SRA under the
accession number SRX352195 and are associated with
Bioproject PRJNA219402. The assemblies and annotations
for the A. glabripennis midgut transcriptome used for
comparisons in this manuscript can be found in in NCBI’s
Transcript Shotgun Assembly database under the acces-
sion number [GALX00000000] and was previously pub-
lished [28]. Assembled microbial transcripts from the
intact midgut and midgut contents and their corre-
sponding annotations are included as Additional file 6:
Supplemental file 1 and Additional file 7: Supplemental
file 2. Highest scoring BLASTX results for the intact
midgut and midgut contents are presented in Additional
file 8: Supplemental file 3 and Additional file 9:
Supplemental file 4.
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Additional file 1: Table S1. Taxonomic classifications of 16S bacterial
OTUs detected in all A. glabripennis larval midguts sampled.

Additional file 2: Figure S1. Taxonomic composition of midgut
contents (top) and intact midgut (bottom) metatranscriptome libraries.

Additional file 3: Table S2. Taxonomic classification of microbial rRNAs
detected in the midgut contents and intact midgut libraries.

Additional file 4: Table S3. Number of unique KO terms found in
KEGG pathways associated with carbon metabolism, nitrogen acquisition
and amino acid biosynthesis, nutrient acquisition, and detoxification.

Additional file 5: Table S4. 454 Barcodes used for 16S and ITS
amplicon studies.

Additional file 6: Supplemental file 1. Fasta file containing microbial
transcripts from the A. glabripennis intact midgut.

Additional file 7: Supplemental file 2. Fasta file containing microbial
transcripts assembled from the A. glabripennis intact midgut.

Additional file 8: Supplemental file 3. Highest scoring BLASTX
alignments of protein coding genes assembled from the A. glabripennis
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